Soybean–SCN Battle: Novel Insight into Soybean’s Defense Strategies against Heterodera glycines
Abstract
:1. Introduction
2. Results
2.1. Greenhouse SCN Bioassay and Genotyping Rhg1 and Rhg4 Copy Number Variation (CNV)
2.2. Dual Transcriptome Sequencing and Assembly in Host and Nematode
2.3. Intra- and Inter-Genotype Analyses Identify Pathways Pertaining to Defense in Each Resistant Line
2.4. Interactions between SCN Transcriptomes and Soybean Proteins
3. Discussion
4. Materials and Methods
4.1. Soybean and SCN Procurement for Inoculation
4.2. Female Index (FI) Calculation
4.3. Rhg1 and Rhg4 Copy Number Variation
4.4. Tissue Collecting and Infection Confirmation
4.5. RNA Extraction and Dual RNA Sequencing
4.6. Data Analyses and Gene Pathway Analyses
4.7. Putative Effectors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambert, K.; Bekal, S. Introduction to plant-parasitic nematodes. Plant Health Instr. 2002, 10, 1094–1218. [Google Scholar] [CrossRef]
- Sasser, J.N. A world perspective on nematology: The role of the society. Vistas Nematol. 1987, 9, 7–14. [Google Scholar]
- Carter, A.; Tenuta, A.; Rajcan, I.; Welacky, T.; Woodrow, L.; Eskandari, M. Identification of quantitative trait loci for seed isoflavone concentration in soybean (Glycine max) against soybean cyst nematode stress. Plant Breed. 2018, 137, 721–729. [Google Scholar] [CrossRef]
- Bradley, C.A.; Allen, T.W.; Sisson, A.J.; Bergstrom, G.C.; Bissonnette, K.M.; Bond, J.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; Damicone, J.P.; et al. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Prog. 2021, 22, 483–495. [Google Scholar] [CrossRef]
- Hückelhoven, R. Cell wall–associated mechanisms of disease resistance and susceptibility. Annu. Rev. Phytopathol. 2007, 45, 101–127. [Google Scholar] [CrossRef]
- Miedes, E.; Vanholme, R.; Boerjan, W.; Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 2014, 5, 358. [Google Scholar] [CrossRef]
- Medzhitov, R.; Janeway, C.A. Innate immunity: The virtues of a nonclonal system of recognition. Cell 1997, 91, 295–298. [Google Scholar] [CrossRef]
- Macho, A.P.; Zipfel, C. Plant PRRs and the activation of innate immune signaling. Mol. Cell 2014, 54, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Thomma, B.P.H.J.; Nürnberger, T.; Joosten, M.H.A.J. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant Cell 2011, 23, 4–15. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.-M. Plant immunity triggered by microbial molecular signatures. Mol. Plant 2010, 3, 783–793. [Google Scholar] [CrossRef]
- Coll, N.S.; Epple, P.; Dangl, J.L. Programmed cell death in the plant immune system. Cell Death Differ. 2011, 18, 1247–1256. [Google Scholar] [CrossRef]
- Brucker, E.; Carlson, S.; Wright, E.; Niblack, T.; Diers, B. Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse. Theor. Appl. Genet. 2005, 111, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Concibido, V.C.; Diers, B.W.; Arelli, P.R. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci. 2004, 44, 1121–1131. [Google Scholar] [CrossRef]
- Caldwell, B.E.; Brim, C.A.; Ross, J.P. Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines. Agron. J. 1960, 52, 635–636. [Google Scholar] [CrossRef]
- Matson, A.L.; Williams, L.F. Evidence of a fourt gene for resistance to the soybean cyst nematodde 1. Crop Sci. 1965, 5, 477. [Google Scholar] [CrossRef]
- Kim, M.; Hyten, D.L.; Bent, A.F.; Diers, B.W. Fine mapping of the SCN resistance locus rhg1-b from PI 88788. Plant Genome 2010, 3, 81–89. [Google Scholar] [CrossRef]
- Lu, X.; Torabi, S.; Passianotto, A.L.d.L.; Welacky, T.; Eskandari, M. Quantitative trait loci and gene-specific markers associated with resistance to soybean cyst nematode HG type 2.5.7. Mol. Breed. 2022, 42, 62. [Google Scholar] [CrossRef] [PubMed]
- Meksem, K.; Pantazopoulos, P.; Njiti, V.N.; Hyten, L.D.; Arelli, P.R.; Lightfoot, D.A. ‘Forrest’ resistance to the soybean cyst nematode is bigenic: Saturation mapping of the Rhg1 and Rhg4 loci. Theor. Appl. Genet 2001, 103, 710–717. [Google Scholar] [CrossRef]
- Cook, D.E.; Lee, T.G.; Guo, X.; Melito, S.; Wang, K.; Bayless, A.M.; Wang, J.; Hughes, T.J.; Willis, D.K.; Clemente, T.E.; et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 2012, 338, 1206–1209. [Google Scholar] [CrossRef]
- Cook, D.E.; Bayless, A.M.; Wang, K.; Guo, X.; Song, Q.; Jiang, J.; Bent, A.F. Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiol. 2014, 165, 630–647. [Google Scholar] [CrossRef]
- Liu, S.; Kandoth, P.K.; Warren, S.D.; Yeckel, G.; Heinz, R.; Alden, J.; Yang, C.; Jamai, A.; El-Mellouki, T.; Juvale, P.S.; et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 2012, 492, 256–260. [Google Scholar] [CrossRef]
- Westermann, A.J.; Förstner, K.U.; Amman, F.; Barquist, L.; Chao, Y.; Schulte, L.N.; Müller, L.; Reinhardt, R.; Stadler, P.F.; Vogel, J. Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature 2016, 529, 496–501. [Google Scholar] [CrossRef]
- Mika-Gospodorz, B.; Giengkam, S.; Westermann, A.J.; Wongsantichon, J.; Kion-Crosby, W.; Chuenklin, S.; Salje, J. Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. Nat. Commun. 2020, 11, 3363. [Google Scholar] [CrossRef]
- Schmitt, D.P.; Shannon, G. Differentiating soybean responses to Heterodera Glycines Races. Crop Sci. 1992, 32, 275–277. [Google Scholar] [CrossRef]
- Masonbrink, R.; Maier, T.R.; Seetharam, A.S.; Juvale, P.S.; Baber, L.; Baum, T.J.; Severin, A.J. SCNBase: A genomics portal for the soybean cyst nematode (Heterodera glycines). Database 2019. [Google Scholar] [CrossRef]
- Teufel, F.; Armenteros, J.J.A.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.P.; Broadley, M.R.; White, P.J. Genetic responses to phosphorus deficiency. Ann. Bot. 2004, 94, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Matsye, P.D.; Kumar, R.; Hosseini, P.; Jones, C.M.; Tremblay, A.; Alkharouf, N.W.; Matthews, B.F.; Klink, V.P. Mapping cell fate decisions that occur during soybean defense responses. Plant Mol. Biol. 2011, 77, 513–528. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.; Li, Y.; Zhang, Q.; Ding, Y.; Zhang, Y. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat. Commun. 2015, 6, 10159. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Zhang, Y.; Zhang, X.; Pi, E.; Zhu, Y. Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Front. Plant Sci. 2017, 8, 877. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, S.; Białasek, M.; Suzuki, N.; Górecka, M.; Devireddy, A.R.; Karpiński, S.; Mittler, R. ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. Plant Physiol. 2016, 171, 1606–1615. [Google Scholar] [CrossRef]
- Kofsky, J.; Zhang, H.; Song, B.-H. Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean. Sci. Rep. 2021, 11, 7967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kjemtrup-Lovelace, S.; Li, C.; Luo, Y.; Chen, L.P.; Song, B.-H. Comparative RNA-seq analysis uncovers a complex regulatory network for soybean cyst nematode resistance in wild soybean (Glycine soja). Sci. Rep. 2017, 7, 9699. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, W.; Sun, J.; Liang, X.; Yang, X.; Wei, S.; Wang, X.; Zhou, Y.; Xiao, Q.; Yang, G.; et al. Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9. Plant Sci. 2015, 237, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Ithal, N.; Recknor, J.; Nettleton, D.; Maier, T.R.; Baum, T.J.; Mitchum, M.G.; Stasko, A.K.; Batnini, A.; Bolanos-Carriel, C.; Lin, J.E.; et al. Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol. Plant-Microbe Interact. 2007, 20, 510–525. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, X.; Cao, G.; Wang, Y.; Li, Y.; Liu, D.; Teng, W.; Zhang, Z.; Li, D.; Qiu, L.; et al. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genom. 2015, 16, 598. [Google Scholar] [CrossRef]
- You, J.; Chan, Z. ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef]
- Miraeiz, E.; Chaiprom, U.; Afsharifar, A.; Karegar, A.; Drnevich, J.M.; Hudson, M.E. Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans. Theor. Appl. Genet. 2019, 133, 87–102. [Google Scholar] [CrossRef]
- Farrow, S.C.; Facchini, P.J. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Front. Plant Sci. 2014, 5, 524. [Google Scholar] [CrossRef]
- McCann, M.C.; Roberts, K. Architecture of the primary cell wall. In The Cytoskeletal Basis of Plant Growth and Form; Lloyd, C.W., Ed.; Academic Press: London, UK, 1991; pp. 109–129. [Google Scholar]
- Carpita, N.C.; Gibeaut, D.M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993, 3, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin Biosynthesis and Structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Tronchet, M.; Balaguã, C.; Kroj, T.; Jouanin, L.; Roby, D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant Pathol. 2010, 11, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Hamann, T. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front. Plant Sci. 2012, 3, 77. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Jeon, H.S.; Kim, S.H.; Chung, J.H.; Roppolo, D.; Lee, H.; Cho, H.J.; Tobimatsu, Y.; Ralph, J.; Park, O.K. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 2019, 38, e101948. [Google Scholar] [CrossRef]
- Billa, E.; Koullas, D.P.; Monties, B.; Koukios, E.G. Structure and composition of sweet sorghum stalk components. Ind. Crop Prod. 1997, 6, 297–302. [Google Scholar] [CrossRef]
- Li, N.; Zhao, M.; Liu, T.; Dong, L.; Cheng, Q.; Wu, J.; Wang, L.; Chen, X.; Zhang, C.; Lu, W.; et al. A novel soybean dirigent gene gmdir22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Front. Plant Sci. 2017, 8, 1185. [Google Scholar] [CrossRef]
- Afzal, A.J.; Natarajan, A.; Saini, N.; Iqbal, M.J.; Geisler, M.; El Shemy, H.A.; Mungur, R.; Willmitzer, L.; Lightfoot, D.A. The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. Plant Physiol. 2009, 151, 1264–1280. [Google Scholar] [CrossRef]
- Minic, Z. Physiological roles of plant glycoside hydrolases. Planta 2007, 227, 723–740. [Google Scholar] [CrossRef]
- Vellosillo, T.; Aguilera, V.; Marcos, R.; Bartsch, M.; Vicente, J.; Cascón, T.; Hamberg, M.; Castresana, C. Defense activated by 9-lipoxygenase-derived oxylipins requires specific mitochondrial proteins. Plant Physiol. 2012, 161, 617–627. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Q.; Liu, S.; Wang, J.; Peng, D.; Kong, L. Combining targeted metabolite analyses and transcriptomics to reveal the specific chemical composition and associated genes in the incompatible soybean variety PI437654 infected with soybean cyst nematode HG1.2.3.5.7. BMC Plant Biol. 2021, 21, 217. [Google Scholar] [CrossRef]
- Kadam, S.; Vuong, T.D.; Qiu, D.; Meinhardt, C.G.; Song, L.; Deshmukh, R.; Patil, G.; Wan, J.; Valliyodan, B.; Scaboo, A.M.; et al. Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci. 2016, 242, 342–350. [Google Scholar] [CrossRef]
- Patil, G.B.; Lakhssassi, N.; Wan, J.; Song, L.; Zhou, Z.; Klepadlo, M.; Vuong, T.D.; Stec, A.O.; Kahil, S.S.; Colantonio, V.; et al. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. Plant Biotechnol. J. 2019, 17, 1595–1611. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Howe, K.L.; Bolt, B.J.; Cain, S.; Chan, J.; Chen, W.J.; Davis, P.; Done, J.; Down, T.; Gao, S.; Grove, C.; et al. WormBase 2016: Expanding to enable helminth genomic research. Nucleic Acids Res. 2015, 44, D774–D780. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.L.; Bolt, B.J.; Shafie, M.; Kersey, P.; Berriman, M. WormBase ParaSite—A comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 2016, 215, 2–10. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. feature Counts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. Jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Thumuluri, V.; Armenteros, J.J.A.; Johansen, A.R.; Nielsen, H.; Winther, O. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022, 50, W228–W234. [Google Scholar] [CrossRef] [PubMed]
Female Index (%) | Rating | Label |
---|---|---|
<10 | Resistant | R |
≥10 to 30 | Moderately resistant | MR |
>30 to 60 | Moderately susceptible | MS |
>60 | Susceptible | S |
Gene Name | PFAM Description | InterPro Description |
---|---|---|
Glyma.03G242100 | Copine | C2 domain |
Glyma.19G239500 | Copine | C2 domain |
Glyma.03G232400 | Calmodulin_bind | Calmodulin-binding protein 60 |
Glyma.19G229400 | Calmodulin_bind | Calmodulin-binding protein 60 |
Glyma.19G229500 | Calmodulin_bind | Calmodulin-binding protein 60 |
Glyma.04G035600 | p450 | cytochrome P450 (CYP) |
Glyma.19G160100 | EF-hand_7 | EF-hand domain |
Glyma.01G124500 | Ferritin | Ferritin/DPS protein domain |
Glyma.20G087000 | Response_reg | GAF domain |
Glyma.12G053900 | Glyco_hydro_1 | Glycoside hydrolase, family 1 |
Glyma.19G011800 | peroxidase | Haem peroxidase |
Glyma.01G130500 | peroxidase | Haem peroxidase, Plant ascorbate peroxidase |
Glyma.03G038300 | peroxidase | Haem peroxidase, Plant ascorbate peroxidase |
Glyma.03G038500 | peroxidase | Haem peroxidase, Plant ascorbate peroxidase |
Glyma.03G038600 | peroxidase | Haem peroxidase, Plant ascorbate peroxidase |
Glyma.09G023000 | peroxidase | Haem peroxidase, Plant ascorbate peroxidase |
Glyma.09G057100 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.15G052700 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.20G001400 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.02G085600 | HSP70 | Heat shock protein 70 family |
Glyma.02G184300 | NB-ARC | Leucine-rich repeat |
Glyma.18G141900 | MFS_1 | Major facilitator superfamily domain |
Glyma.10G212300 | Mlo | Mlo-related protein |
Glyma.13G006700 | NUDIX | NUDIX hydrolase domain |
Glyma.14G004300 | NUDIX | NUDIX hydrolase domain |
Glyma.20G062000 | NUDIX | NUDIX hydrolase domain |
Glyma.03G096500 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.07G124400 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.08G169100 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.14G058700 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.19G194300 | PBP | Phosphatidylethanolamine-binding protein PEBP |
Glyma.01G010200 | PRK | Phosphoribulokinase/uridine kinase |
Glyma.09G210900 | PRK | Phosphoribulokinase/uridine kinase |
Glyma.07G184000 | Pkinase/Lectin_LegB | Protein kinase domain |
Glyma.17G173000 | Pkinase | Protein kinase domain |
Glyma.18G219600 | Pkinase_Tyr/DUF26 | Protein kinase domain |
Glyma.13G046200 | RuBisCO_small | Ribulose bisphosphate carboxylase small chain, domain |
Glyma.10G008500 | Response_reg | Signal transduction response regulator, receiver domain |
Glyma.08G010400 | Auxin_inducible | Small auxin-up RNA |
Glyma.06G248700 | TIR_2 | Toll/interleukin-1 receptor homology (TIR) domain |
Glyma.16G137300 | TIR_2 | Toll/interleukin-1 receptor homology (TIR) domain |
Glyma.16G214800 | EF-hand_7 | Toll/interleukin-1 receptor homology (TIR) domain |
Glyma.12G062000 | GRAS | Transcription factor GRAS |
Glyma.19G214600 | zf-C2H2_6 | Zinc finger, C2H2 |
Gene Name | PFAM Description | InterPro Description |
---|---|---|
Glyma.04G227900 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.06G137000 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.08G050400 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.16G017500 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.18G273200 | 2OG-FeII_Oxy | Oxoglutarate/iron-dependent dioxygenase |
Glyma.19G083900 | Aa_trans | Amino acid transporter |
Glyma.12G015300 | ADH_zinc_N | Alcohol dehydrogenase superfamily, zinc-type |
Glyma.17G030100 | Bet_v_1 | Bet v I/Major latex protein/START-like domain |
Glyma.17G030300 | Bet_v_1 | Bet v I/Major latex protein/START-like domain |
Glyma.17G030400 | Bet_v_1 | Bet v I/Major latex protein/START-like domain |
Glyma.05G237200 | Calmodulin_bind | Calmodulin-binding protein 60 |
Glyma.07G093900 | Calmodulin_bind | Calmodulin-binding protein 60 |
Glyma.09G182400 | Calmodulin_bind | Calmodulin-binding protein 60 |
Glyma.19G229500 | Calmodulin_bind | Calmodulin-binding protein 60 |
Glyma.01G108200 | Cu-oxidase_2 | Laccase |
Glyma.06G317800 | DER1 | Derlin |
Glyma.03G147700 | Dirigent | Plant disease resistance response protein |
Glyma.19G151200 | Dirigent | Plant disease resistance response protein |
Glyma.11G129300 | Glyco_hydro_1 | Glycoside hydrolase, family 1 |
Glyma.12G054200 | Glyco_hydro_1 | Glycoside hydrolase, family 1 |
Glyma.13G346700 | Glyco_hydro_19 | Chitin-binding/Glycoside hydrolase |
Glyma.05G161300 | GST_C | Glutathione S-transferase,/Thioredoxin-like fold |
Glyma.08G118700 | GST_N | Glutathione S-transferase,/Thioredoxin-like fold |
Glyma.08G174900 | GST_N | Glutathione S-transferase,/Thioredoxin-like fold |
Glyma.14G014700 | Hexapep | Serine acetyltransferase, N-terminal/Hexapeptide repeat |
Glyma.13G180200 | HSF_DNA-bind | Heat shock factor (HSF)-type, DNA-binding |
Glyma.08G105400 | K-box | Transcription factor, K-box/Transcriptional regulator |
Glyma.19G263300 | Lipoxygenase | Lipoxygenase |
Glyma.16G135200 | NB-ARC | Toll/interleukin-1 receptor homology (TIR) domain |
Glyma.01G211800 | NmrA | NAD(P)-binding domain |
Glyma.11G070500 | NmrA | NmrA-like domain |
Glyma.11G070500 | NmrA | NmrA-like domain |
Glyma.11G070600 | NmrA | NmrA-like domain |
Glyma.01G135200 | p450 | cytochrome P450 (CYP) |
Glyma.02G156100 | p450 | cytochrome P450 (CYP) |
Glyma.03G143700 | p450 | cytochrome P450 (CYP) |
Glyma.05G022100 | p450 | cytochrome P450 (CYP) |
Glyma.09G049200 | p450 | cytochrome P450 (CYP) |
Glyma.10G114600 | p450 | cytochrome P450 (CYP) |
Glyma.11G062500 | p450 | cytochrome P450 (CYP) |
Glyma.11G062600 | p450 | cytochrome P450 (CYP) |
Glyma.11G062700 | p450 | cytochrome P450 (CYP) |
Glyma.15G156100 | p450 | cytochrome P450 (CYP) |
Glyma.16G195600 | p450 | cytochrome P450 (CYP) |
Glyma.20G148100 | PALP | Cysteine synthase/Tryptophan synthase |
Glyma.02G233800 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.03G038600 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.03G038700 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.06G145300 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.09G277900 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.11G161600 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.11G162100 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.18G211000 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.20G169200 | peroxidase | Haem peroxidase, plant/fungal/bacterial |
Glyma.17G224300 | Pkinase/Lectin_legB/RVT_2 | Protein kinase domain |
Glyma.06G084200 | PNP_UDP_1 | Nucleoside phosphorylase domain |
Glyma.13G113100 | Pyr_redox_3 | Dimethylaniline monooxygenase, N-oxide-forming |
Glyma.17G046600 | Pyr_redox_3 | Flavin monooxygenase FMO |
Glyma.17G046500 | Redoxin | Redoxin/Thioredoxin-like fold |
Glyma.05G204600 | Thaumatin | Thaumatin |
Glyma.10G251500 | Thi4 | Thiazole biosynthetic enzyme Thi4 family |
Glyma.08G277000 | Transketolase_C | Transketolase-like, pyrimidine-binding domain |
Glyma.02G029400 | zf-C2H2_6 | Zinc finger, C2H2 |
Genes | Functional Category | PI 437654 | PI 548402 | PI 88788 |
---|---|---|---|---|
Glyma.08G010400 | Auxin responsive protein | X | ||
Glyma.03G232400 | Calmodulin-binding protein 60 | X | ||
Glyma.19G229400 | Calmodulin-binding protein 60 | X | ||
Glyma.03G242100 | Copine, C2 domain | X | ||
Glyma.15G250800 | FMN-dependent dehydrogenase | X | ||
Glyma.11G111400 | Fructose-bisphosphate aldolase | X | ||
Glyma.12G037400 | Fructose-bisphosphate aldolase | X | ||
Glyma.01G010200 | Phosphoribulokinase | X | ||
Glyma.09G210900 | Phosphoribulokinase | X | ||
Glyma.02G085600 | HSP70, C1 domain | X | ||
Glyma.16G165500 | Light-harvesting complexes or Chlorophyll A-B-binding protein | X | ||
Glyma.13G046200 | RuBisCO | X | ||
Glyma.09G087700 | Photosystem I psaG/psaK | X | ||
Glyma.18G141900 | Major facilitator family | X | ||
Glyma.12G009200 | Methyltransferase domain, | X | ||
Glyma.08G324300 | Glycerophosphoryl diester phosphodiesterase family | X | ||
Glyma.19G194300 | Phosphatidylethanolamine-binding protein | X | ||
Glyma.03G194700 | Phosphatidylethanolamine-binding, conserved site | X | ||
Glyma.15G052700 | Plant peroxidase | X | ||
Glyma.10G251500 | Thiazole biosynthetic enzyme Thi4 family | X | ||
Glyma.12G062000 | Transcription factor GRAS | X | ||
Glyma.19G214600 | Zinc finger protein GIS3/ZFP5/ZFP6 | X | ||
Glyma.14G058700 | 2OG-Fe(II) oxygenase superfamily | X | X | |
Glyma.03G096500 | 2OG-Fe(II) oxygenase superfamily | X | X | |
Glyma.07G124400 | 2OG-Fe(II) oxygenase superfamily | X | X | |
Glyma.08G169100 | 2OG-Fe(II) oxygenase superfamily | X | X | |
Glyma.19G239500 | C2 domain/Copine | X | X | |
Glyma.04G035600 | cytochrome P450 (CYP) | X | X | |
Glyma.09G144300 | cytochrome P450 (CYP) | X | X | |
Glyma.17G054600 | Cytokinin dehydrogenase 1, FAD and cytokinin-binding | X | X | |
Glyma.20G087000 | ethylene receptor | X | X | |
Glyma.15G134200 | FAD-binding domain/Berberine and berberine-like | X | X | |
Glyma.15G134300 | FAD-binding domain/Berberine and berberine-like | X | X | |
Glyma.14G004300 | NUDIX domain | X | X | |
Glyma.03G038300 | Peroxidase | X | X | |
Glyma.19G011800 | Peroxidase/oxygenase | X | X | |
Glyma.10G008500 | Response regulator receiver domain | X | X | |
Glyma.06G248700 | TIR domain | X | X | |
Glyma.02G028000 | Peptidoglycan binding domain, peptidase | X | X | |
Glyma.03G162400 | AP2 domain | X | X | X |
Glyma.03G162700 | AP2 domain | X | X | X |
Glyma.05G186700 | AP2 domain | X | X | X |
Glyma.10G186800 | AP2 domain | X | X | X |
Glyma.13G122500 | AP2 domain | X | X | X |
Glyma.13G123100 | AP2 domain | X | X | X |
Glyma.19G163700 | AP2 domain | X | X | X |
Glyma.19G163900 | AP2 domain | X | X | X |
Glyma.01G130500 | Peroxidase | X | X | X |
Glyma.03G038500 | Peroxidase | X | X | X |
Glyma.09G023000 | Peroxidase | X | X | X |
Glyma.09G057100 | Peroxidase | X | X | X |
Glyma.20G001400 | Peroxidase | X | X | X |
Glyma.07G184000 | Protein kinase domain | X | X | X |
Glyma.17G173000 | Protein kinase domain | X | X | X |
Glyma.08G018300 | WRKY DNA -binding domain | X | X | X |
Glyma.19G229500 | Calmodulin binding protein-like | X | X | X |
Glyma.02G184300 | Leucine rich repeat | X | X | X |
Glyma.20G036100 | Ribonuclease T2 family | X | X | X |
Glyma.12G053900 | Glycosyl hydrolase family 1 | X | X | X |
Gene ID | Functional Category | PI 437654 | PI 548402 | PI 88788 |
---|---|---|---|---|
Glyma.07G153800 | Ammonium_transp | X | ||
Glyma.10G168100 | Ammonium_transp | X | ||
Glyma.14G014700 | Hexapeptide repeat | X | ||
Glyma.20G148100 | Tryptophan synthase | X | ||
Glyma.10G251500 | Thiazole biosynthetic enzyme Thi4 family | X | X | |
Glyma.11G129300 | Glycoside hydrolase, family 1 | X | X | |
Glyma.05G237200 | Calmodulin_bind protein | X | X | |
Glyma.07G093900 | Calmodulin_bind protein | X | X | |
Glyma.19G229500 | Calmodulin_bind protein | X | X | |
Glyma.19G151200 | Dirigent | X | X | |
Glyma.13G180200 | Heat shock factor (HSF) | X | X | |
Glyma.19G263300 | Lipoxygenase | X | X | |
Glyma.09G277900 | peroxidase | X | X | |
Glyma.20G169200 | peroxidase | X | X | |
Glyma.17G224300 | Pkinase | X | X | |
Glyma.17G046500 | Thioredoxin-like | X | X | |
Glyma.05G204600 | Thaumatin | X | X | |
Glyma.04G223300 | WRKY | X | X | |
Glyma.13G267600 | WRKY | X | X | |
Glyma.17G222300 | WRKY | X | X | |
Glyma.04G227900 | 2OG-Fe(II) oxygenase superfamily | X | X | X |
Glyma.18G273200 | 2OG-Fe(II) oxygenase superfamily | X | X | X |
Glyma.14G038400 | Ankyrin repeat-containing domain | X | X | X |
Glyma.17G030100 | Bet_v_1 | X | X | X |
Glyma.09G182400 | Calmodulin_bind protein | X | X | X |
Glyma.01G108200 | Laccase | X | X | X |
Glyma.06G317800 | Derlin | X | X | X |
Glyma.03G024200 | Glycoside hydrolase family | X | X | X |
Glyma.07G103700 | Late embryogenesis abundant protein | X | X | X |
Glyma.03G116300 | MATH | X | X | X |
Glyma.02G054200 | Methyltransf_7 | X | X | X |
Glyma.18G238800 | Methyltransf_7 | X | X | X |
Glyma.13G035900 | Pkinase | X | X | X |
Glyma.11G207000 | Pkinase_Tyr/DUF26 | X | X | X |
Glyma.13G113100 | Pyr_redox_3 | X | X | X |
Glyma.11G210300 | UbiA | X | X | X |
Glyma.13G267500 | WRKY | X | X | X |
Glyma.14G103100 | WRKY | X | X | X |
Glyma.18G213200 | WRKY | X | X | X |
Glyma.15G219400 | zf-MYND | X | X | X |
Glyma.07G098600 | putative | X | X | X |
Glyma.10G161500 | putative | X | X | X |
Glyma.07G098700 | putative | X | X | X |
Glyma.08G085700 | putative | X | X | X |
Identified Effector | Probability of Predicted Signals and Localizations | Significantly Upregulated | Reported Effectors | ||||||
---|---|---|---|---|---|---|---|---|---|
Genome Draft Format-ID | Pseudomolecule Assembly-ID | Signal Peptide | Extra-Cellular | Chr | PI 437654 | PI 548402 | PI 88788 | Lee 74 | |
Hetgly.G000000386 | Hetgly10240 | 0.9556 | 0.8421 | 2 | X | NO | |||
Hetgly.G000002041 | Hetgly00243 | 0.8547 | 0.5982 | 5 | X | NO | |||
Hetgly.G000003725 | Hetgly01606 | 0.9997 | 0.9750 | 5 | X | X | NO | ||
Hetgly.G000003742 | Hetgly01620 | 0.5363 | 0.7217 | 5 | X | X | X | NO | |
Hetgly.G000005495 | Hetgly01486 | 0.9995 | 0.9838 | 5 | X | NO | |||
Hetgly.G000005767 | Hetgly10721 | 0.9997 | 0.5519 | 2 | X | NO | |||
Hetgly.G000005859 | Hetgly07384 | 0.9996 | 0.9257 | 1 | X | NO | |||
Hetgly.G000006034 | Hetgly15160 | 0.9996 | 0.7696 | 6 | X | NO | |||
Hetgly.G000006271 | Hetgly13266 | 0.9951 | 0.9072 | 4 | X | YES 1,2 | |||
Hetgly.G000007737 | Hetgly14373 | 0.9997 | 0.9553 | 6 | X | YES 1 | |||
Hetgly.G000008328 | Hetgly08786 | 0.9998 | 0.9278 | 1 | X | YES 1 | |||
Hetgly.G000008629 | Hetgly10435 | 0.8469 | 0.7313 | 2 | X | NO | |||
Hetgly.G000008756 | Hetgly04908 | 0.9998 | 0.9513 | 3 | X | X | X | NO | |
Hetgly.G000008760 | Hetgly04892 | 0.9997 | 0.9781 | 3 | X | YES 1 | |||
Hetgly.G000009320 | Hetgly14722 | 0.8276 | 0.9354 | 6 | X | NO | |||
Hetgly.G000009584 | Hetgly20383 | 0.9997 | 0.9577 | 9 | X | X | X | NO | |
Hetgly.G000009600 | Hetgly20345 | 0.9997 | 0.9135 | 9 | X | X | NO | ||
Hetgly.G000009601 | Hetgly20346 | 0.9992 | 0.8075 | 9 | X | X | NO | ||
Hetgly.G000010445 | Hetgly05887 | 0.9648 | 0.9543 | 3 | X | X | X | NO | |
Hetgly.G000010619 | Hetgly08167 | 0.9997 | 0.9611 | 1 | X | YES 1 | |||
Hetgly.G000011018 | Hetgly00611 | 0.9971 | 0.9794 | 5 | X | NO | |||
Hetgly.G000011037 | Hetgly21117 | 0.9997 | 0.9685 | 8 | X | X | X | NO | |
Hetgly.G000011113 | Hetgly05749 | 0.9998 | 0.9162 | 3 | X | NO | |||
Hetgly.G000011117 | Hetgly05752 | 0.9998 | 0.9662 | 3 | X | NO | |||
Hetgly.G000011166 | Hetgly05791 | 0.9997 | 0.6696 | 3 | X | NO | |||
Hetgly.G000011538 | Hetgly06927 | 0.7568 | 0.5704 | 1 | X | NO | |||
Hetgly.G000011604 | Hetgly19536 | 0.6212 | 0.9683 | 9 | X | X | NO | ||
Hetgly.G000011607 | Hetgly19535 | 0.9996 | 0.9769 | 9 | X | X | X | NO | |
Hetgly.G000012678 | Hetgly20828 | 0.9996 | 0.5010 | 8 | X | NO | |||
Hetgly.G000013560 | Hetgly06640 | 0.9998 | 0.7309 | 1 | X | X | YES 1 | ||
Hetgly.G000014327 | Hetgly13555 | 0.9998 | 0.9694 | 4 | X | YES 1 | |||
Hetgly.G000014444 | Hetgly02677 | 0.9997 | 0.9754 | 5 | X | X | X | NO | |
Hetgly.G000014464 | Hetgly02651 | 0.9997 | 0.9599 | 5 | X | NO | |||
Hetgly.G000014527 | Hetgly09638 | 0.8601 | 0.8579 | 2 | X | NO | |||
Hetgly.G000015939 | Hetgly07801 | 0.9998 | 0.9350 | 1 | X | NO | |||
Hetgly.G000016234 | Hetgly16974 | 0.9808 | 0.9515 | 7 | X | NO | |||
Hetgly.G000016328 | Hetgly13997 | 0.9994 | 0.9480 | 4 | X | X | YES 1 | ||
Hetgly.G000016675 | Hetgly05522 | 0.9997 | 0.9099 | 3 | X | NO | |||
Hetgly.G000016740 | Hetgly11688 | 0.9997 | 0.9764 | 2 | X | X | NO | ||
Hetgly.G000016899 | Hetgly14389 | 0.8984 | 0.6139 | 6 | X | NO | |||
Hetgly.G000017118 | Hetgly11576 | 0.9998 | 0.9692 | 2 | X | YES 1 | |||
Hetgly.G000017651 | Hetgly09041 | 0.9963 | 0.8390 | 2 | X | NO | |||
Hetgly.G000017808 | Hetgly20463 | 0.9998 | 0.8331 | 9 | X | X | NO | ||
Hetgly.G000018759 | Hetgly06909 | 0.9997 | 0.9492 | 1 | X | NO | |||
Hetgly.G000018760 | Hetgly06908 | 0.9997 | 0.9683 | 1 | X | YES 1 | |||
Hetgly.G000018896 | Hetgly03920 | 0.9998 | 0.9405 | 3 | X | NO | |||
Hetgly.G000019218 | Hetgly20700 | 0.9998 | 0.9576 | 8 | X | X | NO | ||
Hetgly.G000021894 | Hetgly08087 | 09985 | 0.7620 | 1 | X | YES 1 | |||
Hetgly.G000022800 | Hetgly08816 | 0.9998 | 0.9282 | 1 | X | X | X | YES 1 | |
Hetgly.G000023464 | Hetgly12039 | 0.9998 | 0.8796 | 4 | X | NO | |||
Hetgly.G000028400 | Hetgly03197 | 0.9997 | 0.9618 | 3 | X | X | X | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torabi, S.; Seifi, S.; Geddes-McAlister, J.; Tenuta, A.; Wally, O.; Torkamaneh, D.; Eskandari, M. Soybean–SCN Battle: Novel Insight into Soybean’s Defense Strategies against Heterodera glycines. Int. J. Mol. Sci. 2023, 24, 16232. https://doi.org/10.3390/ijms242216232
Torabi S, Seifi S, Geddes-McAlister J, Tenuta A, Wally O, Torkamaneh D, Eskandari M. Soybean–SCN Battle: Novel Insight into Soybean’s Defense Strategies against Heterodera glycines. International Journal of Molecular Sciences. 2023; 24(22):16232. https://doi.org/10.3390/ijms242216232
Chicago/Turabian StyleTorabi, Sepideh, Soren Seifi, Jennifer Geddes-McAlister, Albert Tenuta, Owen Wally, Davoud Torkamaneh, and Milad Eskandari. 2023. "Soybean–SCN Battle: Novel Insight into Soybean’s Defense Strategies against Heterodera glycines" International Journal of Molecular Sciences 24, no. 22: 16232. https://doi.org/10.3390/ijms242216232
APA StyleTorabi, S., Seifi, S., Geddes-McAlister, J., Tenuta, A., Wally, O., Torkamaneh, D., & Eskandari, M. (2023). Soybean–SCN Battle: Novel Insight into Soybean’s Defense Strategies against Heterodera glycines. International Journal of Molecular Sciences, 24(22), 16232. https://doi.org/10.3390/ijms242216232