Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = sour brewing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2557 KiB  
Article
Impact of Glutinous Rice Varieties from Different Regions on Microbial Community Structure, Metabolic Profiles, and Flavor Characteristics of Chinese Rice Wine (Huangjiu)
by Qi Peng, Linyuan Li and Guangfa Xie
Foods 2025, 14(7), 1261; https://doi.org/10.3390/foods14071261 - 3 Apr 2025
Viewed by 735
Abstract
Huangjiu is a traditional alcoholic beverage in China, but because of the differences in fermentation conditions and raw materials, how to optimize the flavor quality of Huangjiu is facing challenges. This study used high-throughput sequencing (HTS) to investigate microbial diversity in Huangjiu brewed [...] Read more.
Huangjiu is a traditional alcoholic beverage in China, but because of the differences in fermentation conditions and raw materials, how to optimize the flavor quality of Huangjiu is facing challenges. This study used high-throughput sequencing (HTS) to investigate microbial diversity in Huangjiu brewed from glutinous rice from five regions in China. Metabolic pathway annotation, electronic senses, and metabolite analysis elucidated the relationships between rice variety, microbial communities, flavor profiles, and metabolic characteristics of Huangjiu. Statistically significant differences in microbial community structure and flavor profiles were observed across Huangjiu samples (p < 0.05), with ten dominant microbial genera identified. Lactic acid bacteria (LAB) enriched in Guizhou and Hubei were positively correlated with higher organic acid (12.36 and 12.30 mg/mL, respectively) and lower amino acid levels (2985 and 2920 mg/L, respectively), contributing to a more pronounced sourness in these Huangjiu. Conversely, Huangjiu from Zhejiang, Guangxi, and Jilin exhibited higher concentrations of Saccharopolyspora, Saccharomonospora, Saccharomyces, and Bacillus, associated with elevated amino acid (3706, 3695, and 3700 mg/L, respectively) and reduced organic acid levels (10.11, 9.92 and 10.10 mg/mL, respectively), resulting in sweetness and bitterness. These findings provide valuable insights for optimizing Huangjiu flavor and quality through targeted microbial and fermentation management. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

18 pages, 686 KiB  
Article
The Impact of Selected Lachancea Yeast Strains on the Production Process, Chemical Composition and Aroma Profiles of Beers
by Marek Zdaniewicz, Paweł Satora, Paulina Kania and Adam Florkiewicz
Molecules 2024, 29(23), 5674; https://doi.org/10.3390/molecules29235674 - 30 Nov 2024
Cited by 1 | Viewed by 1322
Abstract
Changing trends in the brewing market show that breweries want to attract consumers with new products. New flavours and aromas in beer can be achieved by using various additives. However, non-Saccharomyces yeast strains make it possible to produce beer with an original [...] Read more.
Changing trends in the brewing market show that breweries want to attract consumers with new products. New flavours and aromas in beer can be achieved by using various additives. However, non-Saccharomyces yeast strains make it possible to produce beer with an original sensory profile but according to a traditional recipe (without additives). The aim of this study was to evaluate the influence of 10 different yeast strains, belonging to the species Lachancea thermotolerans and L. fermentati, on the creation of different physico-chemical profiles in beers. For this purpose, the same malt wort with a 12°P extract, hopped with Octawia hops (8.4% alpha acids), was inoculated with the aforementioned yeast strains. The fermentation kinetics, the yeast’s ability to ferment sugars, the production of organic acids and glycerol and the formation of volatile compounds in the beer were monitored. The beers obtained were classified as low-alcohol and regular. In addition, some beers were measured to have a low pH, qualifying them as “sour” beers, which are currently gaining in popularity. Most interesting, however, was the effect of the selected Lachancea yeast strains on the composition of the beer volatiles. In the second stage of this study, the beers obtained were again subjected to a chromatographic analysis, this time using an olfactometric detector (GC-O). This analysis was dictated by the need to verify the actual influence of the compounds determined (GC-MS) on the creation of the final aroma profile. This study showed that selected strains of Lachancea thermotolerans and L. fermentati have very high brewing potential to produce different original beers from the same hopped wort. Full article
Show Figures

Figure 1

14 pages, 912 KiB  
Review
Current Updates on Lactic Acid Production and Control during Baijiu Brewing
by Yabin Zhou and Jin Hua
Fermentation 2024, 10(10), 505; https://doi.org/10.3390/fermentation10100505 - 1 Oct 2024
Cited by 3 | Viewed by 1981
Abstract
Lactic acid is closely linked to the safety and quality of baijiu, the traditional Chinese fermented alcoholic beverage. Produced by lactic acid bacteria during fermentation, it creates an acidic environment that inhibits the growth of spoilage organisms and harmful microbes, thereby enhancing the [...] Read more.
Lactic acid is closely linked to the safety and quality of baijiu, the traditional Chinese fermented alcoholic beverage. Produced by lactic acid bacteria during fermentation, it creates an acidic environment that inhibits the growth of spoilage organisms and harmful microbes, thereby enhancing the safety and stability of the final product. Additionally, lactic acid is a key contributor to baijiu’s flavor profile, providing a smooth and rounded taste. Its levels can significantly impact consumer experience. An excess of lactic acid can result in a sour, undesirable flavor, while insufficient levels may lead to a flat and less appealing taste. Maintaining balanced lactic acid levels is crucial for ensuring that baijiu is both safe and enjoyable to drink, ultimately contributing to the product’s success and marketability. This paper reviews the mechanisms of lactic acid production in baijiu, examines its effects on flavor and the potential causes of imbalances, explores regulatory measures for controlling lactic acid during brewing, and discusses the impact of these measures on baijiu’s quality, taste, and yield, along with practical applications by various distilleries. The goal of this paper is to provide a reference for regulating lactic acid in the baijiu production processes. Full article
(This article belongs to the Special Issue Safety and Quality in Fermented Beverages)
Show Figures

Figure 1

14 pages, 1715 KiB  
Article
Comparison of Ultra-High-Pressure and Conventional Cold Brew Coffee at Different Roasting Degrees: Physicochemical Characteristics and Volatile and Non-Volatile Components
by Qihan Shi, Ying Xiao, Yiming Zhou, Wenxiao Tang, Feng Jiang, Xiaoli Zhou and Hongxiu Lu
Foods 2024, 13(19), 3119; https://doi.org/10.3390/foods13193119 - 29 Sep 2024
Cited by 2 | Viewed by 1916
Abstract
The impact of the roasting degree on ultra-high-pressure cold brew (UHP) coffee remains unclear, although it has been found that UHP technology accelerates the extraction of cold brew (CB) coffee. Therefore, this study investigated the effects of three different degrees of roasting (light, [...] Read more.
The impact of the roasting degree on ultra-high-pressure cold brew (UHP) coffee remains unclear, although it has been found that UHP technology accelerates the extraction of cold brew (CB) coffee. Therefore, this study investigated the effects of three different degrees of roasting (light, medium, and dark) on the physicochemical characteristics, volatile and non-volatile components, and sensory evaluation of UHP coffee. Orthogonal partial least-squares-discriminant analysis (OPLS-DA) and principal component analysis (PCA) were used to assess the effects of different roasting degrees. The results showed that most physicochemical characteristics, including total dissolved solids (TDSs), extraction yield (EY), total titratable acidity (TTA), total sugars (TSs), and total phenolic content (TPC), of UHP coffee were similar to those of conventional CB coffee regardless of the degree of roasting. However, the majority of physicochemical characteristics, non-volatile components, including the antioxidant capacity (measured based on DPPH and ABTS) and melanoidin, caffeine, trigonelline, and CGA contents increased significantly with an increase in roasting degree. The sensory evaluation revealed that as the roasting degree rose, the nutty flavor, astringency, bitterness, body, and aftertaste intensities increased, while floral, fruity, and sourness attributes decreased. The HS-SPME-GC/MS analysis showed that most volatile components increased from light to dark roasting. Moreover, 15 representative differential compounds, including hazelnut pyrazine, linalool, butane-2,3-dione, and 3-methylbutanal, were identified by calculating the odor-active values (OAVs), indicating that these contributed significantly to the odor. The PCA showed that the distance between the three roasting degree samples in UHP coffee was smaller than that in CB coffee. Overall, the effect of roasting degrees on UHP coffee was less than that on CB coffee, which was consistent with the results of physicochemical characteristics, volatile components, and sensory evaluation. Full article
Show Figures

Figure 1

15 pages, 1432 KiB  
Article
Industrial-Level Brewing Using Oenological Saccharomyces cerevisiae and Schizosaccharomyces pombe as Mixed-Inoculum
by Antonietta Baiano, Anna Fiore, Francesco Maruccia, Carmela Gerardi, Marco Povero, Francesco Grieco and Maria Tufariello
Appl. Sci. 2024, 14(19), 8609; https://doi.org/10.3390/app14198609 - 24 Sep 2024
Viewed by 1040
Abstract
The development of new food processes and formulations begins at the laboratory stage, progresses through pilot plant trials, and culminates in industrial production. Although the positive effects in terms of sensory characteristics and qualitative differentiation have been widely studied at laboratory level, fermentations [...] Read more.
The development of new food processes and formulations begins at the laboratory stage, progresses through pilot plant trials, and culminates in industrial production. Although the positive effects in terms of sensory characteristics and qualitative differentiation have been widely studied at laboratory level, fermentations conducted at the industrial level by oenological Saccharomyces cerevisiae and non-Saccharomyces strains have not been thoroughly investigated. Scaling up to the industrial level is a critical process that involves more than simply increasing the dimensions of the process itself. The purpose of our research was to compare laboratory and industrial-level brewing of a novel craft beer produced with the addition of common unmalted wheat and fermented by Schizosaccharomyces pombe and S. cerevisiae strains. Fermentation was carried out using a S. cerevisiae strain either of oenological origin alone or through sequential inoculations with S. pombe. Beers produced with the mixed starter showed greater reproducibility between the two production levels than those fermented by S. cerevisiae alone. According to the results, the main differences highlighted between laboratory and industrial-level trials with S. cerevisiae alone concerned the extent of starch degradation, fermentation efficiency, and alcohol production, which were higher in brewing at the laboratory level. In contrast, beers produced at industrial level using sequential inoculation received significantly higher scores for foam quantity and persistence, as well as overall olfactory intensity, while scoring significantly lower scores for saltiness and sourness. To our knowledge, this research is the first to explore the use of Sc. pombe for industrial beer production. Full article
Show Figures

Figure 1

17 pages, 2222 KiB  
Article
Phenotypic Characterization of Fermentation Performance and Stress Tolerance in Commercial Ale Yeast Strains
by Anqi Chen, Qiqi Si, Qingyun Xu, Chenwei Pan, Yuhan Cheng and Jian Chen
Fermentation 2024, 10(7), 364; https://doi.org/10.3390/fermentation10070364 - 18 Jul 2024
Viewed by 3468
Abstract
Yeast plays a crucial role in the fermentation industry, particularly in alcoholic beverage production, where robustness and metabolic flexibility are essential. This study aimed to investigate the stress tolerance and metabolic capabilities of seven commercial ale yeast strains under various stress conditions, including [...] Read more.
Yeast plays a crucial role in the fermentation industry, particularly in alcoholic beverage production, where robustness and metabolic flexibility are essential. This study aimed to investigate the stress tolerance and metabolic capabilities of seven commercial ale yeast strains under various stress conditions, including temperature, pH, osmotic pressure, glucose starvation, and ethanol concentration. Detailed growth assays and stress tolerance tests were utilized to evaluate fermentation efficiency, carbon source utilization, and stress adaptation. Significant variability was observed among the strains. ACY169 and ACY150 demonstrated high overall stress tolerance, making them suitable for high-gravity brewing and processes involving extreme temperature fluctuations. ACY10 showed robust performance under acid stress, making it ideal for sour beer production. In contrast, ACY5 exhibited limited adaptability under stress, with longer doubling times and reduced metabolic activity. The study also revealed differences in carbon source utilization, with ACY169 displaying exceptional metabolic versatility by efficiently fermenting various sugars, including glucose, fructose, maltose, and raffinose. ACY10 and ACY150 exhibited balanced fermentation profiles with high ethanol production rates, while ACY9 demonstrated the highest glucose consumption rate but lower ethanol yields and significant acidification. Full article
(This article belongs to the Special Issue Saccharomyces cerevisiae Strains and Fermentation: 2nd Edition)
Show Figures

Figure 1

18 pages, 2211 KiB  
Article
Effect of Mixed Cultures on Microbiological Development in Berliner Weisse Beer
by Thomas Hübbe, Amanda Felipe Reitenbach, Vívian Maria Burin, Grace Ferreira Ghesti and Frank Jürgen
Fermentation 2024, 10(7), 363; https://doi.org/10.3390/fermentation10070363 - 17 Jul 2024
Cited by 2 | Viewed by 2243
Abstract
Sour beers play an important role in the brewing market, and their production has been growing exponentially. In light of this, six microorganisms directly related to this class of beer were studied, and the fermentation behavior of six strains used in the past [...] Read more.
Sour beers play an important role in the brewing market, and their production has been growing exponentially. In light of this, six microorganisms directly related to this class of beer were studied, and the fermentation behavior of six strains used in the past for traditional commercial Berliner Weisse beer production was monitored. The microorganisms used were Lactobacillus brevis, Lactobacillus parabrevis, Brettanomyces bruxellensis, and Brettanomyces anomalus and two strains of Saccharomyces cerevisiae. The six microorganisms were selected in a previous work, and a comparison between single and mixed fermentations was carried out via daily measurements of the fermentation parameters like pH, extract, and cell count during 22 days. The ability to isolate a specific microorganism from a mixed culture was investigated using three commonly used nutrient media and aerobic/anaerobic growth conditions. Both Lactobacillus and Brettanomyces could be isolated; however, the conditions imposed were not sufficient in order to isolate Saccharomyces. Fermentations carried out with LAB and Brettanomyces showed a decrease in Lactobacillus growth if compared to pure fermentations, but no influence on the growth of Brettanomyces could be perceived. In general, fermentations carried out in the presence of Saccharomyces were dominated by this yeast. Its quick growth seems to be responsible for the high end pH values observed as well as the decrease in cell growth for both LAB and Brettanomyces. A decrease in the cell viability of Saccharomyces was followed by an increased growth of the other microorganisms involved, possibly meaning that the molecules released through apoptosis are used by both LAB and Brettanomyces as a valuable nutrient source. The volatile compound concentrations of the first group were higher in fermentations with Saccharomyces, whereas esters’ concentration was higher in fermentations carried out only with Brettanomyces and Lactobacillus. Furthermore, understanding how these microorganisms interact during the fermentation process can help brewers better control production and ensure the consistency in the quality of the final product. The end pH values and acidity reached levels acceptable for Berliner Weisse beer. This innovative approach certainly contributes to the evolution and refinement of the art of brewing. Full article
(This article belongs to the Special Issue Recent Advances in Brewing Processes)
Show Figures

Figure 1

14 pages, 3947 KiB  
Article
Transcriptional Analysis of Mixed-Culture Fermentation of Lachancea thermotolerans and Saccharomyces cerevisiae for Natural Fruity Sour Beer
by Xiaofen Fu, Liyun Guo, Yumeng Li, Xinyu Chen, Yumei Song and Shizhong Li
Fermentation 2024, 10(4), 180; https://doi.org/10.3390/fermentation10040180 - 25 Mar 2024
Cited by 5 | Viewed by 2242
Abstract
Increasingly high interest in yeast–yeast interactions in mixed-culture fermentation is seen along with beer consumers’ demands driving both market growth and requests for biotechnological solutions that can provide better sensory characteristics. In this study, Lachancea thermotolerans and Saccharomyces cerevisiae with a cell population [...] Read more.
Increasingly high interest in yeast–yeast interactions in mixed-culture fermentation is seen along with beer consumers’ demands driving both market growth and requests for biotechnological solutions that can provide better sensory characteristics. In this study, Lachancea thermotolerans and Saccharomyces cerevisiae with a cell population ratio of 10:1 were inoculated for sour beer fermentation while the process conditions within the brewing industry remained unchanged. With L. thermotolerans producing lactic acid (1.5–1.8 g/L) and bringing down the pH to 3.3–3.4 whilst adding no foreign flavors herein, this study revealed a new natural, fruity sour beer with a soft, sour taste. In this study, the double-yeast mixed-culture fermentation produced more flavor substances than a single-culture process, and plenty of isobutyl acetate and isoamyl acetate enhanced the fruit aroma and balanced the sour beer with a refreshing taste. While playing a positive role in improving the beer’s quality, the double-yeast mixed-culture fermentation developed in this study helps to offer an alternative mass production solution for producing sour beer with the processes better controlled and the fermentation time reduced. The stress responses of the L. thermotolerans during the fermentation were revealed by integrating RNA sequencing (RNA-Seq) and metabolite data. Given that the metabolic flux distribution of the S. cerevisiae during the fermentation differed from that of the non-Saccharomyces yeasts, transcriptional analysis of non-Saccharomyces yeast and S. cerevisiae could be suitable in helping to develop strategies to modulate the transcriptional responses of specific genes that are associated with the aroma compounds released by S. cerevisiae and non-Saccharomyces yeasts. In the case of some non-Saccharomyces yeast species/strains, the diversion of alcoholic fermentation and the formation of a great number of secondary compounds may, in part, account for the low ethanol yield. Full article
(This article belongs to the Special Issue Advances in Beverages, Food, Yeast and Brewing Research, 3rd Edition)
Show Figures

Figure 1

20 pages, 1629 KiB  
Article
Valorisation Process Using Lactic Acid Bacteria Fermentation Induces Significant Changes in the Physical and Functional Properties of Brewers Spent Yeast
by Alice Jaeger, Laura Nyhan, Aylin W. Sahin, Emanuele Zannini and Elke K. Arendt
Fermentation 2024, 10(3), 136; https://doi.org/10.3390/fermentation10030136 - 29 Feb 2024
Cited by 1 | Viewed by 2318
Abstract
Brewer’s spent yeast (BSY) is a plentiful by-product of the brewing process. Currently regarded as a waste product, this low-value material is used in animal feed formulations or disposed of. However, BSY is known to be nutritionally dense, particularly regarding high-quality proteins, fibre, [...] Read more.
Brewer’s spent yeast (BSY) is a plentiful by-product of the brewing process. Currently regarded as a waste product, this low-value material is used in animal feed formulations or disposed of. However, BSY is known to be nutritionally dense, particularly regarding high-quality proteins, fibre, vitamins, and minerals. Previous work has examined the effect of a process including fermentation with Lactobacillus amylovorus FST 2.11 on BSY and indicates a reduction in bitterness intensity and an increase in sour and fruity flavours. The current study expands on this previous work, examining the changes in composition and functionality resulting from this upcycling process. The major changes include protein degradation and a decrease in pH, leading to increased protein solubility by 41%, increased foam stability by up to 69% at pH 7, and improved emulsion stabilising characteristics as well as differences in rheological behaviour during heating. Compositional changes are also detailed, with evidence of glucan and trehalose degradation. These changes in the physical and functional properties of BSY provide useful information, particularly with regard to the incorporation of BSY into food products for human consumption. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

18 pages, 1767 KiB  
Article
Unmalted Cereals, Oenological Yeasts, and In-Bottle Sugar Addition as Synergic Strategies to Enhance the Quality of Craft Beers
by Antonietta Baiano, Anna Fiore, Barbara la Gatta, Vittorio Capozzi, Nicola De Simone, Carmela Gerardi and Francesco Grieco
Beverages 2024, 10(1), 8; https://doi.org/10.3390/beverages10010008 - 15 Jan 2024
Cited by 5 | Viewed by 2931
Abstract
Craft beer quality is the result of the complex interactions among ingredients. The purpose of this work was to assess the influence of combinations of cereal mixtures, yeast strains, and sucrose added for the refermentation in bottle on the physico-chemical and sensory characteristics [...] Read more.
Craft beer quality is the result of the complex interactions among ingredients. The purpose of this work was to assess the influence of combinations of cereal mixtures, yeast strains, and sucrose added for the refermentation in bottle on the physico-chemical and sensory characteristics of the resulting beers in order to maximize their antioxidant content and overall quality. More in depth, brewing trials were carried out with 16 combinations of 2 cereal mixtures (made of 60% malted barley/40% unmalted durum or soft wheat), 4 oenological Saccharomyces cerevisiae strains (17290 and 14061 isolated from Negroamaro; 9502 and 9518 from Susumaniello musts), and 2 concentrations of sucrose for refermentation (6 and 9 g/L). If maximizing the total phenolic content is the goal, the best beers were those obtained from the mixtures containing durum wheat and fermented by S. cerevisiae 17290 and 14061. Instead, the best sensory results were obtained from brewing the mixture containing the unmalted common wheat and fermented by S. cerevisiae 9518 thanks to their persistent foam; high turbidity, alcohol content, effervescence, and body; and low saltiness and sourness. The physico-chemical and sensory quality of beers were mainly affected by the cereal mixtures and secondarily by yeasts. The quantity of sucrose added for refermentation affected only CO2, residual sugar, and foam. Full article
(This article belongs to the Special Issue Featured Papers in Malting, Brewing and Beer Section—2nd Edition)
Show Figures

Graphical abstract

20 pages, 2205 KiB  
Article
Lactic Acid Fermentation as a Valorising Agent for Brewer’s Spent Yeast—Improving the Sensory Quality and Nutritional Potential
by Alice Jaeger, Laura Nyhan, Aylin W. Sahin, Emanuele Zannini and Elke K. Arendt
Fermentation 2024, 10(1), 54; https://doi.org/10.3390/fermentation10010054 - 13 Jan 2024
Cited by 8 | Viewed by 3235
Abstract
Brewer’s spent yeast (BSY) is one of the brewing industry’s most plentiful side-streams. Abundant, low-cost and high in nutrients, it has great potential for application in food technology and human nutrition. With the ever-increasing interest in sustainability, waste reduction and circular food systems, [...] Read more.
Brewer’s spent yeast (BSY) is one of the brewing industry’s most plentiful side-streams. Abundant, low-cost and high in nutrients, it has great potential for application in food technology and human nutrition. With the ever-increasing interest in sustainability, waste reduction and circular food systems, the use of BSY as a novel food ingredient may be the route to add exponential value while reducing the environmental impact. However, negative flavour characteristics and high amounts of alcohol severely limit the current applications of BSY. This study explores the use of processing involving lactic acid bacteria (LAB) fermentation technology as a means of improving BSY quality characteristics and examines the effects of this process on the chemical, nutritional and sensory characteristics of BSY. The results reveal that BSY is a suitable substrate for LAB fermentation, successfully supporting the growth of Lactobacillus amylovorus FST 2.11. Compared to the unfermented BSY (CBSY), fermentation significantly reduced the perceptible bitterness of the BSY as detected by a sensory panel, from 6.0 ± 2.8 units to 0.9 ± 0.7 units, respectively. Fermented BSY (PBSY) had enhanced sour and fruity flavours, and a variety of other volatile compounds and metabolites were determined. Protein profiles showed significant protein degradation, and free amino acid levels were greatly increased following fermentation, from 2.8 ± 0.2 g/100 g to 10.5 ± 0.4 g/100 g, respectively. Protein quality was high, with the CBSY and PBSY providing well over the required level (>100%) of essential amino acids per gram protein, with the exception of sulphur amino acids (98%). Major physical differences were observed using scanning electron microscopy. This study concludes that LAB fermentation positively affects the sensory and nutritional characteristics of BSY and can aid in the incorporation of brewer’s spent yeast into foods for human consumption. Full article
Show Figures

Figure 1

12 pages, 1246 KiB  
Article
Evaluation of Physicochemical Characteristics and Sensory Properties of Cold Brew Coffees Prepared Using Ultrahigh Pressure under Different Extraction Conditions
by Shiyu Chen, Ying Xiao, Wenxiao Tang, Feng Jiang, Jing Zhu, Yiming Zhou and Lin Ye
Foods 2023, 12(20), 3857; https://doi.org/10.3390/foods12203857 - 21 Oct 2023
Cited by 8 | Viewed by 3560
Abstract
Although cold brew coffee is becoming increasingly popular among consumers, the long coffee extraction time is not conducive to the further development of the market. This study explored the feasibility of ultrahigh pressure (UHP) to shorten the time required for preparing cold brew [...] Read more.
Although cold brew coffee is becoming increasingly popular among consumers, the long coffee extraction time is not conducive to the further development of the market. This study explored the feasibility of ultrahigh pressure (UHP) to shorten the time required for preparing cold brew coffee. The effects of pressure and holding time on the physicochemical characteristics and sensory evaluation of UHP-assisted cold brew coffee were also determined. The extraction yield; total dissolved solid, total phenol, and melanoid content; antioxidant capacity; and trigonelline and chlorogenic acid contents of UHP-assisted cold brew coffee increased as the pressure increased. The extraction yield and the total dissolved solid, total phenol, total sugar, and chlorogenic acid and trigonelline contents were higher when the holding time was longer. The HS-SPME-GC/MS analysis demonstrated that the furan, aldehyde, and pyrazine contents in coffee increased as the pressure and holding time increased. The pressure did not significantly impact the concentrations of volatile components of esters and ketones in coffee samples. However, the increase in holding time significantly increased the ester and ketone contents. The sensory evaluation results revealed that as pressure rose, the intensities of nutty, fruity, floral, caramel, and sourness flavors increased, whereas bitterness and sweetness decreased. Longer holding time increased nutty, caramel, sour, bitter, sweet, and aftertaste flavors. Principal component analysis (PCA) results indicated that holding time is a more crucial factor affecting the physiochemical indices and flavor characteristics of coffee. UHP can shorten the preparation time of cold brew coffee. Pressure and holding time significantly affected the physiochemical indices and volatile components of UHP-assisted cold brew coffee. UHP-assisted cold brew coffee had lower bitterness, higher sweetness, and a softer taste than conventional cold brew coffee. Full article
Show Figures

Figure 1

11 pages, 1546 KiB  
Article
A Consumer Assessment of Fermented Green Coffee Beans with Common Beer/Wine Yeast Strains for Novel Flavor Properties
by Natalia Calderon, Glycine Zhujun Jiang, Patrick A. Gibney and Robin Dando
Fermentation 2023, 9(10), 865; https://doi.org/10.3390/fermentation9100865 - 25 Sep 2023
Cited by 5 | Viewed by 2947
Abstract
Fermentation is a critical step in the production of coffee when following standard wet processing, one of the most common methods used to remove the mucilage layer from coffee cherries. During this step, the de-pulped coffee cherries undergo fermentation with native yeast that [...] Read more.
Fermentation is a critical step in the production of coffee when following standard wet processing, one of the most common methods used to remove the mucilage layer from coffee cherries. During this step, the de-pulped coffee cherries undergo fermentation with native yeast that modifies the flavor profile of the resultant coffee. This study aimed to ferment green coffee beans using commercial yeast strains from beer and wine prized for their ability to produce specific flavors, and subsequently evaluate the aroma and flavor of the coffee using coffee consumers. Four Saccharomyces cerevisiae strains were used: Belgian Ale, Sourvisiae, 71 B, and Tropical IPA, along with one non-Saccharomyces, Toluraspora delbrueckii (Biodiva), and a non-inoculated control sample. The green coffee beans underwent a controlled wet fermentation for 72 h, followed by roasting, grinding, and brewing. Results showed that flavor profiles varied broadly by yeast strain, suggesting that producing novel flavors in coffee through fermentation is feasible and that these flavors survive the roasting process; however, higher liking scores were still reported for the control sample compared to the fermented samples. Biodiva, a strain used in wine to produce esters and fruity flavors, resulted in coffee with highly fruity notes, and all strains were rated more floral than the control, while the sample fermented with Sourvisiae yeast used in the brewing of sour ales resulted in coffee that was both perceived as more sour and had the lowest pH, likely due to the degree of lactic acid this strain is engineered to produce. Further, there were significant color differences between the samples. In conclusion, fermenting green coffee beans with brewing and winemaking yeast strains strongly impacted the flavor and aroma of the resultant coffee; however, evaluating larger panels of strains or optimizing strain performance may yield flavor profiles more suitable for coffee. Full article
(This article belongs to the Special Issue Brewing & Distilling 3.0)
Show Figures

Figure 1

14 pages, 1559 KiB  
Article
Lachancea quebecensis a Novel Isolate for the Production of Craft Beer
by Valeria Galaz and Wendy Franco
Foods 2023, 12(18), 3347; https://doi.org/10.3390/foods12183347 - 7 Sep 2023
Cited by 4 | Viewed by 2037
Abstract
Yeasts are ubiquitously present in different natural sources. Some of these yeasts have interesting characteristics for the production of fermented food products. This study characterized Lachancea thermotolerans and L. quebecensis isolated from insects to determine their brewing potential. The yeasts were evaluated according [...] Read more.
Yeasts are ubiquitously present in different natural sources. Some of these yeasts have interesting characteristics for the production of fermented food products. This study characterized Lachancea thermotolerans and L. quebecensis isolated from insects to determine their brewing potential. The yeasts were evaluated according to their fermentative potential in glucose and maltose-defined media and their resistance to ethanol and hop. Finally, craft beer was elaborated at a laboratory scale (10 L). The yeasts utilized glucose as the only carbon source and produced 3.25 ± 1.77, and 4.25 ± 1.06% (v/v), of ethanol for L. thermotolerans and quebecensis, respectively. While in the maltose-defined medium, ethanol content reached 3.25 ± 0.45, and 3.92 ± 0.36, respectively. The presence of alpha acids and ethanol affected the growth of L. quebecensis, which showed lower growth at 90 IBU and 8 ethanol% (v/v) mixtures. The craft beer brewed with L. quebecensis in monoculture experiments showed fruity flavors associated with ethyl acetate and isoamyl acetate. The ethanol content reached 3.50 ± 0.46% (v/v). The beer pH was 4.06 ± 0.20, with a lactic acid concentration of 1.21 ± 0.05 g/L. The sensory panel identified the beer as “fruity”, “floral”, “hoppy”, “sweet”, and “sour”. To our knowledge, this is the first time L. quebecensis was reported as a potential candidate for sour beer production with reduced ethanol content. Full article
(This article belongs to the Special Issue Recent Advances in the Chemistry and Microbiology of Beer)
Show Figures

Figure 1

24 pages, 7837 KiB  
Article
Sour Beer as Bioreservoir of Novel Craft Ale Yeast Cultures
by Chiara Nasuti, Jennifer Ruffini, Laura Sola, Mario Di Bacco, Stefano Raimondi, Francesco Candeliere and Lisa Solieri
Microorganisms 2023, 11(9), 2138; https://doi.org/10.3390/microorganisms11092138 - 23 Aug 2023
Cited by 4 | Viewed by 3355
Abstract
The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we [...] Read more.
The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we integrated phylogenetic, genotypic, genetic, and metabolomic techniques to demonstrate that sour beer during aging in wooden barrels is a source of suitable craft ale yeast candidates. In contrast to the traditional lambic beer maturation phase, during the aging of sour-matured production-style beer, different biotypes of Saccharomyces cerevisiae dominated the cultivable in-house mycobiota, which were followed by Pichia membranifaciens, Brettanomyces bruxellensis, and Brettanomyces anomalus. In addition, three putative S. cerevisiae × Saccharomyces uvarum hybrids were identified. S. cerevisiae feral strains sporulated, produced viable monosporic progenies, and had the STA1 gene downstream as a full-length promoter. During hopped wort fermentation, four S. cerevisiae strains and the S. cerevisiae × S. uvarum hybrid WY213 exceeded non-Saccharomyces strains in fermentative rate and ethanol production except for P. membranifaciens WY122. This strain consumed maltose after a long lag phase, in contrast to the phenotypic profile described for the species. According to the STA1+ genotype, S. cerevisiae partially consumed dextrin. Among the volatile organic compounds (VOCs) produced by S. cerevisiae and the S. cerevisiae × S. uvarum hybrid, phenylethyl alcohol, which has a fruit-like aroma, was the most prevalent. In conclusion, the strains characterized here have relevant brewing properties and are exploitable as indigenous craft beer starters. Full article
Show Figures

Figure 1

Back to TopTop