Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = solvent regeneration energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
88 pages, 9998 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
14 pages, 1663 KiB  
Article
Carbon Dioxide Absorption by Polyethylene Glycol Dimethyl Ether Modified by 2-methylimidazole
by Yan Wu, Zicheng Wang, Hui Yu, Bin Ding, Ke Fei, Xueli Ma, Baoshen Xu, Yonghu Zhang, Xiaoning Fu, Bowen Ding and Nan Li
Separations 2025, 12(8), 198; https://doi.org/10.3390/separations12080198 - 28 Jul 2025
Viewed by 253
Abstract
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); [...] Read more.
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); however, its limited application range is caused by its poor absorption of CO2 at low pressures. In this work, the CO2 absorption of NHD was enhanced by combining NHD with a novel chemical absorbent 2-methylimidazole (2-mIm)-ethylene glycol (EG) solution to improve CO2 absorption. Viscosity and CO2 solubility were examined in various compositions. The CO2 solubility in the mixed solution was found to be at maximum when the mass fractions of NHD, 2-mIm, and EG were 20%, 40%, and 40%, respectively. In comparison to pure NHD, the solubility of CO2 in this mixed solution at 30 °C and 0.5 MPa increased by 161.2%, and the desorption heat was less than 30 kJ/mol. The complex solution exhibits high selectivity and favorable regeneration performance in the short term. However, it is more sensitive to moisture content. The results of this study can provide important data to support the construction of new low-energy solvent systems and the development of novel CO2 capture processes. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

29 pages, 7261 KiB  
Review
Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies
by Zhiyong Lu, Liangmin Ning, Xiangnan Zhu and Hao Yu
Materials 2025, 18(13), 2987; https://doi.org/10.3390/ma18132987 - 24 Jun 2025
Viewed by 746
Abstract
In the wake of global energy transition and the “dual-carbon” goal, the rapid growth of electric vehicles has posed challenges for large-scale lithium-ion battery decommissioning. Retired batteries exhibit dual attributes of strategic resources (cobalt/lithium concentrations several times higher than natural ores) and environmental [...] Read more.
In the wake of global energy transition and the “dual-carbon” goal, the rapid growth of electric vehicles has posed challenges for large-scale lithium-ion battery decommissioning. Retired batteries exhibit dual attributes of strategic resources (cobalt/lithium concentrations several times higher than natural ores) and environmental risks (heavy metal pollution, electrolyte toxicity). This paper systematically reviews pyrometallurgical and hydrometallurgical recovery technologies, identifying bottlenecks: high energy/lithium loss in pyrometallurgy, and corrosion/cost/solvent regeneration issues in hydrometallurgy. To address these, an integrated recycling process is proposed: low-temperature physical separation (liquid nitrogen embrittlement grinding + froth flotation) for cathode–anode separation, mild roasting to convert lithium into water-soluble compounds for efficient metal oxide separation, stepwise alkaline precipitation for high-purity lithium salts, and co-precipitation synthesis of spherical hydroxide precursors followed by segmented sintering to regenerate LiNi1/3Co1/3Mn1/3O2 cathodes with morphology/electrochemical performance comparable to virgin materials. This low-temperature, precision-controlled methodology effectively addresses the energy-intensive, pollutive, and inefficient limitations inherent in conventional recycling processes. By offering an engineered solution for sustainable large-scale recycling and high-value regeneration of spent ternary lithium ion batteries (LIBs), this approach proves pivotal in advancing circular economy development within the renewable energy sector. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 2000 KiB  
Article
A Bench-Scale Demonstration of Direct Air Capture Using an Enhanced Electrochemical System
by Jinwen Wang, Xin Gao, Adam Berger, Ayokunle Omosebi, Tingfei Chen, Aron Patrick and Kunlei Liu
Clean Technol. 2025, 7(2), 50; https://doi.org/10.3390/cleantechnol7020050 - 16 Jun 2025
Viewed by 607
Abstract
The bench-scale demonstration of the UKy-IDEA process for direct air capture (DAC) technology combines solvent-aided CO2 capture with electrochemical regeneration (ER) through a pH swing process, enabling efficient CO2 capture and simultaneous solvent regeneration, producing high-purity hydrogen as a valuable co-product. [...] Read more.
The bench-scale demonstration of the UKy-IDEA process for direct air capture (DAC) technology combines solvent-aided CO2 capture with electrochemical regeneration (ER) through a pH swing process, enabling efficient CO2 capture and simultaneous solvent regeneration, producing high-purity hydrogen as a valuable co-product. The system shows stable performance with over 90% CO2 capture efficiency and approximately 80% CO2 recovery, handling ambient air at 280 L/min. During testing, the unit captured 1 kg of CO2 over 100 h, with a concentrated CO2 output purity of around 70%. Operating efficiently at low voltage (<3 V), the system supports flexible and remote operation without AC/DC converters when using intermittent renewable energy. Techno-economic analysis (TEA) and Life Cycle Assessment (LCA) highlight its minimized required footprint and cost-effectiveness. Marketable hydrogen offsets capture costs, and compatibility with renewable DC power enhances appeal. Hydrogen production displacing CO2 produced via electrolysis achieves 0.94 kg CO2 abated per kg CO2 captured. The project would be economic, with USD 26 per ton of CO2 from the federal 45Q tax credit for carbon utilization, and USD 5 to USD 12 per kg for H2. Full article
Show Figures

Figure 1

34 pages, 5816 KiB  
Article
Adsorption of Bisphenol A onto β-Cyclodextrin–Based Nanosponges and Innovative Supercritical Green Regeneration of the Sustainable Adsorbent
by Uğur Salgın, İsmail Alomari, Nagihan Soyer and Sema Salgın
Polymers 2025, 17(7), 856; https://doi.org/10.3390/polym17070856 - 23 Mar 2025
Viewed by 829
Abstract
Bisphenol A is a widely recognized endocrine disruptor that persists in ecosystems, harms aquatic organisms, and contributes to ecological degradation, raising global environmental concerns. Numerous studies have explored β-cyclodextrin–based adsorbents for Bisphenol A removal; however, their regeneration remains a major challenge, often relying [...] Read more.
Bisphenol A is a widely recognized endocrine disruptor that persists in ecosystems, harms aquatic organisms, and contributes to ecological degradation, raising global environmental concerns. Numerous studies have explored β-cyclodextrin–based adsorbents for Bisphenol A removal; however, their regeneration remains a major challenge, often relying on energy-intensive processes and excessive use of organic solvents. In this study, Bisphenol A was selected as a model pollutant, and its adsorption onto β-cyclodextrin nanosponges was investigated. After adsorption, Bisphenol A was efficiently recovered from the saturated β-cyclodextrin nanosponges using an innovative and sustainable supercritical CO2-based green process, which simultaneously regenerated the adsorbent. The adsorption process achieved an efficiency of 95.51 ± 0.82% under optimized conditions (C0 = 150 mg/L, mβ-CDNS = 0.15 g, T = 25 °C, and N = 200 rpm), with a maximum adsorption capacity of 47.75 ± 0.28 mg/g. The regeneration process achieved over 99% efficiency at 60 °C and 300 bar, with 10% (v/v) ethanol as a co-solvent, nearly fully restoring the adsorbent’s performance. Unlike conventional regeneration techniques, this green approach eliminates the need for environmentally harmful organic solvents while preserving the adsorbent’s structural integrity, making it a highly efficient and sustainable alternative. This study is the first to demonstrate the effective application of supercritical CO2-based regeneration for β-cyclodextrin nanosponges in Bisphenol A removal, providing a scalable and environmentally sustainable solution for wastewater treatment. Furthermore, characterization analyses confirmed that the adsorbent retained its chemical and morphological stability after adsorption and regeneration. Full article
(This article belongs to the Collection Polymer Applications in Environmental Science)
Show Figures

Figure 1

25 pages, 1912 KiB  
Review
A Review of Materials for Carbon Dioxide Capture
by Ashish Rana and Jean M. Andino
Catalysts 2025, 15(3), 273; https://doi.org/10.3390/catal15030273 - 13 Mar 2025
Cited by 4 | Viewed by 3184
Abstract
The increasing concentration of carbon dioxide (CO2) in the atmosphere is a significant contributor to global warming and climate change. Effective CO2 capture and storage technologies are critical to mitigating these impacts. This review explores various materials used for CO [...] Read more.
The increasing concentration of carbon dioxide (CO2) in the atmosphere is a significant contributor to global warming and climate change. Effective CO2 capture and storage technologies are critical to mitigating these impacts. This review explores various materials used for CO2 capture, focusing on the latest advancements and their applications. The review categorizes these materials into chemical and physical absorbents, highlighting their unique properties, advantages, and limitations. Chemical absorbents, such as amine-based solutions and hydroxides, have been widely used due to their high CO2 absorption capacities and established technological frameworks. However, they often suffer from high energy requirements for regeneration and potential degradation over time. Recent developments in ionic liquids (ILs) and polymeric ionic liquids (PILs) offer promising alternatives, providing tunable properties and lower regeneration energy. Physical absorbents, including advanced solvents like nanofluids and ionic liquids as well as industrial processes like selexol, rectisol, and purisol, demonstrate enhanced CO2 capture efficiency under various conditions. Additionally, adsorbents like activated carbon, zeolites, metal-organic frameworks (MOFs), carbon nanotubes (CNTs), and layered double hydroxides (LDHs) play a crucial role by providing high surface areas and selective CO2 capture through physical or chemical interactions. This paper summarizes the state of research on different materials and discusses their advantages and limitations while being used in CO2 capture technologies. This review also discussed multiple studies examining the use of catalysts and absorption mechanisms in combination with different sorbents, focusing on how these approaches enhance the efficiency of absorption and desorption processes. Through a comprehensive analysis, this review aims to provide valuable insights into the type of materials that are most suitable for CO2 capture and also provides directions for future research in this area. Full article
(This article belongs to the Special Issue Feature Review Papers in Catalysis for Sustainable Energy)
Show Figures

Graphical abstract

10 pages, 2480 KiB  
Article
Solvatochromic Parameters of Four Amines in Propane-1,3-diol at 298.15 K
by Maria-Luísa C. J. Moita, Ângela F. S. Santos, Miguel A. B. S. S. Correia and Isabel M. S. Lampreia
Molecules 2025, 30(6), 1213; https://doi.org/10.3390/molecules30061213 - 8 Mar 2025
Viewed by 619
Abstract
One of the most used methods for capturing acidic gases from the atmosphere is the use of amines that react with the acids and can later be recovered. The choice of amines that are most efficient in capturing has been the subject of [...] Read more.
One of the most used methods for capturing acidic gases from the atmosphere is the use of amines that react with the acids and can later be recovered. The choice of amines that are most efficient in capturing has been the subject of several studies; however, the energy effort for their regeneration is also important. While the polarity of the solvent plays a critical role in determining which amines efficiently capture CO2, the heat capacity of the solvent is also a significant factor in the regeneration process. In this work, we present values for Reichardt’s ETN30 and Kamlet−Taft parameters, such as π* (dipolarity/polarizability), α (acidity), and β (basicity), for solutions of two alkanolamines and two alkoxyamines dissolved in propane-1,3-diol, at 298.15 K, a solvent with a lower heat capacity than water. In addition to the polarity characterization of the amines in that solvent, the aim of this study is to analyze the differences observed in the solvatochromic parameters when water is replaced by alcohol. The impact of this change on the values of those parameters for the binary amine + solvent solutions was assessed by calculating the transfer values, ΔtransfFi,xi. Defined as, ΔtransfFi,xi=Fi1,3PDFiH2O, these transfer values represent the difference in the parameters when the amines are transferred from water to alcohol. While the water medium is more favourable in terms of π* for CO2 capture, the alcohol medium appears to hold more promise in terms of β. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

29 pages, 8597 KiB  
Article
Absorption and Desorption Heat of Carbon Dioxide Capture Based on 2-Amino-2-Methyl-1-Propanol
by Jia Guo, Xin Wang, Yi Li, Qingfang Li, Haili Liu and Hui Wang
Energies 2025, 18(5), 1075; https://doi.org/10.3390/en18051075 - 22 Feb 2025
Viewed by 792
Abstract
In chemical absorption for carbon capture, the regeneration heat is a key factor determining solvent regeneration energy consumption, and the sterically hindered amine 2-amino-2-methyl-1-propanol (AMP) has great potential for application. In this paper, a CO2 reaction heat measurement system designed and constructed [...] Read more.
In chemical absorption for carbon capture, the regeneration heat is a key factor determining solvent regeneration energy consumption, and the sterically hindered amine 2-amino-2-methyl-1-propanol (AMP) has great potential for application. In this paper, a CO2 reaction heat measurement system designed and constructed by our team was used to perform a comparative study on AMP and monoethanolamine (MEA). Moreover, five additives—MEA, diglycolamine (DGA), diethanolamine (DEA), methyldiethanolamine (MDEA), and piperazine (PZ)—were introduced into AMP-based solutions to investigate the promotion performance of these blended solvents. The results revealed that although AMP exhibited a slower absorption rate compared to MEA, it demonstrated a higher CO2 loading capacity and cyclic capacity, as well as a lower reaction heat, making it advantageous in terms of regeneration energy consumption. At the same total concentration, the absorption capacity of blended solutions (excluding AMP-MEA solutions) was generally lower than that of single-component AMP solutions. Among these additives, MEA and PZ could enhance the absorption rate clearly yet increase the reaction heat at the same time; DGA and DEA could decrease the overall absorption performance. Generally, AMP-MDEA solutions showed the best desorption performance, with the 15 wt% AMP + 5 wt% MDEA mixture demonstrating the lowest regeneration heat and good cyclic capacity. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

26 pages, 7775 KiB  
Review
Efficient Recycling Processes for Lithium-Ion Batteries
by Sabyasachi Paul and Pranav Shrotriya
Materials 2025, 18(3), 613; https://doi.org/10.3390/ma18030613 - 29 Jan 2025
Cited by 9 | Viewed by 1983
Abstract
Lithium-ion batteries (LIBs) are an indispensable power source for electric vehicles, portable electronics, and renewable energy storage systems due to their high energy density and long cycle life. However, the exponential growth in production and usage has necessitated highly effective recycling of end-of-life [...] Read more.
Lithium-ion batteries (LIBs) are an indispensable power source for electric vehicles, portable electronics, and renewable energy storage systems due to their high energy density and long cycle life. However, the exponential growth in production and usage has necessitated highly effective recycling of end-of-life LIBs to recover valuable resources and minimize the environmental impact. Pyrometallurgical and hydrometallurgical processes are the most common recycling methods but pose considerable difficulties. The energy-intensive pyrometallurgical recycling process results in the loss of critical materials such as lithium and suffers from substantial emissions and high costs. Solvent extraction, a hydrometallurgical method, offers energy-efficient recovery for lithium, cobalt, and nickel but requires hazardous chemicals and careful waste management. Direct recycling is an alternative to traditional methods as it preserves the cathode active material (CAM) structure for quicker and cheaper regeneration. It also offers environmental advantages of lower energy intensity and chemical use. Hybrid pathways, combining hydrometallurgical and direct recycling methods, provide a cost-effective, scalable solution for LIB recycling, maximizing material recovery with minimal waste and environmental risk. The success of recycling methods depends on factors such as battery chemistry, the scalability of recovery processes, and the cost-effectiveness of waste material recovery. Though pyrometallurgical and hydrometallurgical processes have secured their position in LIB recycling, research is proceeding toward newer approaches, such as direct and hybrid methods. These alternatives are more efficient both environmentally and in terms of cost with a broader perspective into the future. In this review, we describe the current state of direct recycling as an alternative to traditional pyrometallurgical and hydrometallurgical methods for recuperating these critical materials, particularly lithium. We also highlight some significant advancements that make these objectives possible. As research progresses, direct recycling and its variations hold great potential to reshape the way LIBs are recycled, providing a sustainable pathway for battery material recovery and reuse. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

16 pages, 1544 KiB  
Article
Statistical Correlations Between Various Drivers of Energy Demand in Post-Combustion Carbon Capture Retrofitted Power Plants
by Dalal Alalaiwat and Ezzat Khan
ChemEngineering 2025, 9(1), 3; https://doi.org/10.3390/chemengineering9010003 - 2 Jan 2025
Viewed by 1118
Abstract
Power plants are one of the main sources emitting the CO2 that is responsible for climate change consequences. Post-combustion carbon capture (PCC), particularly using an aqueous solution, is highly recommended to be used as a mitigation solution to reduce the emissions of [...] Read more.
Power plants are one of the main sources emitting the CO2 that is responsible for climate change consequences. Post-combustion carbon capture (PCC), particularly using an aqueous solution, is highly recommended to be used as a mitigation solution to reduce the emissions of CO2 from power plants. Although PCC is a promising solution, the process still needs further development to reduce the energy demand for solvent regeneration. This paper reviews the challenges related to the post-combustion processes and finds the correlations between selected variables addressed by several researchers. Moreover, this study provides valuable insights into the factors influencing the reduction in energy demand and efficiency penalties. The research findings highlight the importance of considering two key drivers during the design of the PCC process. These are the absorber temperature and the type and amount of the selected solvent. Indeed, statistical analyses show that there is a correlation between the identified drivers’ values and the energy demand of solvent regeneration. Full article
(This article belongs to the Special Issue Innovative Approaches for the Environmental Chemical Engineering)
Show Figures

Figure 1

16 pages, 10075 KiB  
Article
Synthesis of Monodisperse Magnetic Fe3O4 Microspheres and Their Photocatalytic Degradation of Xylenol Orange
by Yaohui Xu, Yong Li, Zhao Ding and Yang Zheng
Catalysts 2025, 15(1), 24; https://doi.org/10.3390/catal15010024 - 30 Dec 2024
Cited by 8 | Viewed by 1043
Abstract
To further enhance the safety and energy efficiency of the Fe3O4 preparation experiment, we proposed a strategy for synthesizing monodisperse Fe3O4 microspheres through a one-step solvothermal process. In this environmentally friendly synthesis method, stable FeCl3∙6H [...] Read more.
To further enhance the safety and energy efficiency of the Fe3O4 preparation experiment, we proposed a strategy for synthesizing monodisperse Fe3O4 microspheres through a one-step solvothermal process. In this environmentally friendly synthesis method, stable FeCl3∙6H2O was utilized as the sole raw material, while ethylene glycol, characterized by its high boiling point and favorable safety profile, served as the solvent. Additionally, inexpensive and readily available urea was selected to function either as a mineralizer or surfactant. Through this one-step solvothermal reaction, the target product of Fe3O4 could be obtained without subsequent calcination under reducing or inert atmospheres, thereby enhancing experimental safety and promoting energy conservation. By controlling the amount of urea added, it became feasible to produce monodisperse magnetic Fe3O4 microspheres characterized by complete crystallinity and high yield. Utilizing the as-synthesized Fe3O4 as a catalyst, we investigated its photocatalytic activity against xylenol orange organic dyes along with its regeneration characteristics. When 40 mmol of urea was incorporated into the reaction mixture, the resulting Fe3O4 sample exhibited optimal photocatalytic performance; a 20 mg/L xylenol orange solution became colorless and transparent after just 1.5 h of UV light irradiation. Furthermore, during five consecutive regeneration cycles, its catalytic activity could be restored to its initial level. Importantly, Fe3O4 demonstrated excellent magnetic sensitivity properties that facilitated rapid targeted separation under an external magnetic field, providing convenience for recovery and collection purposes. Full article
(This article belongs to the Special Issue Catalysis in Pollution Degradation and Environmental Remediation)
Show Figures

Figure 1

12 pages, 6071 KiB  
Article
Assessment of the Productivity of Hydrogen and Nano-Carbon Through Liquid-Plasma Cracking of Waste Organic Solvent Using PrxNiyFeO3 Perovskite Catalysts
by Sang-Chul Jung, Chan-Seo You and Kyong-Hwan Chung
Processes 2024, 12(12), 2932; https://doi.org/10.3390/pr12122932 - 21 Dec 2024
Viewed by 801
Abstract
In this study, a process for the simultaneous production of hydrogen and carbon from waste organic solvents using liquid plasma was investigated. Ferrite-based perovskites were introduced as catalysts to evaluate the productivity of hydrogen and carbon. A novel ferrite-based perovskite composite, Prx [...] Read more.
In this study, a process for the simultaneous production of hydrogen and carbon from waste organic solvents using liquid plasma was investigated. Ferrite-based perovskites were introduced as catalysts to evaluate the productivity of hydrogen and carbon. A novel ferrite-based perovskite composite, PrxNiyFeO3, was synthesized. The waste organic solvent was converted into liquid hydrocarbons, primarily composed of toluene, through a simple distillation process. Hydrogen (>98%) and nanocarbon were produced through the liquid plasma reaction of the purified organic solvent. The ferrite-based perovskites demonstrated excellent absorption capacities for visible light. Among them, PrxNiyFeO3 exhibited the highest absorption capacities for both UV and visible light and had the smallest band gap energy (approximately 1.72 eV). In the liquid plasma decomposition of organic solvents, the ferrite-based perovskites enhanced the hydrogen production rate and carbon yield. The highest hydrogen production rate and carbon yield were achieved with the newly synthesized PrxNiyFeO3 perovskite composite. PrxNiyFeO3, which has the narrowest band gap compared to other catalysts, is highly sensitive to the strong visible light emitted from plasma and exhibits excellent catalytic activity. This catalyst also demonstrated remarkable reaction activity sustainability and the potential for recycling through regeneration. Full article
(This article belongs to the Special Issue Metal Oxides and Their Composites for Photocatalytic Degradation)
Show Figures

Graphical abstract

23 pages, 5342 KiB  
Article
Optimization of CO2 Capture Using a New Aqueous Hybrid Solvent (MDEA-[TBPA][TFA]) with a Low Heat Capacity: Integration of COSMO-RS and RSM Approaches
by Fairuz Liyana Mohd Rasdi, Revathi Jeyaseelan, Mohd Faisal Taha and Mohamad Amirul Ashraf Mohd Razip
Processes 2024, 12(12), 2626; https://doi.org/10.3390/pr12122626 - 22 Nov 2024
Cited by 3 | Viewed by 1326
Abstract
This study aims to evaluate the performance of a new hybrid solvent, comprising aqueous MDEA and tetrabutylphosphonium trifluoroacetate ([TBP][TFA]), for CO2 capture and to optimize its CO2 absorption efficiency. First, this study focused on predicting the thermodynamic properties of aqueous MDEAs [...] Read more.
This study aims to evaluate the performance of a new hybrid solvent, comprising aqueous MDEA and tetrabutylphosphonium trifluoroacetate ([TBP][TFA]), for CO2 capture and to optimize its CO2 absorption efficiency. First, this study focused on predicting the thermodynamic properties of aqueous MDEAs and [TBP][TFA] and their interaction energy with CO2 using COSMO-RS. Based on the prediction, it aligns with the principle that CO2 solubility in the MDEA-[TBP][TFA] hybrid solvent decreases as the Henry’s Law constant increases, with the interactions primarily governed by van der Waals forces and hydrogen bonding. The aqueous MDEA-[TBP][TFA] hybrid solvent was prepared in two steps: synthesizing and blending [TBP][TFA] with aqueous MDEAs. The formation and purity of [TBP][TFA] were confirmed through NMR, FT-IR, and Karl Fischer. The heat capacity of the hybrid solvents was lower than their aqueous MDEA solutions. The performance and optimization of CO2 capture were studied using RSM-FC-CCD design, with the optimal value obtained at 50 wt.% MDEA, 20 wt.% [TBP][TFA], 30 °C, and 30 bar (12.14 mol/kg), aligning with COSMO-RS predictions. A 26% reduction in the heat capacity was achieved with the optimal ratio (wt.%) of the hybrid solvent. These findings suggest that the aqueous MDEA-[TBP][TFA] hybrid solvent is a promising alternative for CO2 capture, providing a high removal capacity and lower heat capacity for more efficient regeneration compared to commercial aqueous MDEA solutions. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 4625 KiB  
Article
The Role of Low-Carbon Fuels and Carbon Capture in Decarbonizing the U.S. Clinker Manufacturing for Cement Production: CO2 Emissions Reduction Potentials
by Ikenna J. Okeke, Dipti Kamath, Sachin U. Nimbalkar and Joe Cresko
Energies 2024, 17(20), 5233; https://doi.org/10.3390/en17205233 - 21 Oct 2024
Cited by 4 | Viewed by 1873
Abstract
Low-carbon fuels, feedstocks, and energy sources can play a vital role in the decarbonization of clinker production in cement manufacturing. Fuel switching with renewable natural gas, green hydrogen, and biomass can provide a low-carbon energy source for the high-temperature process heat during the [...] Read more.
Low-carbon fuels, feedstocks, and energy sources can play a vital role in the decarbonization of clinker production in cement manufacturing. Fuel switching with renewable natural gas, green hydrogen, and biomass can provide a low-carbon energy source for the high-temperature process heat during the pyroprocessing steps of clinker production. However, up to 60% of CO2 emissions from clinker production are attributable to process-related CO2 emissions, which will need the simultaneous implementation of other decarbonization technologies, such as carbon capture. To evaluate the potential of fuel switching and carbon capture technologies in decarbonizing the cement industry, a study of the facility-level CO2 emissions is necessary. This study evaluates the potential for using a single low-carbon fuel as an energy source in clinker production for cement manufacturing compared to conventional clinker production (which uses a range of fuel mixes). In addition, conventional carbon capture (operated with natural gas-based steam for solvent regeneration) and electrified carbon capture configurations were designed and assessed for net-zero emission targets. Carbon emissions reductions with and without biogenic emissions credits were analyzed to ascertain their impact on the overall carbon accounting. Results show that carbon emissions intensity of cement can vary from 571 to 784 kgCO2eq/metric ton of cement without carbon capture and from 166.33 to 438.66 kgCO2eq/metric ton of cement with carbon capture. We find that when biogenic carbon credits are considered, cement production with a sustainably grown biomass as fuel source coupled with conventional carbon capture can lead to a net-negative emission cement (−271 kgCO2eq/metric ton of cement), outperforming an electrified capture design (35 kgCO2eq/metric ton of cement). The carbon accounting for the Scope 1, 2, and biogenic emissions conducted in this study is aimed at helping researchers and industry partners in the cement and concrete sector make an informed decision on the choice of fuel and decarbonization strategy to adopt. Full article
(This article belongs to the Collection Energy Transition Towards Carbon Neutrality)
Show Figures

Figure 1

32 pages, 4014 KiB  
Article
Techno-Economic Feasibility Analysis of Post-Combustion Carbon Capture in an NGCC Power Plant in Uzbekistan
by Azizbek Kamolov, Zafar Turakulov, Patrik Furda, Miroslav Variny, Adham Norkobilov and Marcos Fallanza
Clean Technol. 2024, 6(4), 1357-1388; https://doi.org/10.3390/cleantechnol6040065 - 10 Oct 2024
Cited by 5 | Viewed by 2891
Abstract
As natural gas-fired combined cycle (NGCC) power plants continue to constitute a crucial part of the global energy landscape, their carbon dioxide (CO2) emissions pose a significant challenge to climate goals. This paper evaluates the feasibility of implementing post-combustion carbon capture, [...] Read more.
As natural gas-fired combined cycle (NGCC) power plants continue to constitute a crucial part of the global energy landscape, their carbon dioxide (CO2) emissions pose a significant challenge to climate goals. This paper evaluates the feasibility of implementing post-combustion carbon capture, storage, and utilization (CCSU) technologies in NGCC power plants for end-of-pipe decarbonization in Uzbekistan. This study simulates and models a 450 MW NGCC power plant block, a first-generation, technically proven solvent—MEA-based CO2 absorption plant—and CO2 compression and pipeline transportation to nearby oil reservoirs to evaluate the technical, economic, and environmental aspects of CCSU integration. Parametric sensitivity analysis is employed to minimize energy consumption in the regeneration process. The economic analysis evaluates the levelized cost of electricity (LCOE) on the basis of capital expenses (CAPEX) and operational expenses (OPEX). The results indicate that CCSU integration can significantly reduce CO2 emissions by more than 1.05 million tonnes annually at a 90% capture rate, although it impacts plant efficiency, which decreases from 55.8% to 46.8% because of the significant amount of low-pressure steam extraction for solvent regeneration at 3.97 GJ/tonne CO2 and multi-stage CO2 compression for pipeline transportation and subsequent storage. Moreover, the CO2 capture, compression, and transportation costs are almost 61 USD per tonne, with an equivalent LCOE increase of approximately 45% from the base case. This paper concludes that while CCSU integration offers a promising path for the decarbonization of NGCC plants in Uzbekistan in the near- and mid-term, its implementation requires massive investments due to the large scale of these plants. Full article
Show Figures

Figure 1

Back to TopTop