Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = solvent evaporation technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3800 KiB  
Article
A Novel Temozolomide-Myricetin Drug-Drug Cocrystal: Preparation, Characterization, Property Evaluations
by Hai-Xin Qin, Jie Wang, Jia-Hui Peng, Xia-Lin Dai, Cai-Wen Li, Tong-Bu Lu and Jia-Mei Chen
Pharmaceutics 2025, 17(7), 906; https://doi.org/10.3390/pharmaceutics17070906 - 13 Jul 2025
Viewed by 380
Abstract
Objectives: Drug-drug cocrystals with improved properties can be used to facilitate the development of synergistic therapeutic combinations. The goal of the present study is to obtain novel drug-drug cocrystals involving two anti-glioma agents, temozolomide (TMZ) and myricetin (MYR). Methods: The novel [...] Read more.
Objectives: Drug-drug cocrystals with improved properties can be used to facilitate the development of synergistic therapeutic combinations. The goal of the present study is to obtain novel drug-drug cocrystals involving two anti-glioma agents, temozolomide (TMZ) and myricetin (MYR). Methods: The novel TMZ-MYR cocrystal was prepared via slurry and solvent evaporation techniques and characterized by X-ray diffraction, thermal analysis, infrared spectroscopy, and dynamic vapor sorption measurements. The stability, compaction, and dissolution properties were also evaluated. Results: Crystal structure analysis revealed that the cocrystal lattice contains two TMZ molecules, one MYR molecule, and four water molecules, which are linked by hydrogen bonding interactions to produce a three-dimensional network. The cocrystal hydrate exhibited favorable stability and tabletability compared to pure TMZ. A dissolution study showed that the maximum solubility of MYR in the cocrystal (176.4 μg/mL) was approximately 6.6 times higher than that of pure MYR·H2O (26.9 μg/mL), while the solubility of TMZ from the cocrystal (786.7 µg/mL) was remarkably lower than that of pure TMZ (7519.8 µg/mL). The solubility difference between MYR and TMZ was diminished from ~280-fold to ~4.5-fold. Conclusions: Overall, the TMZ-MYR cocrystal optimizes the stability and tabletability of TMZ and the dissolution behavior of both drugs, offering a promising approach for synergistic anti-glioma therapy with improved clinical potential. Full article
Show Figures

Graphical abstract

21 pages, 1903 KiB  
Article
Unlocking Superior MFH Performance Below Hergt’s Biological Safety Limit: SPION-Based Magnetic Nanoplatforms Deliver High Heating Efficiency at Low AMF
by Atul Sudame and Dipak Maity
Bioengineering 2025, 12(7), 715; https://doi.org/10.3390/bioengineering12070715 - 30 Jun 2025
Viewed by 382
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention for Magnetic Fluid Hyperthermia (MFH)-based cancer therapy. However, achieving high heating efficiency under a biologically safe Alternating Magnetic Field (AMF) remains a challenge. This study investigates the synthesis and optimization of SPIONs encapsulated in [...] Read more.
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention for Magnetic Fluid Hyperthermia (MFH)-based cancer therapy. However, achieving high heating efficiency under a biologically safe Alternating Magnetic Field (AMF) remains a challenge. This study investigates the synthesis and optimization of SPIONs encapsulated in TPGS-stabilized PLGA nanoparticles (TPS-NPs) using a modified single emulsion solvent evaporation (M-SESE) method. The aim was to achieve efficient magnetic heating under biologically safe AMF conditions while maintaining biocompatibility and colloidal stability, making these magnetic nanoplatforms suitable for MFH-based cancer treatment. TPS-NPs were characterized using various techniques, including Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), and Superconducting Quantum Interference Device (SQUID) magnetometry, to evaluate their hydrodynamic size (Dh), zeta potential (ζ), encapsulation efficiency, and superparamagnetic properties. Calorimetric MFH studies demonstrated superior heating efficiency, with Specific Absorption Rate (SAR) and Intrinsic Loss Power (ILP) values optimized at an AMF of 4.1 GAm−1s−1, remaining within Hergt’s biological safety limit (~5 GAm−1s−1). These findings suggest that SPION-encapsulated TPS-NPs exhibit enhanced heat induction, making them promising candidates for MFH-based cancer therapy. The study highlights their potential as multifunctional nanoplatforms for magnetic hyperthermia therapy, paving the way for clinical translation in oncology for advanced cancer treatment. Full article
Show Figures

Figure 1

11 pages, 2422 KiB  
Article
Low-Temperature Degradation of Aflatoxins via Oxygen Plasma: Kinetics and Mechanism Driven by Atomic Oxygen Flux
by Nina Recek, Rok Zaplotnik, Gregor Primc, Peter Gselman and Miran Mozetič
Materials 2025, 18(13), 2924; https://doi.org/10.3390/ma18132924 - 20 Jun 2025
Viewed by 391
Abstract
Aflatoxins are toxic organic substances that are synthesized on the surfaces of seeds, nuts, and similar products by some fungi under elevated humidity. They decompose at temperatures well above 130 °C, so standard heating or autoclaving is an obsolete technique for the degradation [...] Read more.
Aflatoxins are toxic organic substances that are synthesized on the surfaces of seeds, nuts, and similar products by some fungi under elevated humidity. They decompose at temperatures well above 130 °C, so standard heating or autoclaving is an obsolete technique for the degradation of toxins on surfaces without significant modification of the treated material. Non-equilibrium plasma was used to degrade aflatoxins at low temperatures and determine the efficiency of O atoms. A commercial mixture of aflatoxins was deposited on smooth substrates, and the solvent was evaporated so that about a 3 nm thick film of dry toxins remained on the substrates. The samples were exposed to low-pressure oxygen plasma sustained by an inductively coupled radiofrequency (RF) discharge in either the E or H mode. The gas pressure was 20 Pa, the forward RF power was between 50 and 700 W, and the O-atom flux was between 1.2 × 1023 and 1.5 × 1024 m−2 s−1. Plasma treatment caused the rapid degradation of aflatoxins, whose concentration was deduced from the fluorescence signal at 455 nm upon excitation with a monochromatic source at 365 nm. The degradation was faster at higher discharge powers, but the degradation curves fitted well when plotted against the dose of O atoms. The experiments showed that the aflatoxin concentration dropped below the detection limit of the fluorescence probe after receiving the O-atom dose of just above 1025 m−2. This dose was achieved within 10 s of treatment in plasma in the H mode, and approximately a minute when plasma was in the E mode. The method provides a low-temperature solution for the efficient detoxification of agricultural products. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Graphical abstract

10 pages, 1104 KiB  
Article
Minocycline Nanocrystals: A New Approach for Treating Acne with Reduced Systemic Side Effects
by Suha M. Abudoleh, Juhaina M. Abu Ershaid, Dima Lafi, Nisreen A. Dahshan, Ahmad Talhouni and Amjad Abuirmeileh
Pharmaceutics 2025, 17(6), 727; https://doi.org/10.3390/pharmaceutics17060727 - 31 May 2025
Viewed by 853
Abstract
Background/Objectives: Acne vulgaris is a chronic skin infection characterized by high sebum secretion, keratosis around hair follicles, inflammation, and imbalance in androgen levels. Acne vulgaris causes permanent scars or skin pigmentation in cases of improper treatment. Oral or topical isotretinoin, contraceptives, and antibiotics [...] Read more.
Background/Objectives: Acne vulgaris is a chronic skin infection characterized by high sebum secretion, keratosis around hair follicles, inflammation, and imbalance in androgen levels. Acne vulgaris causes permanent scars or skin pigmentation in cases of improper treatment. Oral or topical isotretinoin, contraceptives, and antibiotics are used to treat acne. Minocycline is one of the widely used tetracyclines for this purpose; it inhibits the synthesis of proteins in bacterial ribosomes. Commonly, minocycline is prescribed daily for several months for acne vulgaris. Systemic minocycline is highly distributed into body fluids, and it is associated with several side effects and antibiotic resistance. Additionally, minocycline is highly metabolized in the liver, leading to reduced bioavailability upon systemic delivery. This study aims to develop and characterize minocycline nanocrystals for targeted skin delivery and evaluate their antimicrobial efficacy in treating acne vulgaris. Methods: Minocycline nanocrystals were synthesized using milling or solvent evaporation techniques. Nanocrystals were characterized in terms of particle size, particle distribution index (PDI), zeta potential, and morphology. The antibacterial efficacy against Propionibacterium acne, Staphylococcus aureus, and Staphylococcus epidermidis was evaluated using a minimum inhibitory concentration assay (MIC) and agar well diffusion test in comparison to coarse minocycline. Results: Minocycline nanocrystals had a particle size of 147.4 ± 7.8 nm and 0.27 ± 0.017 of PDI. The nanocrystals exhibited a loading efficiency of 86.19 ± 16.7%. Antimicrobial testing showed no significant difference in activity between minocycline and its nanoparticle formulation. In terms of skin deposition, the nanocrystals were able to deliver minocycline topically to rat skin significantly more than free minocycline. The nanocrystal solution deposited 554.56 ± 24.13 μg of minocycline into rat skin, whereas free minocycline solution deposited 373.99 ± 23.32 μg. Conclusions: Minocycline nanocrystals represent a promising strategy for targeted skin delivery in the treatment of acne vulgaris, potentially reducing systemic side effects and antibiotic resistance and improving patient outcomes. Full article
(This article belongs to the Special Issue Transdermal Delivery: Challenges and Opportunities)
Show Figures

Figure 1

22 pages, 2814 KiB  
Article
Novel Drug–Drug Cocrystalline Forms of Carbamazepine with Sulfacetamide: Preparation, Characterization, and In Vitro/In Vivo Performance Evaluation
by Denis E. Boycov, Ksenia V. Drozd, Alex N. Manin, Andrei V. Churakov, Mikhail Yu. Vlasov, Irina V. Kachalkina and German L. Perlovich
Pharmaceutics 2025, 17(5), 678; https://doi.org/10.3390/pharmaceutics17050678 - 21 May 2025
Cited by 1 | Viewed by 620
Abstract
Objectives: Drug–drug cocrystallization represents a promising approach for the development of novel combination drugs with improved physicochemical and biopharmaceutical properties. The aim of the present research is to prepare novel drug-drug cocrystalline forms of antiepileptic drug carbamazepine (CBZ) with sulfacetamide (SCTM). Methods [...] Read more.
Objectives: Drug–drug cocrystallization represents a promising approach for the development of novel combination drugs with improved physicochemical and biopharmaceutical properties. The aim of the present research is to prepare novel drug-drug cocrystalline forms of antiepileptic drug carbamazepine (CBZ) with sulfacetamide (SCTM). Methods: The novel CBZ cocrystal methanol solvate and cocrystal hydrate were prepared via solvent evaporation technique and characterized by single crystal X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. Results: Single-crystal X-ray diffraction and thermal analysis revealed that the multicomponent solids are isostructural, wherein the solvent molecule does not play a structure-forming role. To optimize the synthesis of [CBZ+SCTM+H2O] (1:1:0.7), the binary and ternary phase diagrams were constructed in acetonitrile at 25 °C. A thorough investigation of the cocrystal hydrate behavior in aqueous solution showed that the pH of the dissolution medium exerted a significant effect on the stability and solubility of [CBZ+SCTM+H2O] (1:1:0.7). According to the dissolution and diffusion experiments in a buffer solution pH 6.5, the cocrystal hydrate characterized an enhanced dissolution rate and flux of CBZ. Pharmacokinetic studies in rabbits showed that the novel cocrystal hydrate exhibited a comparable bioavailability to the parent CBZ. Conclusions: Overall, this work reports the preparation of a novel CBZ drug-drug cocrystal hydrate, which can be considered as an alternative CBZ solid form for oral usage, possessing additive pharmacological effect. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

20 pages, 1430 KiB  
Article
Betaine and Total Dietary Fiber Recovery from Red Beetroot Peels by Means of Ultrasound and Pulsed Electric Fields
by Iva Sabljak, Mirela Grubelić, Dora Vlahović, Josipa Dukić, Aleksandra Samardžija and Anet Režek Jambrak
Clean Technol. 2025, 7(2), 37; https://doi.org/10.3390/cleantechnol7020037 - 6 May 2025
Viewed by 828
Abstract
Ultrasound-assisted extraction (UAE) using water as a green solvent is a promising non-thermal technique for the extraction of total dietary fiber (TDF) and betaine from red beetroot (Beta vulgaris L.) peel. Compared to conventional thermal extraction (CE), UAE has proven to be [...] Read more.
Ultrasound-assisted extraction (UAE) using water as a green solvent is a promising non-thermal technique for the extraction of total dietary fiber (TDF) and betaine from red beetroot (Beta vulgaris L.) peel. Compared to conventional thermal extraction (CE), UAE has proven to be a more efficient alternative method for the extraction of TDF and betaine. The pretreatment of beet was carried out using pulsed electric field (PEF) technology, with the specific energy of the PEF treatment set at 1.6 kJ/kg. To achieve the maximum betaine concentration of 24.80 µg/mL, the optimum UAE parameters were 50% amplitude with an extraction time of 3 min using distilled water as extraction solvent. The optimum TDF yield of 44.07% was achieved at 75% amplitude, 6 min treatment time and 50% ethanol solution as extraction solvent. These conditions can effectively supplement UAE, especially in the extraction of bioactive compounds from red beetroot peel. However, the TDF obtained in the residue must be evaporated for further use, which increases energy consumption. Ethanol concentration had no statistically significant effect (p > 0.05) on the TDF results, suggesting that distilled water could replace ethanol as a solvent in UAE. This substitution offers environmental and economic advantages, as water is more environmentally friendly and less expensive than ethanol. In addition, the use of distilled water eliminates the need to evaporate ethanol, which is particularly advantageous when the extracted material is intended for fortification or improvement of the technological and functional properties of food products. Full article
(This article belongs to the Special Issue Recovery of Bioactive Compounds from Waste and By-Products)
Show Figures

Graphical abstract

20 pages, 4814 KiB  
Article
Solvent Evaporation-Induced Self-Assembly of Flexible Cholesteric Liquid Crystal Elastomers: Fabrication, Performance Tuning, and Optimization
by Jinying Zhang, Yexiaotong Zhang, Zhongwei Gao, Jiaxing Yang and Xinye Wang
Materials 2025, 18(9), 1927; https://doi.org/10.3390/ma18091927 - 24 Apr 2025
Viewed by 491
Abstract
The realization of broad-wavelength tunability of the structural color in Double layered Cholesteric Liquid Crystal Elastomers (DCLCEs), along with good flexibility and processability, presents a significant challenge. This research introduces a facile and effective fabrication technique, Solvent Evaporation-Induced Self-Assembly (SEISA), for the production [...] Read more.
The realization of broad-wavelength tunability of the structural color in Double layered Cholesteric Liquid Crystal Elastomers (DCLCEs), along with good flexibility and processability, presents a significant challenge. This research introduces a facile and effective fabrication technique, Solvent Evaporation-Induced Self-Assembly (SEISA), for the production of DCLCEs exhibiting broad wavelength tunability, superior flexibility, and robust mechanical characteristics. Focusing on initial color tuning, bubble defect minimization, UV photopolymerization, and coating procedures, this research systematically optimizes the fabrication process through experimental investigation of factors like chiral dopant amount, temperature, UV exposure duration, coating thickness, and speed. The method enabled the successful fabrication of DCLCEs with uniform and controllable coloration, demonstrating the effectiveness of this controlled synthesis approach in significantly enhancing structural color features. Upon stretching to 2.8 times its original length, the center wavelength shifted from 613 nm to 404 nm, yielding a tunable bandwidth of up to 209 nm across the visible spectrum. Full article
(This article belongs to the Special Issue Structural and Physical Properties of Liquid Crystals)
Show Figures

Figure 1

13 pages, 3476 KiB  
Article
Preparation of Highly Efficient and Stable All-Inorganic Perovskite Solar Cells in Atmosphere Environment
by Yufan Jiang, Dongdong Deng and Jingjing Dong
Energies 2025, 18(9), 2162; https://doi.org/10.3390/en18092162 - 23 Apr 2025
Viewed by 390
Abstract
All-inorganic CsPbX3 perovskites have significant potential for applications in the photovoltaic field. However, during their preparation, the slow evaporation rate of the precursor solution limits the extent of solution supersaturation, leading to porous perovskite films that substantially impair device performance. Anti-solvent engineering, [...] Read more.
All-inorganic CsPbX3 perovskites have significant potential for applications in the photovoltaic field. However, during their preparation, the slow evaporation rate of the precursor solution limits the extent of solution supersaturation, leading to porous perovskite films that substantially impair device performance. Anti-solvent engineering, which introduces a secondary solvent to modulate the crystallization process, is a well established technique in perovskite photovoltaic research. This study systematically examines the effects of four different anti-solvents on perovskite films and corresponding devices. It also investigates the optimal dipping-time of (trifluoromethyl)benzene as an anti-solvent, as well as the impact of varying amounts of anti-solvent additive perfluorinated acid. The optimized devices achieved a maximum power conversion efficiency of 12.68%. Full article
Show Figures

Figure 1

14 pages, 5342 KiB  
Article
Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber
by Guo-Dong Zhang, Yuan Gao, Pi-Hang Yu, Chao Zhang, Chuan-Hui Guo, Seeram Ramakrishna, Yun-Ze Long and Jun Zhang
Nanomaterials 2025, 15(8), 578; https://doi.org/10.3390/nano15080578 - 11 Apr 2025
Viewed by 504
Abstract
Water is the most environmentally friendly solvent; however, conventional solution spinning using water as a solvent is challenging due to its low evaporation rate. We developed a double-pronged solution blow spinning (DP-SBS) system. This spinning technique significantly enhances solvent evaporation, and the designed [...] Read more.
Water is the most environmentally friendly solvent; however, conventional solution spinning using water as a solvent is challenging due to its low evaporation rate. We developed a double-pronged solution blow spinning (DP-SBS) system. This spinning technique significantly enhances solvent evaporation, and the designed structure (double-pronged) avoids the common problem of needle clogging caused by heating. DP-SBS enables high-yield production of water-soluble polymer nanofibers, with a production rate of up to 5.94 g/h, which far exceeds what can be achieved with traditional electrospinning or solution blow spinning. This method is also highly efficient for producing non-water-soluble polymer nanofibers, achieving a production rate of up to 7.91 g/h, the highest reported value to date. Additionally, this approach can be used to produce not only common two-dimensional fiber membranes but also fiber sponges in a single step using the double-pronged airflow system. For the first time, chitosan nanofiber sponges were successfully produced and demonstrated to have excellent hemostatic properties in medical hemostasis. This method can also be extended to the production of other 3D nanomaterials, such as mullite nanofiber sponges, which exhibit outstanding thermal insulation performance at high temperatures. Full article
Show Figures

Figure 1

22 pages, 3385 KiB  
Article
Development and Characterization of Polymeric Films Loaded with Terbinafine for Fungal Infection Treatment
by Gabriela Biliuta, Simona Petronela Gherman, Raluca Ioana Baron, Alexandra Bargan, Lacramioara Ochiuz, Cristina Gabriela Tuchilus, Adrian Florin Spac and Daniela Elena Zavastin
Polymers 2025, 17(8), 1004; https://doi.org/10.3390/polym17081004 - 8 Apr 2025
Viewed by 778
Abstract
Topical approaches to dermatophytosis have the advantage of targeted therapy and minimal side effects and are patient-friendly. The present study focused on obtaining thin, flexible, and transparent bioadhesive polymeric films loaded with terbinafine hydrochloride (TH), in order to be administered to the skin [...] Read more.
Topical approaches to dermatophytosis have the advantage of targeted therapy and minimal side effects and are patient-friendly. The present study focused on obtaining thin, flexible, and transparent bioadhesive polymeric films loaded with terbinafine hydrochloride (TH), in order to be administered to the skin affected by fungal infection. Polymeric films based on pullulan (P), oxidized pullulan (T-OP), sodium carboxymethylcellulose (NaCMC), and glycerin were obtained by the casting and evaporation technique, and the solubility of the drug was significantly increased by micellar solubilization with Tween-80, thus avoiding the use of organic solvents. Physico-chemical characterization through the FTIR technique and EDX analysis indicates the absence of strong interactions between the drug and the polymer, and the loading efficiency highlights the uniform distribution of the drug. The mechanical properties, bioadhesion, contact angle, and water sorption capacity highlight optimal adhesion parameters on the skin. In vitro studies indicate a prolonged drug release, in the first 300 min, of 80% and 60% for F2_TH and F1_TH, respectively, and the release kinetics follow the Weibull model. Significant antifungal activity was obtained for both polymeric films. The biocompatibility of the ingredients, the gentle technique for obtaining the films, and the results obtained from their analysis represent promise for their applicability in topical antifungal treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

22 pages, 3815 KiB  
Review
Vacuum Processability of Self-Assembled Monolayers and Their Chemical Interaction with Perovskite Interfaces
by Hyeji Han, Siwon Yun, Zobia Irshad, Wonjong Lee, Min Kim, Jongchul Lim and Jinseck Kim
Energies 2025, 18(7), 1782; https://doi.org/10.3390/en18071782 - 2 Apr 2025
Viewed by 1663
Abstract
Self-assembled monolayers (SAMs) have gained significant attention as an interfacial engineering strategy for perovskite solar cells (PSCs) due to their efficient charge transport ability and work function tunability. While solution-based methods such as dip-coating and spin-coating are widely used for SAM deposition, challenges [...] Read more.
Self-assembled monolayers (SAMs) have gained significant attention as an interfacial engineering strategy for perovskite solar cells (PSCs) due to their efficient charge transport ability and work function tunability. While solution-based methods such as dip-coating and spin-coating are widely used for SAM deposition, challenges such as non-uniform coverage, solvent contamination, and limited control over molecular orientation hinder their scalability and reproducibility. In contrast, vacuum deposition techniques, including thermal evaporation, overcome these limitations by enabling the formation of highly uniform materials with precise control over thickness and molecular arrangement. Importantly, the chemical interactions between SAM materials and perovskite layers, including coordination bonding with Pb2+ ions, play an important role in passivating surface defects, modulating energy levels, and promoting uniform perovskite crystallization. These interactions not only enhance wettability but also improve the overall quality and stability of perovskite films. This review highlights the advantages of vacuum-deposited SAMs, promoting strong chemical interactions with perovskite layers and improving interfacial properties critical for scalable applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 4179 KiB  
Article
Dielectric Response of Crosslinked Adenanthera pavonina L. Galactomannan in pH-Controlled Medium
by Antônia Millena de Oliveira Lima, Fernando Mendes, Lincoln Almeida Cavalcante, Cristiane Carvalho Araújo, Beatriz da Silva Batista, João Pedro Lemos Morais, Filipe Miguel Borges Amaral and Ana Angélica Mathias Macêdo
Polymers 2025, 17(7), 954; https://doi.org/10.3390/polym17070954 - 31 Mar 2025
Viewed by 464
Abstract
This research investigates the production of galactomannan from Adenanthera pavonina L. in its crude form and its subsequent crosslinking with glutaraldehyde under various pH conditions. The study involved the creation of films and sponges from these materials, followed by a comprehensive analysis of [...] Read more.
This research investigates the production of galactomannan from Adenanthera pavonina L. in its crude form and its subsequent crosslinking with glutaraldehyde under various pH conditions. The study involved the creation of films and sponges from these materials, followed by a comprehensive analysis of their structural, thermal, swelling, and electrical properties. Galactomannan was crosslinked with a fixed concentration of 0.2 mol/L of glutaraldehyde, with pH levels ranging from 3 to 7. These films and sponges were prepared through a slow solvent evaporation process. The research encompassed multiple analytical techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, swelling profile assessments, and impedance spectroscopy. The findings from structural analysis indicated that variations in pH did not alter the amorphous nature of the samples but did influence the interactions between galactomannan molecules and restricted the mobility of polymeric chains, which resulted in different dielectric responses. Crosslinked samples exhibited reduced water solubility compared to unprocessed galactomannan. Crosslinking also decreases the ability of the material to polarize and align in response to the electric field, which justifies why crosslinked samples present a lower dielectric constant than the crude sample. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

12 pages, 2945 KiB  
Article
UV-Assisted Material Extrusion Additive Manufacturing of Double-Base Propellant
by Manman Li, Yuchen Gao, Qionglin Wang, Weitao Yang, Guo-Lin Gao and Zaixing Jiang
Polymers 2025, 17(6), 808; https://doi.org/10.3390/polym17060808 - 19 Mar 2025
Viewed by 571
Abstract
Double-base (DB) propellants, renowned for their superior performance and cost-effectiveness, are extensively utilized in both rocketry and artillery applications. During the 3D printing process of double-base propellants, auxiliary solvents play a crucial role in plasticizing the DB propellant mixtures. Consequently, the printed propellants [...] Read more.
Double-base (DB) propellants, renowned for their superior performance and cost-effectiveness, are extensively utilized in both rocketry and artillery applications. During the 3D printing process of double-base propellants, auxiliary solvents play a crucial role in plasticizing the DB propellant mixtures. Consequently, the printed propellants are prone to significant shrinkage and dimensional instability as a result of solvent evaporation post-printing. To address these challenges, we have innovated a UV-assisted material extrusion 3D printing technique that preserves the intended geometries of the DB propellant. The results of our printing trials indicate that incorporating an energetic UV-curable resin as a modifier into the DB propellant paste is highly effective. Ultimately, we successfully fabricated a porous propellant cylinder featuring a periodic woodpile structure. Additionally, the internal structure, mechanical properties, combustion characteristics, and in-barrel ballistic performance of the printed propellants have been thoroughly characterized. Our findings underscore that the UV-assisted material extrusion additive manufacturing process confers exceptional properties to the DB propellant. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

19 pages, 5257 KiB  
Article
Development and Evaluation of Fluconazole Co-Crystal for Improved Solubility and Mechanical Properties
by Ritu Rathi, Inderbir Singh, Tanikan Sangnim and Kampanart Huanbutta
Pharmaceutics 2025, 17(3), 371; https://doi.org/10.3390/pharmaceutics17030371 - 14 Mar 2025
Cited by 1 | Viewed by 946
Abstract
Background: Fluconazole (FLZ) is a broad-spectrum anti-fungal drug presenting poor flowability, mechanical properties, and limited aqueous solubility. These issues pose challenges for the handling and manufacturing of dosage forms of FLZ. The current research aimed to develop fluconazole co-crystal (CC) for improving [...] Read more.
Background: Fluconazole (FLZ) is a broad-spectrum anti-fungal drug presenting poor flowability, mechanical properties, and limited aqueous solubility. These issues pose challenges for the handling and manufacturing of dosage forms of FLZ. The current research aimed to develop fluconazole co-crystal (CC) for improving its aqueous solubility, flowability, and mechanical properties. (2) Methods: The fluconazole benzoic acid (FLZ-BA) co-crystal was prepared using the solvent evaporation technique. The prepared co-crystal was characterized for drug content, solubility, anti-fungal activity, dissolution, and stability. DSC (Differential Scanning Calorimetry), PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron Microscopy), and FTIR (Fourier Transmission Infrared) spectroscopy were carried out to confirm the co-crystal formation. The co-crystal was further evaluated for their flow characteristics and mechanical properties via CTC (compressibility, tabletability, and compactibility), Heckel, and Kawakita analysis. (3) Results: The CC showed 69.51% drug content and 13-fold greater aqueous solubility than pure FLZ. The DSC thermogram showed a sharp endothermic peak between the parent components, a distinct PXRD pattern was observed, and the SEM analysis revealed a different morphology, confirming the formation of co-crystal (new crystalline form). The CC showed immediate drug release and was found to more stable, and less hygroscopic than FLZ alone. The CC revealed better flowability, tabletability (tensile strength), compressibility, and compactibility. Moreover, Heckel and Kawakita analysis indicated the co-crystal to deform plastically, favoring improved compression. (4) Conclusions: The immediate drug release capabilities, improved hygroscopic stability, solubility, better antifungal activity, and flowability make FLZ-BA co-crystal a suitable candidate for the preparation of an immediate drug release dosage form. The study also revealed the application of co-crystal for improving the flowability and mechanical properties. Full article
Show Figures

Figure 1

17 pages, 3548 KiB  
Article
Formation of PEG-PLGA Microspheres for Controlled Release of Simvastatin and Carvacrol: Enhanced Lipid-Lowering Efficacy and Improved Patient Compliance in Hyperlipidemia Therapy
by Lin Fu, Hengxin Ren, Chaoxing Wang, Yaxin Zhao, Bohang Zou and Xiangyu Zhang
Polymers 2025, 17(5), 574; https://doi.org/10.3390/polym17050574 - 21 Feb 2025
Viewed by 769
Abstract
Polymer-based drug-controlled release systems offer greater efficacy and potency than conventional therapies. However, prominent drug side effects, lower circulation, and low drug loading capabilities limit their application range. In this work, the combination of Simvastatin (SIV) and Carvacrol (CAV) into PEG-PLGA microspheres (SIV-CAV-PP-MS) [...] Read more.
Polymer-based drug-controlled release systems offer greater efficacy and potency than conventional therapies. However, prominent drug side effects, lower circulation, and low drug loading capabilities limit their application range. In this work, the combination of Simvastatin (SIV) and Carvacrol (CAV) into PEG-PLGA microspheres (SIV-CAV-PP-MS) was achieved via an emulsification-solvent evaporation technique, resulting in microspheres characterized by high encapsulation efficiency and reduced particle size. In vitro studies demonstrated that the cumulative drug release increased with higher SIV and CAV levels in the release medium, reaching 88.91% and 89.35% at 25 days. Pharmacokinetic analysis revealed that the concentrations of SIV and CAV reached their maximum levels at approximately seven days in the SIV-CAV-PP-MS group, which indicates that using PEG-PLGA as a carrier significantly delays drug release. In vivo, evaluation demonstrated that the SIV-CAV-PP-MS high-dose group and positive drug control group showed reductions in low-density lipoprotein cholesterol levels by 0.39-fold and 0.36-fold compared to the Hyperlipidemia model group, and the addition of CAV significantly enhanced the lipid-lowering effects of SIV. Histological examinations indicated that the SIV-CAV-PP-MS medium-dose group displayed histological features more closely resembling those of normal mice compared to the Simvastatin control group, with a well-organized hepatocyte structure, a significant reduction in lipids, and improved liver health. The prepared polymeric microsphere utilizing SIV and SAV will be a promising dosage form for hyperlipidemia disease patients, with superior lipid-lowering efficacy and improved patient compliance. Full article
Show Figures

Figure 1

Back to TopTop