Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,652)

Search Parameters:
Keywords = soluble fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 863 KiB  
Article
The Effect of the Extraction Temperature on the Colligative, Hydrodynamic and Rheological Properties of Psyllium Husk Mucilage Raw Solutions
by Anna Ptaszek, Marta Liszka-Skoczylas and Urszula Goik
Molecules 2025, 30(15), 3219; https://doi.org/10.3390/molecules30153219 - 31 Jul 2025
Viewed by 171
Abstract
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following [...] Read more.
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following temperatures: 40 °C (AX40), 60 °C (AX60), 80 °C (AX80), and 100 °C (AX100). These were characterised in terms of their hydrodynamic, osmotic, and rheological properties, as well as the average molecular mass of the polysaccharide fractions. An increase in extraction temperature resulted in an increase in weight-average molecular mass, from 2190 kDa (AX40) to 3320 kDa (AX100). The values of the osmotic average molecular mass were higher than those obtained from GPC, and decreased with increasing extraction temperature. The dominance of biopolymer–biopolymer interactions was evident in the shape of the autocorrelation function, which did not disappear as the extraction temperature and concentration increased. Furthermore, the values of the second virial coefficient were negative, which is indicative of the tendency of biopolymer chains to aggregate. The rheological properties of the extracts changed from being described by a power-law model (AX40 and AX60) to being described by the full non-linear De Kee model (AX80 and AX100). Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

20 pages, 3528 KiB  
Article
Impact of a Summer Wildfire Episode on Air Quality in a Rural Area Near the Adriatic Coast
by Suzana Sopčić, Ranka Godec, Helena Prskalo and Gordana Pehnec
Fire 2025, 8(8), 299; https://doi.org/10.3390/fire8080299 - 28 Jul 2025
Viewed by 439
Abstract
This study aimed to investigate the effect of wildfire episodes on air quality in terms of particulate matter (PM) and carbonaceous compound concentration in ambient air, and to assess deviations from typical annual patterns. The sampling was performed at a rural background site [...] Read more.
This study aimed to investigate the effect of wildfire episodes on air quality in terms of particulate matter (PM) and carbonaceous compound concentration in ambient air, and to assess deviations from typical annual patterns. The sampling was performed at a rural background site near the Adriatic coast in Croatia through 2024. To better understand contributions caused by fire events, the levels of organic carbon (OC), elemental carbon (EC), black carbon (BC), pyrolytic carbon (PyrC), optical carbon (OptC), water-soluble organic carbon (WSOC), levoglucosan (LG), mannosan (MNS), and galactosan (GA) were determined in PM10 and PM2.5 fractions (particles smaller than 10 µm and 2.5 µm, respectively). The annual mean concentrations of PM10 and PM2.5 were 14 µg/m3 and 8 µg/m3, respectively. During the fire episode, the PM2.5 mass contribution to the total PM10 mass exceeded 65%. Total carbon (TC) and OC increased by a factor of 7, EC and BC by 12, PyrC by 8, and WSOC by 12. The concentration of LG reached 1.219 μg/m3 in the PM10 fractions and 0.954 μg/m3 in the PM2.5 fractions, representing a 200-fold increase during the fire episode. Meteorological data were integrated to assess atmospheric conditions during the fire episode, and the specific ratios between fire-related compounds were analyzed. Full article
Show Figures

Figure 1

14 pages, 1663 KiB  
Article
Carbon Dioxide Absorption by Polyethylene Glycol Dimethyl Ether Modified by 2-methylimidazole
by Yan Wu, Zicheng Wang, Hui Yu, Bin Ding, Ke Fei, Xueli Ma, Baoshen Xu, Yonghu Zhang, Xiaoning Fu, Bowen Ding and Nan Li
Separations 2025, 12(8), 198; https://doi.org/10.3390/separations12080198 - 28 Jul 2025
Viewed by 243
Abstract
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); [...] Read more.
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); however, its limited application range is caused by its poor absorption of CO2 at low pressures. In this work, the CO2 absorption of NHD was enhanced by combining NHD with a novel chemical absorbent 2-methylimidazole (2-mIm)-ethylene glycol (EG) solution to improve CO2 absorption. Viscosity and CO2 solubility were examined in various compositions. The CO2 solubility in the mixed solution was found to be at maximum when the mass fractions of NHD, 2-mIm, and EG were 20%, 40%, and 40%, respectively. In comparison to pure NHD, the solubility of CO2 in this mixed solution at 30 °C and 0.5 MPa increased by 161.2%, and the desorption heat was less than 30 kJ/mol. The complex solution exhibits high selectivity and favorable regeneration performance in the short term. However, it is more sensitive to moisture content. The results of this study can provide important data to support the construction of new low-energy solvent systems and the development of novel CO2 capture processes. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

16 pages, 1640 KiB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Viewed by 384
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios
by Hanbing Cao, Xinru Chen, Yunqi Luo, Zhanxiang Wu, Chengjiao Duan, Mengru Cao, Jorge L. Mazza Rodrigues, Junyu Xie and Tingliang Li
Agronomy 2025, 15(8), 1808; https://doi.org/10.3390/agronomy15081808 - 26 Jul 2025
Viewed by 296
Abstract
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in [...] Read more.
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in the region. In a long-term experimental site located in Hongtong County, Shanxi Province, soil samples were collected from the 0–100 cm depth over a nine-year period. These samples were analyzed to evaluate the impact of five treatments: no fertilization and no mulching (CK), conventional farming practices (FP), nitrogen reduction and controlled fertilization (MF), nitrogen reduction and controlled fertilization with ridge-film furrow-sowing (RF), and nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH). The average annual yield of wheat grain, SOC stock, water-soluble organic carbon (WSOC), particulate organic carbon (POC), light fraction organic carbon (LFOC), mineral-associated organic carbon (MOC), and heavy fraction organic carbon (HFOC) stocks were measured. The results revealed that the FH treatment not only significantly increased wheat grain yield but also significantly elevated the SOC stock by 23.71% at the 0–100 cm depth compared to CK. Furthermore, this treatment significantly enhanced the POC, LFOC, and MOC stocks by 106.43–292.98%, 36.93–158.73%, and 17.83–81.55%, respectively, within 0–80 cm. However, it also significantly decreased the WSOC stock by 34.32–42.81% within the same soil layer and the HFOC stock by 72.05–101.51% between the 20 and 100 cm depth. Notably, the SOC stock at the 0–100 cm depth was primarily influenced by the HFOC. Utilizing the DNDC (denitrification–decomposition) model, we found that future temperature increases are detrimental to SOC sequestration in dryland areas, whereas reduced rainfall is beneficial. The simulation results indicated that in a warmer climate, a 2 °C temperature increase would result in a SOC stock decrease of 0.77 to 1.01 t·ha−1 compared to a 1 °C increase scenario. Conversely, under conditions of reduced precipitation, a 20% rainfall reduction would lead to a SOC stock increase of 1.53% to 3.42% compared to a 10% decrease scenario. In conclusion, the nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH) treatment emerged as the most effective practice for increasing SOC sequestration in dryland areas by enhancing the HFOC stock. This treatment also fortified the SOC pool’s capacity to withstand future climate change, thereby serving as the optimal approach for concurrently enhancing production and fertility in this region. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 661 KiB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Viewed by 299
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

20 pages, 2822 KiB  
Article
Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots
by Gonzalo Galaburri, Yazmín R. Kalapuj, María Perassolo, Julián Rodríguez Talou, Patricio G. Márquez, Romina J. Glisoni, Antonia Infantes-Molina, Enrique Rodríguez-Castellón and Juan M. Lázaro-Martínez
Polymers 2025, 17(15), 2021; https://doi.org/10.3390/polym17152021 - 24 Jul 2025
Viewed by 299
Abstract
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble [...] Read more.
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble organic/inorganic molecules and reduce the fat content, respectively, followed by an alkaline treatment to remove the polysaccharides. The resulting alkaline solutions were then lyophilized and redispersed in deionized water to generate a monodispersed nanoparticulate formulation (DDGS-NP) with a hydrodynamic diameter and zeta potential of 227 ± 42 nm and −53 ± 7 mV, respectively. The formulation demonstrated good colloidal stability over time, and sterilized DDGS-NPs maintained comparable physicochemical properties. The nanoparticles were enriched in protein fractions, unsaturated fatty acids, and orthophosphate anion components from DDGS, as determined by solid-state Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), organic elemental analysis (OEA), and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The DDGS-NPs were tested at different concentrations on Rubia tinctorum hairy roots, in comparison to or in combination with methyl jasmonate (MeJ), for their capacity to induce the production of AQs. All DDGS-NP concentrations increased the production of specific AQs to 7.7 (100 mg L−1), 7.8 (200 mg L−1), and 9.3 µmol/gFW (500 mg L−1), with an extracellular AQ accumulation of 18 µM for the highest DDGS-NP concentration, in comparison with the control hairy roots (~2 µM AQ). The plant growth was not affected at any of the tested nanoparticle concentrations. Interestingly, the combination of DDGS-NPs and MeJ resulted in the highest extracellular AQ accumulation in R. tinctorum root cultures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 2108 KiB  
Article
Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections
by Luis Monrreal-Ortega, Rocío Iturriaga-Gallardo, Andrea Vilicic-Rubio, Pedro Torres, Patricio Leyton, Javier O. Morales, Tania F. Bahamondez-Canas and Daniel Moraga-Espinoza
Gels 2025, 11(8), 567; https://doi.org/10.3390/gels11080567 - 23 Jul 2025
Viewed by 312
Abstract
Chronic lung infection is the main predictor of morbidity and mortality in cystic fibrosis (CF), and current pharmacological alternatives are ineffective against Pseudomonas aeruginosa infections. We developed ciprofloxacin (CIP) for inhalation, aiming at improving its solubility through the formation of an amorphous solid [...] Read more.
Chronic lung infection is the main predictor of morbidity and mortality in cystic fibrosis (CF), and current pharmacological alternatives are ineffective against Pseudomonas aeruginosa infections. We developed ciprofloxacin (CIP) for inhalation, aiming at improving its solubility through the formation of an amorphous solid dispersion (ASD) using gelatin (GA). CIP and GA were dissolved in varying ratios and then spray-dried, obtaining CIP-GA microspheres in a single step. The dissolution rate, size distribution, morphology, and aerodynamic properties of CIP-GA microspheres were studied, as well as their antimicrobial activity on P. aeruginosa biofilms. Microspheres formulated with a higher GA ratio increased the dissolution of CIP ten-fold at 6 h compared to gelatin-free CIP. Formulations with 75% GA or more could form ASDs and improve CIP’s dissolution rate. CIP-GA microspheres outperformed CIP in eradicating P. aeruginosa biofilm at 24 h. The spray-drying process produced CIP-GA microspheres with good aerodynamic properties, as indicated by a fine particle fraction (FPF) of 67%, a D50 of 3.52 μm, and encapsulation efficiencies above 70%. Overall, this study demonstrates the potential of gelatin to enhance the solubility of poorly soluble drugs by forming ASDs. As an FDA-approved excipient for lung delivery, these findings are valuable for particle engineering and facilitating the rapid translation of technologies to the market. Full article
Show Figures

Graphical abstract

12 pages, 921 KiB  
Article
Mixed Ensiling Increases Degradation Without Altering Attached Microbiota Through In Situ Ruminal Incubation Technique
by Xuanxuan Pu, Min Zhang, Jianjun Zhang, Xiumin Zhang, Shizhe Zhang, Bo Lin, Tianwei Wang, Zhiliang Tan and Min Wang
Animals 2025, 15(14), 2131; https://doi.org/10.3390/ani15142131 - 18 Jul 2025
Viewed by 216
Abstract
Mixed silage can disrupt the girder structure of rape straw, and thus facilitate ruminal degradation. Further investigation is warranted to validate this observation in vivo. The objective of this study was to investigate the degradation kinetics and bacterial colonization of mixed silage during [...] Read more.
Mixed silage can disrupt the girder structure of rape straw, and thus facilitate ruminal degradation. Further investigation is warranted to validate this observation in vivo. The objective of this study was to investigate the degradation kinetics and bacterial colonization of mixed silage during digestion using an in situ ruminal incubation technique. The experiment comprised two treatments: a mixture of rape straw and corn silage (control), and a mixed silage treatment of rape straw and whole crop corn (mixed silage). Three ruminally cannulated Holstein bulls were employed. Substrates were incubated for varying durations (4, 12, 24, 48, 72, 96, 120 and 216 h) to assess substrate degradation kinetics. Bacterial colonization were analyzed after 4- and 48-h incubation time. Mixed ensiling disrupted the fiber structure of rape straw, and thus had lower fiber content compared to the control, as NDF and ADF content ‌decreased by 55 g/kg (678 vs. 623 g/kg) and 27 g/kg (440 vs. 413 g/kg), respectively. Compared to the control group, ruminal DM disappearance of mixed silage significantly (p ≤ 0.05) increased from 315 to 366 g/kg (+16.2%) at an incubation time of 4 h, 552 to 638 g/kg (+15.6%) at 120 h, and 563 to 651 g/kg (+15.6%) at 216 h. Similarly, compared to the control group, NDF disappearance of mixed silage significantly (p ≤ 0.05) rose from 112 to 201 g/kg (+79.5%) at 4 h, 405 to 517 g/kg (+27.7%) at 120 h, and 429 to 532 g/kg (+24.0%) at 216 h. Compared to the control group, soluble and washout nutrient fractions (a) of DM or NDF fraction in mixed silage significantly (p ≤ 0.05) rose from 289 to 340 g/kg (+17.6%), potentially degradable fractions (b) of NDF increased from 310 to 370 g/kg (+19.4%), and the undegraded fraction of NDF (μNDF) decreased from 582 to 471 g/kg (−19.1%). Incubation time, apart from in the mixed ensiling treatment, altered the bacterial community. The study highlights that higher total potentially degradable fractions account for enhanced ruminal substrate degradation of mixed silage. Full article
Show Figures

Figure 1

21 pages, 2186 KiB  
Article
Impact of Interactions Between Zn(II) and Selenites in an Aquatic Environment on the Accumulation of Se and Zn in a Fungal Cell
by Małgorzata Kałucka, Piotr Podsadni, Agnieszka Szczepańska, Eliza Malinowska, Anna Błażewicz and Jadwiga Turło
Molecules 2025, 30(14), 3015; https://doi.org/10.3390/molecules30143015 - 18 Jul 2025
Viewed by 284
Abstract
Our attempts to obtain a new mushroom-derived immunostimulatory preparation containing organically bound selenium and zinc have focused on the interactions between selenites and zinc(II) in liquid culture media and their effects on transport into the mushroom cell. Previously, we found that, even if [...] Read more.
Our attempts to obtain a new mushroom-derived immunostimulatory preparation containing organically bound selenium and zinc have focused on the interactions between selenites and zinc(II) in liquid culture media and their effects on transport into the mushroom cell. Previously, we found that, even if Zn2+ and SeO32− concentrations in the liquid medium are not high enough to precipitate ZnSeO3, the accumulation of selenium in the presence of zinc, and zinc in the presence of selenites, significantly dropped. This effect was more dependent on the molar ratio of ions in the medium than on the concentration values. We hypothesized that the formation of zinc–selenite soluble complexes with charges depending on the ion concentration ratio in the aquatic environment affects the first stage of ion transport into the fungal cell—biosorption. To verify this, we found the zinc–selenite molar ratio at which the complexes of the highest stability are formed, examined the influence of the molar ratio of ions in the medium on the concentration of Zn and Se in the mushroom cell wall, and investigated the correlation between the concentration of selenites not bound in complex compounds and the Se concentration in the cell wall. The results indicate that the molar fraction of Zn(II) in a liquid medium in the range of 0.5–0.6 promotes the formation of the most stable complexes. At the same time, it significantly reduces the percentage of free selenites in the medium and most strongly inhibits the biosorption process of both zinc and selenium. Full article
Show Figures

Figure 1

19 pages, 3119 KiB  
Article
Aquathermolytic Upgrading of Zarafshanian Extra Heavy Oil Using Ammonium Alum
by Amirjon Ali Akhunov, Firdavs Aliev, Nurali Mukhamadiev, Oscar Facknwie Kahwir, Alexey Dengaev, Mohammed Yasin Majeed, Mustafa Esmaeel, Abdulvahhab Al-Qaz, Oybek Mirzaev and Alexey Vakhin
Molecules 2025, 30(14), 3013; https://doi.org/10.3390/molecules30143013 - 18 Jul 2025
Viewed by 334
Abstract
The growing global demand for energy necessitates the efficient utilization of unconventional petroleum resources, particularly heavy oil reserves. However, extracting, transporting, and processing these resources remain challenging due to their low mobility, low API gravity, and significant concentrations of resins, asphaltenes, heteroatoms, and [...] Read more.
The growing global demand for energy necessitates the efficient utilization of unconventional petroleum resources, particularly heavy oil reserves. However, extracting, transporting, and processing these resources remain challenging due to their low mobility, low API gravity, and significant concentrations of resins, asphaltenes, heteroatoms, and metals. In recent years, various in situ upgrading techniques have been explored to enhance heavy oil quality, with catalytic aquathermolysis emerging as a promising approach. The effectiveness of this process largely depends on the development of cost-effective, environmentally friendly catalysts. This study investigates the upgrading performance of water-soluble ammonium alum, (NH4)Al(SO4)2·12H2O, for an extra-heavy oil sample from the Zarafshan Depression, located along the Tajikistan–Uzbekistan border. Comprehensive analyses demonstrate that the catalyst facilitates the breakdown of heavy oil components, particularly resins and asphaltenes, into lighter fractions. As a result, oil viscosity was significantly reduced by 94%, while sulfur content decreased from 896 ppm to 312 ppm. Furthermore, thermogravimetric (TG-DTG) analysis, coupled with Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD), revealed that the thermal decomposition of ammonium alum produces catalytically active Al2O3 nanoparticles. These findings suggest that ammonium alum is a highly effective water-soluble pre-catalyst for hydrothermal upgrading, offering a viable and sustainable solution for the development of extra-heavy oil fields. Full article
Show Figures

Figure 1

5 pages, 665 KiB  
Proceeding Paper
Opportunities of Coupling Hydrothermal Liquefaction with Wet Oxidation: Significance of Appropriate Thermodynamic Model Selection in Process Modeling
by Arif Hussain, Bertram Thoning Hvass Søgaard and Konstantinos Anastasakis
Proceedings 2025, 121(1), 7; https://doi.org/10.3390/proceedings2025121007 - 17 Jul 2025
Viewed by 183
Abstract
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic [...] Read more.
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic oxidation reactions, leading to a potential integrated HTL-WO autothermal process. However, the harsh process conditions employed fail to describe oxygen solubility accurately, leading to major deviations in predicted COD reduction, heat generation, vapor fraction, and final design. To accurately capture oxygen solubility at elevated temperatures and pressures, experimental oxygen solubility data were regressed using activity coefficient models. This yielded improved oxygen solubility predictions at 280–350 °C, more realistic vapor fractions and heat outputs, and COD reduction close to experimental values. Full article
Show Figures

Figure 1

15 pages, 1907 KiB  
Article
Plasma Soluble ST2 as a Prognostic Biomarker for Cardiovascular Events and Mortality in COVID-19 Patients
by Yongcui Yan, Yan Zhuang, Huihui Li and Dao Wen Wang
J. Cardiovasc. Dev. Dis. 2025, 12(7), 273; https://doi.org/10.3390/jcdd12070273 - 17 Jul 2025
Viewed by 329
Abstract
Background: Coronavirus disease 2019 (COVID-19) is frequently complicated by cardiovascular involvement. Soluble growth stimulation-expressed gene 2 (sST2) is a promising cardiovascular biomarker, but its prognostic value in COVID-19 remains unclear. Methods: This retrospective cohort study included 314 hospitalized COVID-19 patients classified into mild/moderate [...] Read more.
Background: Coronavirus disease 2019 (COVID-19) is frequently complicated by cardiovascular involvement. Soluble growth stimulation-expressed gene 2 (sST2) is a promising cardiovascular biomarker, but its prognostic value in COVID-19 remains unclear. Methods: This retrospective cohort study included 314 hospitalized COVID-19 patients classified into mild/moderate (n = 168) and severe/critical (n = 146). Plasma sST2 were measured using an enzyme-linked immunosorbent assay. Correlation analyses evaluated associations between sST2 and clinical parameters. Cox regression assessed the independent predictive value for cardiovascular events and all-cause mortality. Results: sST2 levels were significantly higher in severe/critical patients (16.877 ng/mL) than in mild/moderate cases (6.189 ng/mL) and healthy controls (4.003 ng/mL). sST2 positively correlated with cardiac injury markers (cTnI, CK-Mb, NT-proBNP), inflammatory indices (IL-1β, hsCRP), D-dimer, and inversely correlated with a left ventricular ejection fraction (r = −0.86). Elevated sST2 independently predicted cardiovascular events (HR = 2.972) and mortality (HR = 4.681). The Kaplan–Meier survival analysis demonstrated higher cardiovascular event rates and lower survival probabilities in patients with elevated sST2. The ROC curve indicated sST2 outperformed cTnI and NT-proBNP in predicting cardiovascular events (AUC = 0.898) and mortality (AUC = 0.871). Conclusion: Elevated sST2 is associated with myocardial injury, inflammation, and poor prognosis in COVID-19, supporting its value for risk stratification. Full article
Show Figures

Graphical abstract

16 pages, 1978 KiB  
Article
Comparative Analysis of Anti-Inflammatory Flavones in Chrysanthemum indicum Capitula Using Primary Cultured Rat Hepatocytes
by Keita Minamisaka, Airi Fujii, Cheng Li, Yuto Nishidono, Saki Shirako, Teruhisa Kawamura, Yukinobu Ikeya and Mikio Nishizawa
Molecules 2025, 30(14), 2996; https://doi.org/10.3390/molecules30142996 - 16 Jul 2025
Viewed by 377
Abstract
The capitula of Chrysanthemum indicum Linné or C. morifolium Ramatuelle (Kikuka in Japanese) are included in several formulae of Kampo medicines (traditional Japanese medicines), such as Chotosan, which is used for headache and dizziness. Luteolin, the principal constituent of C. indicum [...] Read more.
The capitula of Chrysanthemum indicum Linné or C. morifolium Ramatuelle (Kikuka in Japanese) are included in several formulae of Kampo medicines (traditional Japanese medicines), such as Chotosan, which is used for headache and dizziness. Luteolin, the principal constituent of C. indicum, has antioxidant and anti-inflammatory activities. However, the effects of other flavonoids on this crude drug have not yet been thoroughly investigated. To evaluate and compare anti-inflammatory effects, we used primary cultured rat hepatocytes, which produce proinflammatory mediators, such as nitric oxide (NO) and proinflammatory cytokines, in response to interleukin (IL)-1β. Eight derivatives of 5,7-dihydroxyflavone were purified and identified in the ethyl acetate-soluble fraction of a C. indicum capitulum extract: luteolin (Compound 1), apigenin (2), diosmetin (3), 5,7-dihydroxy-3′,4′,5′-trimethoxyflavone (4), acacetin (5), eupatilin (6), jaceosidin (7), and 6-methoxytricin (8). Luteolin is the most abundant compound in this fraction. All compounds significantly suppressed NO production in hepatocytes, with apigenin and acacetin showing the greatest efficacy. The comparison of the IC50 values of the inhibition of NO production suggests that substitutions by hydroxyl and methoxy groups at the C-3′ and C-4′ positions of 5,7-dihydroxyflavone may be at least essential for the suppression of NO production. In hepatocytes, acacetin and luteolin decreased the levels of mRNAs encoding inducible nitric oxide synthase (iNOS), proinflammatory cytokines, including tumor necrosis factor, IL-6, and type 1 IL-1 receptor, which regulates inflammatory responses. Based on the comparison of the IC50 values and the content, luteolin, jaceosidin, and diosmetin may be responsible for the anti-inflammatory effects of C. indicum capitula. Full article
Show Figures

Graphical abstract

27 pages, 6079 KiB  
Article
Bioactive Cyclopeptide Alkaloids and Ceanothane Triterpenoids from Ziziphus mauritiana Roots: Antiplasmodial Activity, UHPLC-MS/MS Molecular Networking, ADMET Profiling, and Target Prediction
by Sylvestre Saidou Tsila, Mc Jesus Kinyok, Joseph Eric Mbasso Tameko, Bel Youssouf G. Mountessou, Kevine Johanne Jumeta Dongmo, Jean Koffi Garba, Noella Molisa Efange, Lawrence Ayong, Yannick Stéphane Fotsing Fongang, Jean Jules Kezetas Bankeu, Norbert Sewald and Bruno Ndjakou Lenta
Molecules 2025, 30(14), 2958; https://doi.org/10.3390/molecules30142958 - 14 Jul 2025
Viewed by 395
Abstract
Malaria continues to pose a significant global health burden, driving the search for novel antimalarial agents to address emerging drug resistance. This study evaluated the antiplasmodial potential of Ziziphus mauritiana Lam. (Rhamnaceae) roots through an integrated phytochemical and pharmacological approach. The ethanol extract, [...] Read more.
Malaria continues to pose a significant global health burden, driving the search for novel antimalarial agents to address emerging drug resistance. This study evaluated the antiplasmodial potential of Ziziphus mauritiana Lam. (Rhamnaceae) roots through an integrated phytochemical and pharmacological approach. The ethanol extract, along with its derived fractions, demonstrated potent in vitro activity against the chloroquine-sensitive Plasmodium falciparum strain 3D7 (Pf3D7), with the ethyl acetate-soluble (IC50 = 11.35 µg/mL) and alkaloid-rich (IC50 = 4.75 µg/mL) fractions showing particularly strong inhibition. UHPLC-DAD-ESI-QTOF-MS/MS-based molecular networking enabled the identification of thirty-two secondary metabolites (132), comprising twenty-five cyclopeptide alkaloids (CPAs), five of which had not yet been described (11, 20, 22, 23, 25), and seven known triterpenoids. Bioactivity-guided isolation yielded thirteen purified compounds (5, 6, 14, 2630, 3236), with betulinic acid (30; IC50 = 19.0 µM) and zizyberenalic acid (32; IC50 = 20.45 µM) exhibiting the most potent antiplasmodial effects. Computational ADMET analysis identified mauritine F (4), hemisine A (10), and nummularine R (21) as particularly promising lead compounds, demonstrating favourable pharmacokinetic properties, low toxicity profiles, and predicted activity against both family A G protein-coupled receptors and evolutionarily distinct Plasmodium protein kinases. Quantitative analysis revealed exceptionally high concentrations of key bioactive constituents, notably zizyberenalic acid (24.3 mg/g) in the root extracts. These findings provide robust scientific validation for the traditional use of Z. mauritiana in malaria treatment while identifying specific cyclopeptide alkaloids and triterpenoids as valuable scaffolds for antimalarial drug development. The study highlights the effectiveness of combining advanced metabolomics, bioassay-guided fractionation, and computational pharmacology in natural product-based drug discovery against resistant malaria strains. Full article
Show Figures

Figure 1

Back to TopTop