Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (416)

Search Parameters:
Keywords = solid sorbents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 238
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

36 pages, 7620 KiB  
Review
Hydrogen Energy Storage via Carbon-Based Materials: From Traditional Sorbents to Emerging Architecture Engineering and AI-Driven Optimization
by Han Fu, Amin Mojiri, Junli Wang and Zhe Zhao
Energies 2025, 18(15), 3958; https://doi.org/10.3390/en18153958 - 24 Jul 2025
Viewed by 491
Abstract
Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid [...] Read more.
Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid hydrogen storage, face limitations, including high energy consumption, elevated cost, weight, and safety concerns. In contrast, solid-state hydrogen storage using carbon-based adsorbents has gained growing attention due to their chemical tunability, low cost, and potential for modular integration into energy systems. This review provides a comprehensive evaluation of hydrogen storage using carbon-based materials, covering fundamental adsorption mechanisms, classical materials, emerging architectures, and recent advances in computationally AI-guided material design. We first discuss the physicochemical principles driving hydrogen physisorption, chemisorption, Kubas interaction, and spillover effects on carbon surfaces. Classical adsorbents, such as activated carbon, carbon nanotubes, graphene, carbon dots, and biochar, are evaluated in terms of pore structure, dopant effects, and uptake capacity. The review then highlights recent progress in advanced carbon architectures, such as MXenes, three-dimensional architectures, and 3D-printed carbon platforms, with emphasis on their gravimetric and volumetric performance under practical conditions. Importantly, this review introduces a forward-looking perspective on the application of artificial intelligence and machine learning tools for data-driven sorbent design. These methods enable high-throughput screening of materials, prediction of performance metrics, and identification of structure–property relationships. By combining experimental insights with computational advances, carbon-based hydrogen storage platforms are expected to play a pivotal role in the next generation of energy storage systems. The paper concludes with a discussion on remaining challenges, utilization scenarios, and the need for interdisciplinary efforts to realize practical applications. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

11 pages, 1012 KiB  
Article
Quantification of Ultra-Trace Lead in Water After Preconcentration on Nano-Titanium Oxide Using the Slurry Sampling ETAAS Method
by Lucia Nemček and Ingrid Hagarová
Toxics 2025, 13(8), 610; https://doi.org/10.3390/toxics13080610 - 22 Jul 2025
Viewed by 276
Abstract
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental [...] Read more.
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental parameters affecting the DMSPE process, including pH, ionic strength, sorbent dosage, and preconcentration factor, were optimized. The optimized method demonstrated a preconcentration factor of 20, a relative standard deviation below 4.5%, and a detection limit of 0.11 µg/L. The procedure was validated using certified reference material (CRM TM-25.5) and applied to real water samples from a lake, a residential well, and industrial wastewater. Satisfactory recoveries (89–103%) confirmed the reliability of the method for the determination of low lead concentrations in complex matrices. Full article
Show Figures

Graphical abstract

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 415
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

42 pages, 6369 KiB  
Review
Review of Post-Combustion Carbon Capture in Europe: Current Technologies and Future Strategies for Largest CO2-Emitting Industries
by Luísa Marques, Miguel Monteiro, Charles Cenci, Maria Mateus and José Condeço
Energies 2025, 18(13), 3539; https://doi.org/10.3390/en18133539 - 4 Jul 2025
Viewed by 1503
Abstract
Heavy industry is a significant contributor to CO2 global emissions, accounting for approximately 25% of the total. In Europe, the continent’s largest emitting industries, including steel, cement, and power generation, face significant decarbonization challenges due to multiple interrelated factors. Heavy industry must [...] Read more.
Heavy industry is a significant contributor to CO2 global emissions, accounting for approximately 25% of the total. In Europe, the continent’s largest emitting industries, including steel, cement, and power generation, face significant decarbonization challenges due to multiple interrelated factors. Heavy industry must achieve carbon neutrality by 2050, as outlined in the 13th United Nations Sustainable Goals. One strategy to achieve this goal involves Carbon Capture Utilization and Storage (CCUS) with post-combustion carbon capture (PCC) technologies playing a critical role. Key methods include absorption, which uses chemical solvents like amines; adsorption, employing solid sorbents; cyclic CO2 capture, such as calcium looping methods; cryogenic separation, which involves chilling flue gas to liquefy CO2; and membrane separation, leveraging polymeric materials. Each technology offers unique advantages and challenges, necessitating hybrid approaches and policy support for widespread adoption. In this sense, this review provides a comprehensive overview of the existing European pilot and demonstration units and projects, funded by the EU across several industries. It specifically focuses on PCC. This study examines 111 industrial facilities across Europe, documenting the PCC technologies deployed at plants of varying capacities, geographic locations, and operational stakeholders. The review further evaluates the techno-economic performance of these systems, assessing their potential to advance carbon neutrality in heavy industries. Full article
(This article belongs to the Special Issue Process Optimization of Carbon Capture Technology)
Show Figures

Figure 1

13 pages, 988 KiB  
Article
Extraction, Isolation, and Purification of Furanocoumarins from Invasive Heracleum sosnowskyi
by Vida Vickackaite, Karina Pilaityte and Vilius Poskus
Separations 2025, 12(7), 175; https://doi.org/10.3390/separations12070175 - 1 Jul 2025
Viewed by 374
Abstract
Heracleum sosnowskyi Manden. (Sosnowsky’s hogweed), originally introduced to Central and Eastern Europe as a fodder crop, has become a highly invasive species due to its ecological adaptability, high reproductive capacity, and efficient seed dispersal. Despite its negative impact on native flora and its [...] Read more.
Heracleum sosnowskyi Manden. (Sosnowsky’s hogweed), originally introduced to Central and Eastern Europe as a fodder crop, has become a highly invasive species due to its ecological adaptability, high reproductive capacity, and efficient seed dispersal. Despite its negative impact on native flora and its health risks to humans and animals, the species also represents a valuable source of biologically active compounds. In this study, we demonstrate that the leaves of H. sosnowskyi contain substantial amounts of furanocoumarins—phototoxic compounds with notable therapeutic potential, particularly as natural photosensitizers in anticancer therapies. To extract furanocoumarins from H. sosnowskyi, microwave-assisted extraction (MAE) was employed, with optimization of key parameters including extraction solvent (hexane), temperature (70 °C), extraction time (10 min), and solvent-to-solid ratio (20:1). Four major compounds—angelicin (2.3 mg/g), psoralen (0.15 mg/g), methoxsalen (0.76 mg/g), and bergapten (3.14 mg/g)—were identified and quantified using gas chromatography–mass spectrometry and gas chromatography with flame ionization detection. To purify the extract and selectively isolate the target compounds, a solid-phase extraction method was developed using a Strata Eco-Screen sorbent and stepwise elution with a hexane–acetone mixture. As a result, pure angelicin, pure methoxsalen, and various mixtures of the furanocoumarins were obtained. These findings highlight the potential of H. sosnowskyi as a sustainable source of furanocoumarins for pharmaceutical applications. Full article
Show Figures

Figure 1

15 pages, 676 KiB  
Article
Development of an HPLC-FLD Method for Estradiol and Metabolites: Application of Solid-Phase Microextraction
by Anna Kaliszewska, Piotr Struczyński, Tomasz Bączek and Lucyna Konieczna
Int. J. Mol. Sci. 2025, 26(13), 6194; https://doi.org/10.3390/ijms26136194 - 27 Jun 2025
Viewed by 531
Abstract
Estrogens are potent hormones involved in numerous physiological and pathological processes. Their typically low concentrations in biological samples necessitate highly sensitive analytical methods for accurate quantification. This study presents a high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method for quantifying estradiol and its [...] Read more.
Estrogens are potent hormones involved in numerous physiological and pathological processes. Their typically low concentrations in biological samples necessitate highly sensitive analytical methods for accurate quantification. This study presents a high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method for quantifying estradiol and its metabolites in blood serum and saliva. Analytes were extracted using solid-phase microextraction with a divinylbenzene sorbent and methanol as the desorption agent. FLD was performed after the derivatization of the analytes with dansyl chloride. Separation was achieved on a Poroshell 120 EC-C18 column (2.1 × 100 mm, 2.7 µm) at 50 °C using water with 0.1% formic acid and methanol as the mobile phase at 0.5 mL/min. A gradient elution increased the methanol concentration from 76% to 100% over 0–8 min, then it returned to 76% at 8.1 min and was held until 11 min had passed. Detection was at λEX 350 nm and λEM 530 nm. Good linearity was observed for estradiol, 2-hydroxyestradiol, and 2-methoxyestradiol (10–300 ng/mL; R2 = 0.9893–0.9995). The LOQ for all analytes was 10 ng/mL. Solid-phase microextraction (SPME) offered advantages over liquid–liquid extraction. The method is suitable for quantifying estrogens in the 10 ng/mL–1 µg/mL range. Full article
Show Figures

Figure 1

29 pages, 1727 KiB  
Review
Technology–Economy–Policy: Biochar in the Low-Carbon Energy Transition—A Review
by Aneta Saletnik and Bogdan Saletnik
Appl. Sci. 2025, 15(11), 5882; https://doi.org/10.3390/app15115882 - 23 May 2025
Viewed by 768
Abstract
Biochar can be regarded as a high-energy type of solid fuel produced via pyrolysis, which is the thermal modification of biomass of plant or animal origins. The biggest advantage of biomass relative to classic fossil fuels is the significant reduction in carbon dioxide [...] Read more.
Biochar can be regarded as a high-energy type of solid fuel produced via pyrolysis, which is the thermal modification of biomass of plant or animal origins. The biggest advantage of biomass relative to classic fossil fuels is the significant reduction in carbon dioxide emissions in the combustion process. Biochar is also considered a natural soil additive for improving soil parameters, increasing crop yields, remediating pollutants, and reducing emissions of methane, among other things. Over the past few years, the range of biochar applications has expanded significantly, as reflected in the number of scientific articles on the topic. Pyrolysates are used in the production of cosmetics, pharmaceuticals, building materials, animal feed, sorbents, and water filters, as well as in the field of modern energy storage and conversion, such as supercapacitors. The key importance of this material is attributed to its ability to sequestrate carbon and reduce greenhouse gas emissions. The relentless growth of the global economy and the high demand for energy generate large amounts of CO2 in the atmosphere. Solving the carbon balance problem and the low-carbon energy transition toward carbon neutrality is very challenging. Biochar therefore appears to be an excellent tool for creating systems that can play an important role in mitigating climate change. The purpose of this review is to consolidate the existing knowledge and assess the potential of biochar in carbon neutrality based on the application sector. Full article
(This article belongs to the Special Issue The Pyrolysis of Biomass: Reaction Mechanism and Product Application)
Show Figures

Figure 1

12 pages, 826 KiB  
Article
Magnetic Solid-Phase Extraction Based on C18 Nanoparticles for the Determination of Pesticides in Aquaculture Water Samples
by Margarita Kapsi, Vasileios Sakkas, Vasiliki Boti and Triantafyllos Albanis
Molecules 2025, 30(9), 2076; https://doi.org/10.3390/molecules30092076 - 7 May 2025
Viewed by 592
Abstract
In this study, C18-functionalized magnetic silica nanoparticles (Fe3O4@SiO2@C18) were used as adsorbents for the magnetic solid-phase extraction (MSPE) of organic contaminants commonly applied to aquaculture water (organic booster biocides, herbicides, and insecticides) followed by Gas Chromatography coupled [...] Read more.
In this study, C18-functionalized magnetic silica nanoparticles (Fe3O4@SiO2@C18) were used as adsorbents for the magnetic solid-phase extraction (MSPE) of organic contaminants commonly applied to aquaculture water (organic booster biocides, herbicides, and insecticides) followed by Gas Chromatography coupled to Mass Spectrometry (GC–MS). The extraction conditions and efficiency of the nanoparticles for the determination of ten pesticides (atrazine, ethoxyquine, chlorothalonil, chlorpyriphos methyl, methyl parathion, chlorpyriphos, resmethrin, λ-cyhalothrin, permethrin, and irgarol) were thoroughly investigated. Several experimental parameters affecting the extraction efficiency such as the amount of sorbent, extraction time, and elution time were optimized by employing experimental designs as response surface methodology. Validation experiments showed that the average recoveries of target analytes were in the range of 60% to 99%. The optimized method exhibited good linearity (R2 > 0.9901) and satisfactory precision (Relative Standard deviations, RSDs < 15%). The method detection limits ranged between 1.9 ng L−1 and 62 ng L−1. Finally, the MSPE method was successfully applied to aquaculture water samples collected from the Thesprotia region (N.W. Greece), Thermaikos Gulf (N. Greece) and Butrint (S.W. Albania). Full article
(This article belongs to the Special Issue Green Chemistry Approaches to Analysis and Environmental Remediation)
Show Figures

Figure 1

33 pages, 24011 KiB  
Article
Reservoir and Riverine Sources of Cyanotoxins in Oregon’s Cascade Range Rivers Tapped for Drinking Water Supply
by Kurt D. Carpenter, Barry H. Rosen, David Donahue, Kari Duncan, Brandin Hilbrandt, Chris Lewis, Kim Swan, Tracy Triplett and Elijah Welch
Phycology 2025, 5(2), 16; https://doi.org/10.3390/phycology5020016 - 30 Apr 2025
Viewed by 1882
Abstract
Reservoirs and downstream rivers draining Oregon’s Cascade Range provide critical water supplies for over 1.5 million residents in dozens of communities. These waters also support planktonic and benthic cyanobacteria that produce cyanotoxins that may degrade water quality for drinking, recreation, aquatic life, and [...] Read more.
Reservoirs and downstream rivers draining Oregon’s Cascade Range provide critical water supplies for over 1.5 million residents in dozens of communities. These waters also support planktonic and benthic cyanobacteria that produce cyanotoxins that may degrade water quality for drinking, recreation, aquatic life, and other beneficial uses. This 2016–2020 survey examined the sources and transport of four cyanotoxins—microcystins, cylindrospermopsins, anatoxins, and saxitoxins—in six river systems feeding 18 drinking water treatment plants (DWTPs) in northwestern Oregon. Benthic cyanobacteria, plankton net tows, and (or) Solid-Phase Adsorption Toxin Tracking (SPATT) samples were collected from 65 sites, including tributaries, reservoirs, main stems, and sites at or upstream from DWTPs. Concentrated extracts (320 samples) were analyzed with enzyme-linked immuno-sorbent assays (ELISA), resulting in >90% detection. Benthic cyanobacteria (n = 80) mostly Nostoc, Phormidium, Microcoleus, and Oscillatoria, yielded microcystins (76% detection), cylindrospermopsins (41%), anatoxins (45%), and saxitoxins (39%). Plankton net tow samples from tributaries and main stems (n = 94) contained saxitoxins (84%), microcystins (77%), anatoxins (25%), and cylindrospermopsins (22%), revealing their transport in seston. SPATT sampler extracts (n = 146) yielded anatoxins (81%), microcystins (66%), saxitoxins (37%), and cylindrospermopsins (32%), indicating their presence dissolved in the water. Reservoir plankton net tow samples (n = 15), most often containing Dolichospermum, yielded microcystins (87%), cylindrospermopsins (73%), and anatoxins (47%), but no saxitoxins. The high detection frequencies of cyanotoxins at sites upstream from DWTP intakes, and at sites popular for recreation, where salmon and steelhead continue to exist, highlight the need for additional study on these cyanobacteria and the factors that promote production of cyanotoxins to minimize effects on humans, aquatic ecosystems, and economies. Full article
Show Figures

Figure 1

18 pages, 4306 KiB  
Article
Development of an Optimized Two-Step Solid-Phase Extraction Method for Urinary Nucleic Acid Adductomics
by Alexandra Keidel, Jazmine Virzi, Laura Deloso, Carolina Möller, Dale Chaput, Theresa Evans-Nguyen, Yuan-Jhe Chang, Mu-Rong Chao, Chiung-Wen Hu and Marcus S. Cooke
Biomolecules 2025, 15(4), 594; https://doi.org/10.3390/biom15040594 - 17 Apr 2025
Viewed by 702
Abstract
The exposome represents the totality of endogenous and exogenous exposures across the lifespan. These exposures may result in DNA and RNA damage, in the form of adducts, which is a key factor in the etiology of a variety of human diseases, including cancer. [...] Read more.
The exposome represents the totality of endogenous and exogenous exposures across the lifespan. These exposures may result in DNA and RNA damage, in the form of adducts, which is a key factor in the etiology of a variety of human diseases, including cancer. It is understood that, following their repair, nucleic acid adducts are excreted into the urine, making urine an ideal, non-invasive matrix in which to study the whole-body nucleic acid adductome (the totality of nucleic acid adducts). However, the measurement of these adducts in urine presents challenges due to matrix interference and the variety of the chemical nature across the spectrum of nucleic adducts making their “one-size-fits-all” extraction by solid-phase extraction (SPE) challenging. Here, different types of SPE sorbents, and their combination, were evaluated for maximal recovery of nucleic acid adducts from urine. The SPE column combination of ENV+ coupled with PHE provided the best retention of a cocktail of 20 nucleic acid adduct standards. An untargeted high resolution mass spectrometry approach incorporating FeatureHunter 1.3 software was used to demonstrate the ability of this SPE method to successfully recover endogenous urinary nucleic acid adducts in addition to those represented by the cocktail of isotopically labeled standards. Using our approach, FeatureHunter 1.3 recognized approximately 500 adducts in both mouse and human urine samples. Isotopically labeled standards were used to identify a selection of the endogenous adducts and begin the characterization of the urinary nucleic acid adductome of mice and humans. Full article
(This article belongs to the Special Issue Recent Advances in Adduct Science)
Show Figures

Figure 1

21 pages, 5728 KiB  
Article
Hydroxyapatite-Based Adsorbent Materials from Aquaculture Waste for Remediation of Metal-Contaminated Waters: Investigation of Cadmium Removal
by Mirco Cescon, Francesco Chiefa, Tatiana Chenet, Maura Mancinelli, Claudia Stevanin, Annalisa Martucci and Luisa Pasti
Clean Technol. 2025, 7(2), 34; https://doi.org/10.3390/cleantechnol7020034 - 14 Apr 2025
Viewed by 1592
Abstract
Adsorption represents an effective strategy for water remediation applications, particularly when utilising eco-friendly materials in a circular economy framework. This approach offers significant advantages, including low cost, material availability, ease of operation, and high efficiency. Herein, the performance of cadmium ion adsorption onto [...] Read more.
Adsorption represents an effective strategy for water remediation applications, particularly when utilising eco-friendly materials in a circular economy framework. This approach offers significant advantages, including low cost, material availability, ease of operation, and high efficiency. Herein, the performance of cadmium ion adsorption onto hydroxyapatites, derived through a calcination-free process from shells of two mollusc species, Queen Scallop (Aequipecten opercularis) and Pacific Oyster (Magallana gigas), is examined. The phase and morphology of the synthesised adsorbents were investigated. The results showed that hydroxyapatites obtained from mollusc shells are characterised by high efficiency regarding cadmium removal from water, exhibiting rapid kinetics with equilibrium achieved within 5 min and high adsorption capacities up to 334.9 mg g−1, much higher than many waste-based adsorbents reported in literature. Structural investigation revealed the presence of Cadmium Hydrogen Phosphate Hydrate in the hydroxyapatite derived from oyster shells loaded with Cd, indicating the formation of a solid solution. This finding suggests that the material not only has the capability to decontaminate but also to immobilise and store Cd. Overall, the results indicate that hydroxyapatites prepared via a synthetic route in mild conditions from waste shells are an economical and efficient sorbent for heavy metals encountered in wastewater. Full article
Show Figures

Figure 1

23 pages, 6192 KiB  
Article
Application of Rice Husk-Derived SBA-15 Bifunctionalized with C18 and Sulfonic Groups for Solid-Phase Extraction of Tropane, Pyrrolizidine, and Opium Alkaloids in Gluten-Free Bread
by Fernando L. Vera-Baquero, Judith Gañán, Natalia Casado, Damián Pérez-Quintanilla, Sonia Morante-Zarcero and Isabel Sierra
Foods 2025, 14(7), 1156; https://doi.org/10.3390/foods14071156 - 26 Mar 2025
Viewed by 666
Abstract
Rice husk (RH), a globally abundant agri-food waste, presents a promising renewable silicon source for producing SBA-15 mesoporous silica-based materials. This study aimed to synthesize and bifunctionalize SBA-15 using RH as a silica precursor, incorporating sulfonic and octadecyl groups to create a mixed-mode [...] Read more.
Rice husk (RH), a globally abundant agri-food waste, presents a promising renewable silicon source for producing SBA-15 mesoporous silica-based materials. This study aimed to synthesize and bifunctionalize SBA-15 using RH as a silica precursor, incorporating sulfonic and octadecyl groups to create a mixed-mode sorbent, RH-SBA-15-SO3H-C18, with reversed-phase and cation exchange properties. The material’s structure and properties were characterized using advanced techniques, including X-ray diffraction, infrared spectroscopy, N2 adsorption–desorption isotherms, nuclear magnetic resonance, and electron microscopy. These analyses confirmed an ordered mesoporous structure with a high specific surface area of 238 m2/g, pore volume of 0.45 cm3/g, pore diameter of 32 Å, and uniform pore distribution, highlighting its exceptional textural qualities. This sorbent was effectively utilized in solid-phase extraction to purify 29 alkaloids from three families—tropane, pyrrolizidine, and opium—followed by an analysis using ultra-high performance liquid chromatography coupled to ion-trap tandem mass spectrometry. The developed analytical method was validated and applied to gluten-free bread samples, revealing tropane and opium alkaloids, some at concentrations exceeding regulatory limits. These findings demonstrate that RH-derived RH-SBA-15-SO3H-C18 is a viable, efficient alternative to commercial sorbents for monitoring natural toxins in food, offering a sustainable solution for repurposing agri-food waste while addressing food safety challenges. Full article
(This article belongs to the Special Issue Detection and Characterization of Natural Toxins in Food Matrices)
Show Figures

Figure 1

16 pages, 2898 KiB  
Article
The Determination of Eight Biogenic Amines Using MSPE-UHPLC-MS/MS and Their Application in Regard to Changes in These Biogenic Amines in Traditional Chinese Dish-Pickled Swimming Crabs
by Peipei Li, Yu Chen, Junlu Bai, Huicheng Yang, Pengfei He and Junjie Zeng
Molecules 2025, 30(6), 1353; https://doi.org/10.3390/molecules30061353 - 18 Mar 2025
Viewed by 845
Abstract
In this study, a method for the determination of eight biogenic amines (BAs), including tyramine (Tyr), 2-phenylethylamine (2-Phe), histamine (His), tryptamine (Trp), spermidine (Spd), spermine (Spm), cadaverine (Cad), and putrescine (Put), in crab was established using ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), [...] Read more.
In this study, a method for the determination of eight biogenic amines (BAs), including tyramine (Tyr), 2-phenylethylamine (2-Phe), histamine (His), tryptamine (Trp), spermidine (Spd), spermine (Spm), cadaverine (Cad), and putrescine (Put), in crab was established using ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), using a magnetic solid-phase extraction (MSPE) pretreatment, without derivatization, and the content changes in regard to these eight biogenic amines in the traditional Chinese dish, pickled swimming crabs, were investigated. The samples were purified via MSPE, using C nanofiber-coated magnetic nanoparticles (Fe3O4@C-NFs) as sorbents. The experimental variables involved in the MSPE, including the solution pH, adsorption and desorption time, adsorbent usage, and type and volume of the eluent, were investigated and optimized. Method validation indicated that the developed method showed good linearity (R2 > 0.995); the average recovery rates were 84.7% to 115%, with the intra-day and inter-day relative standard deviations (RSD, n = 6) ranging from 3.7% to 7.5% and 4.2% to 7.7%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the eight BAs were 0.1 mg/kg~1.0 mg/kg and 0.3 mg/kg~3.0 mg/kg, respectively. Finally, this method was applied to determine the changes in the eight biogenic amines in pickled swimming crabs (Portunus trituberculatus) during storage at 20 °C and 400 BAC. Among the BAs evaluated, Cad, Put, and Tyr were the predominant amines formed during storage. The final content of Cad, Put, and Tyr reached 22.9, 20.1, and 29.0 mg/100 g at 4 °C for 16 d, and 47.1, 52.3, and 72.0 mg/100 g at 20 °C for 96 h, respectively. The results from this study can be used to expand the application range of magnetic materials in biogenic amine pretreatment and to strengthen the quality control of the traditional Chinese dish, pickled swimming crabs. Full article
Show Figures

Figure 1

21 pages, 3840 KiB  
Article
Newly Designed Organic-Inorganic Nanocomposite Membrane for Simultaneous Cr and Mn Speciation in Waters
by Penka Vasileva and Irina Karadjova
Gels 2025, 11(3), 205; https://doi.org/10.3390/gels11030205 - 15 Mar 2025
Cited by 1 | Viewed by 738
Abstract
A sol-gel approach was used to prepare a thin hydrogel membrane based on an organic-inorganic polymer matrix embedded with pre-synthesized gold nanoparticles (AuNPs). The organic polymers utilized were poly(vinyl alcohol) (PVA) and poly(ethylene oxide) 400 (PEO) while tetraethoxysilane (TEOS) served as a precursor [...] Read more.
A sol-gel approach was used to prepare a thin hydrogel membrane based on an organic-inorganic polymer matrix embedded with pre-synthesized gold nanoparticles (AuNPs). The organic polymers utilized were poly(vinyl alcohol) (PVA) and poly(ethylene oxide) 400 (PEO) while tetraethoxysilane (TEOS) served as a precursor for the inorganic silica polymer. AuNPs were synthesized using D-glucose as a reducing agent and starch as a capping agent. A mixture of PVA, PEO, pre-hydrolyzed TEOS, and AuNP dispersions was cast and dried at 50 °C to obtain the hybrid hydrogel membrane. The structure, morphology, and optical properties of the nanocomposite membrane were analyzed using TEM, SEM, XRD, and UV-Vis spectroscopy. The newly designed hybrid hydrogel membrane was utilized as an efficient sorbent for the simultaneous speciation analysis of valence species of chromium and manganese in water samples via solid-phase extraction. This study revealed that Cr(III) and Mn(II) could be simultaneously adsorbed onto the PVA/PEO/SiO2/AuNP membrane at pH 9 while Cr(VI) and Mn(VII) remained in solution due to their inability to bind under these conditions. Under optimized parameters, detection limits and relative standard deviations were determined for chromium and manganese species. The developed analytical method was successfully applied for the simultaneous speciation analysis of chromium and manganese in drinking water and wastewater samples. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop