Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,644)

Search Parameters:
Keywords = solar concentrator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5078 KB  
Article
Performance Evaluation of WRF Model for Short-Term Forecasting of Solar Irradiance—Post-Processing Approach for Global Horizontal Irradiance and Direct Normal Irradiance for Solar Energy Applications in Italy
by Irena Balog, Massimo D’Isidoro and Giampaolo Caputo
Appl. Sci. 2026, 16(2), 978; https://doi.org/10.3390/app16020978 (registering DOI) - 18 Jan 2026
Abstract
The accurate short-term forecasting of global horizontal irradiance (GHI) is essential to optimizing the operation and integration of solar energy systems into the power grid. This study evaluates the performance of the Weather Research and Forecasting (WRF) model in predicting GHI over a [...] Read more.
The accurate short-term forecasting of global horizontal irradiance (GHI) is essential to optimizing the operation and integration of solar energy systems into the power grid. This study evaluates the performance of the Weather Research and Forecasting (WRF) model in predicting GHI over a 48 h forecast horizon at an Italian site: the ENEA Casaccia Research Center, near Rome (central Italy). The instantaneous GHI provided by WRF at model output frequency was post-processed to derive the mean GHI over the preceding hour, consistent with typical energy forecasting requirements. Furthermore, a decomposition model was applied to estimate direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) from the forecasted GHI. These derived components enable the estimation of solar energy yield for both concentrating solar power (CSP) and photovoltaic (PV) technologies (on tilted surfaces) by accounting for direct, diffuse, and reflected components of solar radiation. Model performance was evaluated against ground-based pyranometer and pyrheliometer measurements by using standard statistical indicators, including RMSE, MBE, and correlation coefficient (r). Results demonstrate that WRF-based forecasts, combined with suitable post-processing and decomposition techniques, can provide reliable 48 h predictions of GHI and DNI at the study site, highlighting the potential of the WRF framework for operational solar energy forecasting in the Mediterranean region. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
12 pages, 557 KB  
Article
Simulation Analysis of Atmospheric Transmission Performance for Different Beam Types in Laser Energy Transfer
by Le Zhang, Jing Wang, Fengjie Xi and Xiaojun Xu
Photonics 2026, 13(1), 80; https://doi.org/10.3390/photonics13010080 - 16 Jan 2026
Viewed by 53
Abstract
Laser Wireless Power Transmission (LWPT), as a revolutionary energy supply technology, holds broad application prospects in areas such as drone endurance, space solar energy transmission, and power supply in remote regions. The core efficiency of this technology primarily depends on the energy concentration [...] Read more.
Laser Wireless Power Transmission (LWPT), as a revolutionary energy supply technology, holds broad application prospects in areas such as drone endurance, space solar energy transmission, and power supply in remote regions. The core efficiency of this technology primarily depends on the energy concentration and uniformity of the light spot at the receiving end. Through systematic simulation analysis, this paper studies the spot uniformity and energy transmission efficiency of Gaussian beams, vortex beams, and flat-topped beams under different atmospheric conditions (turbulence intensity, visibility) and transmission distances. By quantitatively analyzing key indicators such as light spot non-uniformity and power density within the bucket, the advantages and disadvantages of the three beam types are comprehensively evaluated. The results indicate that the flat-topped beam is the optimal choice for short-distance laser energy transfer under favorable atmospheric conditions, while the vortex beam exhibits the best overall performance and robustness in medium and strong turbulence transmission environments. This study provides a theoretical basis for beam selection in different application scenarios. Full article
32 pages, 7548 KB  
Article
Research on the Flow and Heat Transfer Characteristics of a Molten Salt Globe Valve Based on an Electromagnetic Induction Heating System
by Shuxun Li, Xiaoya Wen, Bohao Zhang, Lingxia Yang, Yuhao Tian and Xiaoqi Meng
Actuators 2026, 15(1), 50; https://doi.org/10.3390/act15010050 - 13 Jan 2026
Viewed by 88
Abstract
To promote the transition to a cleaner energy structure and support the achievement of the “carbon peak and carbon neutrality” goals, concentrated solar power (CSP) technology has attracted increasing attention. The molten salt globe valve, as a key control component in CSP systems, [...] Read more.
To promote the transition to a cleaner energy structure and support the achievement of the “carbon peak and carbon neutrality” goals, concentrated solar power (CSP) technology has attracted increasing attention. The molten salt globe valve, as a key control component in CSP systems, faces significant challenges related to low-temperature salt crystallization and thermal stress control. This study proposes an active electromagnetic induction heating method based on a triangular double-helix cross-section coil to address issues such as molten salt blockage in the seal bellows and excessive thermal stress during heating. First, electromagnetic simulation comparisons show that the ohmic loss of the proposed coil is approximately 3.5 times and 1.8 times higher than that of conventional circular and rectangular coils, respectively, demonstrating superior heating uniformity and energy efficiency. Second, transient electromagnetic-thermal-fluid-structure multiphysics coupling analysis reveals that during heating, the temperature in the bellows seal region stabilizes above 543.15 K, exceeding the solidification point of the molten salt, while the whole valve reaches thermal stability within about 1000 s, effectively preventing local solidification. Finally, thermal stress analysis indicates that under a preheating condition of 473.15 K, the transient thermal shock stress on the valve body and bellows is reduced by 266.84% and 253.91%, respectively, compared with the non-preheating case, with peak stresses remaining below the allowable stress limit of the material, thereby significantly extending the service life of the valve. This research provides an effective solution for ensuring reliable operation of molten salt valves and improving the overall performance of CSP systems. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

9 pages, 1277 KB  
Data Descriptor
Experimental Data of a Pilot Parabolic Trough Collector Considering the Climatic Conditions of the City of Coatzacoalcos, Mexico
by Aldo Márquez-Nolasco, Roberto A. Conde-Gutiérrez, Luis A. López-Pérez, Gerardo Alcalá Perea, Ociel Rodríguez-Pérez, César A. García-Pérez, Josept D. Revuelta-Acosta and Javier Garrido-Meléndez
Data 2026, 11(1), 17; https://doi.org/10.3390/data11010017 - 13 Jan 2026
Viewed by 133
Abstract
This article presents a database focused on measuring the experimental performance of a pilot parabolic trough collector (PTC) combined with the meteorological conditions corresponding to the installation site. Water was chosen as the fluid to recirculate through the PTC circuit. The data were [...] Read more.
This article presents a database focused on measuring the experimental performance of a pilot parabolic trough collector (PTC) combined with the meteorological conditions corresponding to the installation site. Water was chosen as the fluid to recirculate through the PTC circuit. The data were recorded between August and September, assuming that global radiation was adequate for use in the concentration process. The database comprises seven experimental tests, which contain variables such as time, inlet temperature, outlet temperature, ambient temperature, global radiation, diffuse radiation, wind direction, wind speed, and volumetric flow rate. Based on the data obtained from this pilot PTC system, it is possible to provide relevant information for the installation and construction of large-scale solar collectors. Furthermore, the climatic conditions considered allow key factors in the design of multiple collectors to be determined, such as the type of arrangement (series or parallel) and manufacturing materials. In addition, the data collected in this study are key to validating future theoretical models of the PTC. Finally, considering the real operating conditions of a PTC in conjunction with meteorological variables could also be useful for predicting the system’s thermal performance using artificial intelligence-based models. Full article
Show Figures

Figure 1

23 pages, 4391 KB  
Article
Experimental and Numerical Analysis of Thermal Efficiency Improvement in a Hybrid Solar–Electric Water Heating System
by Hussein N. O. AL-Abboodi, Mehmet Özalp, Hasanain A. Abdul Wahhab, Cevat Özarpa and Mohammed A. M. AL-Jaafari
Appl. Sci. 2026, 16(2), 764; https://doi.org/10.3390/app16020764 - 12 Jan 2026
Viewed by 101
Abstract
Many studies on solar heating systems have examined individual techniques to enhance the performance of solar water collectors, such as flow obstructions, increased turbulence, nanofluids, and investment in thermal storage. The benefits of integrating these sustainability strategies into a single, sustainable system have [...] Read more.
Many studies on solar heating systems have examined individual techniques to enhance the performance of solar water collectors, such as flow obstructions, increased turbulence, nanofluids, and investment in thermal storage. The benefits of integrating these sustainability strategies into a single, sustainable system have yet to be fully established. This work displays a hybrid water-heating system that contains a solar water collector (SWC) and an electric water heater (EWH), a photovoltaic panel (PV), and nano-additives to increase the outlet water temperature and improve thermal efficiency. Numerical and experimental analyses were used to estimate the influence of water flow rate (2.5, 3.5, and 4.5 L/min) and different Al2O3 concentrations (0.1%, 0.2%, and 0.3%) on system performance using U-shaped pipe in SWC model. The results highlight that lower flow rates consistently yield higher ΔT values because water spends a longer time in the collector, allowing it to absorb more heat. Also, when using water only, the collector efficiency increases pro-aggressively with flow rate. A significant performance enhancement is observed upon incorporating Al2O3 nanoparticles into the fluid, with a 0.1% Al2O3 volume concentration improving efficiency by ~7.4% over water. At 0.3%, the highest improvement is recorded, yielding a ~9.3% gain in efficiency compared to the base case. Full article
Show Figures

Figure 1

26 pages, 7676 KB  
Article
Effects of WO3 Amount and Treatment Temperature on TiO2-ZrO2-WO3 Photocatalysts Used in the Solar Photocatalytic Oxidation of Sildenafil
by Jhatziry Hernández Sierra, Jorge Cortez Elizalde, José Gilberto Torres Torres, Adib Abiu Silahua Pavón, Adrian Cervantes Uribe, Adrian Cordero García, Zenaida Guerra Que, Gerardo Enrique Córdova Pérez, Israel Rangel Vázquez and Juan Carlos Arevalo Perez
Catalysts 2026, 16(1), 82; https://doi.org/10.3390/catal16010082 - 10 Jan 2026
Viewed by 258
Abstract
TiO2 shows improved photocatalytic properties when combined with other oxides, such as ZrO2. Unfortunately, this material does not exhibit a spectral response in the visible range, but this can be improved by adding WO3. Here, the effect of [...] Read more.
TiO2 shows improved photocatalytic properties when combined with other oxides, such as ZrO2. Unfortunately, this material does not exhibit a spectral response in the visible range, but this can be improved by adding WO3. Here, the effect of the amount of WO3 and the treatment temperature on TiO2-ZrO2-WO3 materials applied in the solar photocatalytic oxidation of sildenafil was evaluated. The materials were synthesized using the sol–gel method and were characterized by N2, XRD, UV-Vis RDS, SEM, PL, and XPS. Photocatalytic activity was determined by the degradation and mineralization of sildenafil. The most active photocatalysts were selected for stability testing and to determine the oxidizing species that dominate the reaction mechanism. The optimal amount of WO3 that improves solar photocatalytic activity at both treatment temperatures was found to be 1% with a reaction mechanism based on OH· and h+. WO3 reduces electron–hole pair recombination. At 500 °C, the crystallinity of the anatase phase is improved, while at 800 °C, the transformation to rutile is suppressed at low WO3 concentrations. XPS observed the reduction in Ti4+ to Ti3+ and W6+ to W5+ in TiO2–ZrO2–WO3 materials, which were found to be photoactive under sunlight with potential for use in industrial-scale reaction systems. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation, 2nd Edition)
Show Figures

Figure 1

19 pages, 2498 KB  
Article
Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems
by Rahul Agrawal, Kashif Mushtaq, Daniel López Pedrajas, Iqra Irfan and Breogán Pato-Doldán
Nanoenergy Adv. 2026, 6(1), 4; https://doi.org/10.3390/nanoenergyadv6010004 - 9 Jan 2026
Viewed by 111
Abstract
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology [...] Read more.
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology is a promising solution but has challenges such as solar intermittency. This challenge can be solved by integrating SHDH with the phase change material as a solar energy storage medium. Therefore, a novel nano-enhanced binary eutectic phase change material (NEPCM) was developed in this project. PCM consisting of 70 wt.% stearic acid (ST) and 30 wt.% suberic acid (SBU) with a varying concentration of silicon carbide (SiC) nanoparticles (NPs) (0.1 to 3 wt.%) was synthesized specifically considering the need of SHDH application. The systematic thermophysical characterization was conducted to investigate their energy storage capacity, thermal durability, and performance consistency over repeated cycles. DSC analysis revealed that the addition of SiC NPs preserved the thermal stability of the NEPCM, while the phase transition temperature remained nearly unchanged with a variation of less than 0.74%. The value of latent heat is inversely related to the nanoparticle concentration, i.e., from 142.75 kJ/kg for the base PCM to 131.24 kJ/kg at 3 wt.% loading. This corresponds to reductions in latent heat ranging between 0.98% and 8.06%. The FTIR measurement confirms that no chemical reactions or no new functional groups were formed. All original functional groups of ST and SBU remained intact, showing that incorporating the SiC NP to the PCM lead to physical interactions (e.g., hydrogen bonding or surface adsorption). The TGA analysis showed that the SiC NPs in the NEPCM act as supporting material, and its nano-doping enhanced the final degradation temperature and thermal stability. There was negligible change in thermal conductivity for nanoparticle loadings of 0.1% and 0.4%; however, it increased progressively by 5.2%, 10.8%, 23.12%, and 25.8% at nanoparticle loadings of 0.7%, 1%, 2%, and 3%, respectively, at 25 °C. Thermal reliability was analyzed through a DSC thermal cycling test which confirmed the suitability of the material for the desired applications. Full article
(This article belongs to the Special Issue Innovative Materials for Renewable and Sustainable Energy Systems)
Show Figures

Figure 1

16 pages, 5352 KB  
Article
CIGS Electrodeposition from Diluted Electrolyte: Effect of Current Density and Pulse Timing on Deposition Quality and Film Properties
by Mahfouz Saeed
Chemistry 2026, 8(1), 6; https://doi.org/10.3390/chemistry8010006 - 8 Jan 2026
Viewed by 145
Abstract
Among the most promising alloys for photovoltaic applications is copper–indium–gallium–selenide (CIGS) because of its enhanced optical properties. This study examines the influence of current density and pulse timing on the electrodeposition of Cu(In, Ga)Se2 (CIGS) thin films from a dilute electrolyte. It [...] Read more.
Among the most promising alloys for photovoltaic applications is copper–indium–gallium–selenide (CIGS) because of its enhanced optical properties. This study examines the influence of current density and pulse timing on the electrodeposition of Cu(In, Ga)Se2 (CIGS) thin films from a dilute electrolyte. It assesses how these parameters affect deposition quality, film characteristics, and device performance. CIGS absorber layers were electrodeposited using a pulsed-current method, with systematic variations in current density and pulse on/off durations in a low-concentration solution. The deposited precursors were subsequently selenized and incorporated into fully assembled CIGS solar cell architectures. Structural characteristics were analyzed by X-ray diffraction (XRD), whereas composition and elemental distribution were assessed by energy-dispersive X-ray spectroscopy (EDS). Optical properties pertinent to photovoltaic performance were evaluated through transmittance and reflectance measurements. The results indicate that moderate current densities, when combined with brief off-times, produce dense, microcrack-free films exhibiting enhanced crystallinity and near-stoichiometric Cu/(In + Ga) and Ga/(In + Ga) ratios, in contrast to films deposited at higher current densities and extended off-times. These optimized pulse parameters also produce absorber layers with advantageous optical band gaps and improved device performance. Overall, the study demonstrates that regulating pulse parameters in attenuated electrolytes is an effective strategy to optimize CIGS film quality and to facilitate the advancement of economical, solution-based fabrication methods for high-performance CIGS solar cells. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

24 pages, 4846 KB  
Review
Analysis of Fuel Gasification Using Solar Technology: A Patent Review
by Mikhail Zhumagulov, Aizhan Omirbayeva and Davide Papurello
Gases 2026, 6(1), 3; https://doi.org/10.3390/gases6010003 - 7 Jan 2026
Viewed by 185
Abstract
Solar energy enhances the energy and environmental performance of coal gasification by lowering carbon emissions and increasing the yield and quality of synthesis gas. This patent review surveys recent global advances in solar thermochemical reactors for coal gasification, focusing on key innovations disclosed [...] Read more.
Solar energy enhances the energy and environmental performance of coal gasification by lowering carbon emissions and increasing the yield and quality of synthesis gas. This patent review surveys recent global advances in solar thermochemical reactors for coal gasification, focusing on key innovations disclosed in patent applications and grants, with particular attention to technologies that improve process efficiency and sustainability. The novelty of the review is that unlike most patent reviews that focus primarily on statistical indicators such as application counts, geography, and classification, this work integrates qualitative analysis of specific technical solutions alongside statistical evaluation. This combined approach enables a deeper assessment of technological maturity and practical applicability. Fifteen patents from different countries were reviewed. The largest number (8, 53%) belongs to the United States. China has the second place with 4 (27%). The remaining countries (the EU, Korea, and Russia) hold 1 patent (7% each). The present work emphasises the technological and engineering solutions associated with the integration of solar energy into gasification processes. The author’s design is free of the disadvantages of its counterparts and is a simplified design with a high degree of adaptability to various types of fuel, including brown coal, biomass, and other carbon-containing materials. Full article
(This article belongs to the Special Issue Bio-Energy: Biogas, Biomethane and Green-Hydrogen)
Show Figures

Figure 1

29 pages, 11017 KB  
Systematic Review
Decoding Morphological Intelligence: A Systematic Review of Climate-Adaptive Forms and Mechanisms in Traditional Settlements
by Xiaoyu Lin, Wenjian Pan, Jiayi Cong, Han Wang and Longzhu Zhang
Land 2026, 15(1), 105; https://doi.org/10.3390/land15010105 - 6 Jan 2026
Viewed by 283
Abstract
Traditional settlements exhibit remarkable climatic adaptability, representing a form of “Morphological Intelligence” developed over centuries. However, this inherent, physics-based wisdom remains underutilized in contemporary urban planning and design. This systematic review aims to decode such intelligence by analyzing the relationship between the morphological [...] Read more.
Traditional settlements exhibit remarkable climatic adaptability, representing a form of “Morphological Intelligence” developed over centuries. However, this inherent, physics-based wisdom remains underutilized in contemporary urban planning and design. This systematic review aims to decode such intelligence by analyzing the relationship between the morphological characteristics of traditional settlements and their thermal performance. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, literature retrieval and evaluation were conducted via the databases of Web of Science, Scopus, and China National Knowledge Infrastructure (CNKI) for articles published during 2004~2024. A total of 82 related articles with available full texts were selected from 1227 records for in-depth analysis, including peer-reviewed journal articles and reputable conference publications. This study first presents an overview of bibliometric and methodological landscapes, revealing that research is increasingly concentrated in Asia’s tropical and subtropical climates, predominantly employing case studies and computational simulations. Secondly, we synthesize a few key climate-adaptive morphological features across macro- (e.g., settlement layout), meso- (e.g., street canyon geometry), and microscales (e.g., courtyards). The findings illustrate a reliance on methods and metrics developed for modern urban contexts, which could not fully capture the specific morphological characteristics of traditional settlements. Most importantly, this study summarizes four core principles of “Morphological Intelligence” in traditional settlements, i.e., strategic solar control, facilitated natural ventilation, use of thermal mass, and integration of natural elements and creation of thermal buffer zones. By identifying the limitations of existing investigations, this study highlights a few directions for future studies, including conducting more systematic multi-scalar integrated analysis, focusing on the development of dedicated quantitative metrics and analytical frameworks, delving into more mechanism-oriented investigation, assessing morphological resilience under urbanization, and translating principles into contemporary design guidelines. This study provides a foundational framework for translating the “Morphological Intelligence” of traditional settlements into actionable, evidence-based strategies for resilient and energy-efficient urban planning and design amidst climate change. Full article
(This article belongs to the Special Issue Morphological and Climatic Adaptations for Sustainable City Living)
Show Figures

Figure 1

25 pages, 747 KB  
Article
Challenges of Market Maturity in Small-Scale Power Markets: The Cyprus Case
by Andreas Poullikkas
Energies 2026, 19(1), 259; https://doi.org/10.3390/en19010259 - 4 Jan 2026
Viewed by 424
Abstract
Cyprus launched its Competitive Electricity Market on 1 October 2025, marking a historic transition from monopolistic to liberalized electricity trading. This paper presents a comprehensive analysis of the market’s first month of operation, evaluating technical performance, price dynamics, market structure, and identifying critical [...] Read more.
Cyprus launched its Competitive Electricity Market on 1 October 2025, marking a historic transition from monopolistic to liberalized electricity trading. This paper presents a comprehensive analysis of the market’s first month of operation, evaluating technical performance, price dynamics, market structure, and identifying critical barriers to achieving competitive benefits. Analysis reveals technically successful operation of clearing mechanisms and settlement processes, but economically constrained performance driven by persistent structural limitations. The market exhibits extreme price volatility characteristic of isolated systems, ranging from zero to 500 EUR/MWh, with pronounced diurnal patterns reflecting solar generation dynamics. The monthly wholesale price averaged at 167.78 EUR/MWh. The market remains highly concentrated with only 17 participants, shallow liquidity, and heavy reliance on conventional generation (86%) despite installed renewable capacity exceeding 1000 MW. Critical infrastructure deficits including absent natural gas infrastructure, lack of utility-scale storage, electrical isolation, and incomplete smart metering deployment represent fundamental barriers to achieving EU Target Model objectives. Based on infrastructure deployment scenarios and international benchmarking, we suggest potential reductions in the wholesale price of 12.5% (base scenario) to 15% (optimistic scenario) by the end of 2027, dependent on timely natural gas commissioning, storage deployment, and regulatory reform. Policy recommendations address immediate regulatory actions, medium-term market development priorities, and critical infrastructure investments essential for transitioning from technically operational to economically beneficial market operation. This analysis contributes to understanding the challenges that small, isolated electricity markets face when implementing EU liberalization frameworks while highlighting policy interventions required for successful market maturation. Full article
Show Figures

Figure 1

28 pages, 1477 KB  
Review
Solar-Assisted Thermochemical Valorization of Agro-Waste to Biofuels: Performance Assessment and Artificial Intelligence Application Review
by Balakrishnan Varun Kumar, Sassi Rekik, Delmaria Richards and Helmut Yabar
Waste 2026, 4(1), 2; https://doi.org/10.3390/waste4010002 - 31 Dec 2025
Viewed by 277
Abstract
The rapid growth and seasonal availability of agricultural materials, such as straws, stalks, husks, shells, and processing wastes, present both a disposal challenge and an opportunity for renewable fuel production. Solar-assisted thermochemical conversion, such as solar-driven pyrolysis, gasification, and hydrothermal routes, provides a [...] Read more.
The rapid growth and seasonal availability of agricultural materials, such as straws, stalks, husks, shells, and processing wastes, present both a disposal challenge and an opportunity for renewable fuel production. Solar-assisted thermochemical conversion, such as solar-driven pyrolysis, gasification, and hydrothermal routes, provides a pathway to produce bio-oils, syngas, and upgraded chars with substantially reduced fossil energy inputs compared to conventional thermal systems. Recent experimental research and plant-level techno-economic studies suggest that integrating concentrated solar thermal (CSP) collectors, falling particle receivers, or solar microwave hybrid heating with thermochemical reactors can reduce fossil auxiliary energy demand and enhance life-cycle greenhouse gas (GHG) performance. The primary challenges are operational intermittency and the capital costs of solar collectors. Alongside, machine learning (ML) and AI tools (surrogate models, Bayesian optimization, physics-informed neural networks) are accelerating feedstock screening, process control, and multi-objective optimization, significantly reducing experimental burden and improving the predictability of yields and emissions. This review presents recent experimental, modeling, and techno-economic literature to propose a unified classification of feedstocks, solar-integration modes, and AI roles. It reveals urgent research needs for standardized AI-ready datasets, long-term field demonstrations with thermal storage (e.g., integrating PCM), hybrid physics-ML models for interpretability, and region-specific TEA/LCA frameworks, which are most strongly recommended. Data’s reporting metrics and a reproducible dataset template are provided to accelerate translation from laboratory research to farm-level deployment. Full article
Show Figures

Figure 1

44 pages, 6987 KB  
Article
Effects of Pulsating Wind-Induced Loads on the Chaos Behavior of a Dish Concentrating Solar Thermal Power System
by Hongyan Zuo, Jingwei Liang, Yuhao Su, Guohai Jia, Duzhong Nie, Mang Chen and Jiaqiang E
Energies 2026, 19(1), 182; https://doi.org/10.3390/en19010182 - 29 Dec 2025
Viewed by 219
Abstract
In order to effectively reveal the nonlinear characteristics of a dish concentrating solar thermal power system (DCSTPS) under pulsating wind-induced loads, a fluid simulation model of the DCSTPS was established, and the simulated pulsating winds were developed via the user-defined function (UDF) combined [...] Read more.
In order to effectively reveal the nonlinear characteristics of a dish concentrating solar thermal power system (DCSTPS) under pulsating wind-induced loads, a fluid simulation model of the DCSTPS was established, and the simulated pulsating winds were developed via the user-defined function (UDF) combined with the autoregressive (AR) model using MATLAB (R2015b). And based on the fluid simulation calculations of the DCSTPS, the time-range data of the relevant wind vibration coefficients under different working conditions were obtained. The research results show the following: (1) When the altitude angle α is 0° or 180° due to the azimuth angle β = 0°, the maximum values of their drag coefficient Cx, lateral force coefficient Cy, and lift coefficient Cz are similar, and the maximum of rolling moment coefficient CMx is significantly smaller than the values at the other two angles; the maximum of the pitch moment coefficient CMy and maximum of the azimuth moment coefficient CMz are significantly larger than the values of the other two angles. (2) The increase in altitude angle α leads to a reduction in the drag coefficient Cx, an increase in the lift force coefficient Cz, and an increase of the pitch moment CMx. Moreover, an improved phase space delay reconstruction method was developed to calculate the delay time, Lyapunov exponent, and Kolmogorov entropy of the DCSTPS, and the research results show that (1) the maximum Lyapunov exponent and Kolmogorov entropy of the DCSTPS are greater than zero under the action of pulsating wind; (2) the action of pulsating wind will cause increases in the maximum Lyapunov exponent and Kolmogorov entropy of the DCSTPS and will accelerate the divergence speed of the DCSTPS trajectory; and (3) the time for the DCSTPS to enter the chaotic state will be shortened, while the time of entering a chaotic state and degree of subsequent chaotic states will be significantly affected by relevant wind vibration coefficients but without regularity. Full article
Show Figures

Figure 1

15 pages, 2206 KB  
Article
Protic Ionic-Liquid Precursor Engineering with Methylammonium Acetate for Efficient and Stable Inverted Triple-Cation Perovskite Solar Cells
by Hanhong Zhang, Jun Song and Yuanlong Deng
Crystals 2026, 16(1), 19; https://doi.org/10.3390/cryst16010019 - 26 Dec 2025
Viewed by 241
Abstract
Perovskite solar cells (PSCs) have achieved remarkable efficiencies, yet further progress is limited by defect-induced nonradiative recombination and instability associated with uncontrolled crystallization. Here, we develop a protic ionic-liquid precursor engineering strategy based on methylammonium acetate (MAAc) for high-performance inverted (p–i–n) triple-cation perovskite [...] Read more.
Perovskite solar cells (PSCs) have achieved remarkable efficiencies, yet further progress is limited by defect-induced nonradiative recombination and instability associated with uncontrolled crystallization. Here, we develop a protic ionic-liquid precursor engineering strategy based on methylammonium acetate (MAAc) for high-performance inverted (p–i–n) triple-cation perovskite solar cells. Systematic variation of the MAAc content reveals that a moderate concentration yields perovskite films with enlarged grains, suppressed pinholes, and strongly reduced residual PbI2. Steady-state and time-resolved photoluminescence measurements, together with electrochemical impedance spectroscopy and light-intensity-dependent analysis, demonstrate that MAAc effectively suppresses trap-assisted nonradiative recombination, prolongs carrier lifetime, and increases recombination resistance without introducing additional transport losses. As a result, optimized inverted devices deliver a champion power conversion efficiency of 23.68% with a high open-circuit voltage of 1.21 V, a fill factor of ~0.83, negligible J–V hysteresis, and excellent device-to-device reproducibility. Moreover, the MAAc-2M devices exhibit markedly improved operational and shelf stability, retaining 73.2% of their initial efficiency after 30 days, compared to 53.2% for the control. This work establishes MAAc as an effective ionic-liquid additive that simultaneously governs crystallization and defect chemistry, offering a general route to efficient and stable inverted perovskite solar cells via protic ionic-liquid-assisted precursor engineering. Full article
(This article belongs to the Special Issue Advanced Research on Perovskite Solar Cells)
Show Figures

Figure 1

25 pages, 4000 KB  
Article
Development and Performance of a Vacuum-Based Seawater Desalination System Driven by a Solar Water Heater
by Wichean Singmai, Pichet Janpla, Suparat Jamsawang, Kittiwoot Sutthivirode and Tongchana Thongtip
Thermo 2026, 6(1), 3; https://doi.org/10.3390/thermo6010003 - 26 Dec 2025
Viewed by 322
Abstract
This work proposes the design, construction, and field test of a vacuum seawater desalination system (VSDS) driven by an evacuated tube solar collector (with a total absorption area of 1.86 m2) under tropical climatic condition (Thailand ambient at latitude 13°43′06.0″ N, [...] Read more.
This work proposes the design, construction, and field test of a vacuum seawater desalination system (VSDS) driven by an evacuated tube solar collector (with a total absorption area of 1.86 m2) under tropical climatic condition (Thailand ambient at latitude 13°43′06.0″ N, longitude 100°32′25.4″ E). The VSDS prototype was designed and constructed to be driven by hot water, which is produced by two heat source conditions: (1) an electric heater for laboratory tests and (2) an evacuated tube solar collector for field tests under real climatic conditions. A comparative experimental study to assess the ability to produce fresh water between a conventional dripping/pipe feed column and spray falling film column is proposed in the first part of the discussion. This is to demonstrate the advantage of the spray falling film distillation column. The experimental method is implemented based on the batch system, in which the cycle time (distillation time) considered is 10–20 min so that heat loss via the concentrated seawater blow down is minimized. Later, the field test with solar irradiance under real climatic conditions is demonstrated to assess the freshwater yield and the system performance. The aim is to provide evidence of the proposed vacuum desalination system in real operation. It is found experimentally that the VSDS working with spray falling film provides better performance than the dripping/pipe feed column under the specified working conditions. The spray falling film column can increase the distillated freshwater volume from 1.33 to 2.16 L under identical cycle time and working conditions. The improvement potential is up to 62.4%. The overall thermal efficiency can be increased from 33.7 to 70.8% (improvement of 110.1%). Therefore, the VSDS working with spray falling film is selected for implementing field tests based on real solar irradiance powered by an evacuated tube solar collector. The ability to produce fresh water is assessed, and the overall performance via the average distillation rate and the thermal efficiency (or Gain Output Ratio) is discussed with the real solar irradiance. It is found from the field test with solar time (8.00–16.00) that the VSDS can produce a daily freshwater yield of up to 4.5 L with a thermal efficiency of up to 19%. The freshwater production meets the requirement for international standard drinking water criteria, indicating suitability for household/community use in tropical regions. This work demonstrates the feasibility of VSDS working under real solar irradiance as an alternative technology for sustainable fresh water. Full article
Show Figures

Figure 1

Back to TopTop