Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (745)

Search Parameters:
Keywords = soil water consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

30 pages, 3150 KiB  
Review
Making the Connection Between PFASs and Agriculture Using the Example of Minnesota, USA: A Review
by Sven Reetz, Joel Tallaksen, John Larson and Christof Wetter
Agriculture 2025, 15(15), 1676; https://doi.org/10.3390/agriculture15151676 - 2 Aug 2025
Viewed by 304
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a [...] Read more.
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a pressing issue since health advisories are continuously being reassessed. This semi-systematic literature review connects the release, environmental fate, and agriculture uptake of PFASs to enhance comprehension and identify knowledge gaps which limit accurate risk assessment. It focuses on the heavily agricultural state of Minnesota, USA, which is representative of the large Midwestern US Corn Belt in terms of agricultural activities, because PFASs have been monitored in Minnesota since the beginning of the 21st century. PFAS contamination is a complex issue due to the over 14,000 individual PFAS compounds which have unique chemical properties that interact differently with air, water, soil, and biological systems. Moreover, the lack of field studies and monitoring of agricultural sites makes accurate risk assessments challenging. Researchers, policymakers, and farmers must work closely together to reduce the risk of PFAS exposure as the understanding of their potential health effects increases and legacy PFASs are displaced with shorter fluorinated replacements. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 205
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

41 pages, 580 KiB  
Review
The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems
by Gerald C. Shurson
Sustainability 2025, 17(15), 6957; https://doi.org/10.3390/su17156957 - 31 Jul 2025
Viewed by 160
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. They cause additional health concerns in a circular bioeconomy and food system that recycles and reuses by-products and numerous types of waste materials. Uptake of PFAS by plants and food-producing animals ultimately leads to the consumption of PFAS-contaminated food that is associated with numerous adverse health and developmental effects in humans. Contaminated meat, milk, and eggs are some of the main sources of human PFAS exposure. Although there is no safe level of PFAS exposure, maximum tolerable PFAS consumption guidelines have been established for some countries. However, there is no international PFAS monitoring system, and there are no standardized international guidelines and mechanisms to prevent the consumption of PFAS-contaminated foods. Urgent action is needed to stop PFAS production except for critical uses, implementing effective water-purification treatments, preventing spreading sewage sludge on land and pastures used to produce food, and requiring marketers and manufacturers to use packaging that is free of PFAS. Full article
18 pages, 1863 KiB  
Article
A Daily Accumulation Model for Predicting PFOS Residues in Beef Cattle Muscle After Oral Exposure
by Ian Edhlund, Lynn Post and Sara Sklenka
Toxics 2025, 13(8), 649; https://doi.org/10.3390/toxics13080649 - 31 Jul 2025
Viewed by 492
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a relatively long half-life, has been associated with adverse health effects in humans and laboratory animals. There are few toxicokinetic studies on PFOS in domestic livestock raised for human food consumption, which are critical for assessing human food safety. This work aimed to develop a simple daily accumulation model (DAM) for predicting PFOS residues in edible beef cattle muscle. A one-compartment toxicokinetic model in a spreadsheet format was developed using simple calculations to account for daily PFAS into and out of the animal. The DAM was used to simulate two case studies to predict resultant PFOS residues in edible beef cattle tissues. The results demonstrated that the model can reasonably predict PFOS concentrations in beef cattle muscle in a real-world scenario. The DAM was then used to simulate dietary PFOS exposure in beef cattle throughout a typical lifespan in order to derive a generic bioaccumulation factor. The DAM is expected to work well for other PFAS in beef cattle, PFAS in other livestock species raised for meat, and other chemical contaminants with relatively long half-lives. Full article
Show Figures

Graphical abstract

29 pages, 13314 KiB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 407
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

31 pages, 3620 KiB  
Review
Expansion of Lifestyle Blocks in Peri-Urban New Zealand: A Review of the Implications for Environmental Management and Landscape Design
by Han Xie, Diane Pearson, Sarah J. McLaren and David Horne
Land 2025, 14(7), 1447; https://doi.org/10.3390/land14071447 - 11 Jul 2025
Viewed by 378
Abstract
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental [...] Read more.
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental performance remains understudied. This is the case even though their proliferation is leading to an irreversible loss of highly productive soils and accelerating land fragmentation in peri-urban areas. Through undertaking a systematic literature review of relevant studies on LBs in New Zealand and comparable international contexts, this paper aims to quantify existing knowledge and suggest future research needs and management strategies. It focuses on the environmental implications of LB activities in relation to water consumption, food production, energy use, and biodiversity protection. The results indicate that variation in land use practices and environmental awareness among LB owners leads to differing environmental outcomes. LBs offer opportunities for biodiversity conservation and small-scale food production through sustainable practices, while also presenting environmental challenges related to resource consumption, greenhouse gas (GHG) emissions, and loss of productive land for commercial agriculture. Targeted landscape design could help mitigate the environmental pressures associated with these properties while enhancing their potential to deliver ecological and sustainability benefits. The review highlights the need for further evaluation of the environmental sustainability of LBs and emphasises the importance of property design and adaptable planning policies and strategies that balance environmental sustainability, land productivity, and lifestyle owners’ aspirations. It underscores the potential for LBs to contribute positively to environmental management while addressing associated challenges, providing valuable insights for ecological conservation and sustainable land use planning. Full article
Show Figures

Figure 1

18 pages, 3154 KiB  
Article
Water Saving and Environmental Issues in the Hetao Irrigation District, the Yellow River Basin: Development Perspective Analysis
by Zhuangzhuang Feng, Qingfeng Miao, Haibin Shi, José Manuel Gonçalves and Ruiping Li
Agronomy 2025, 15(7), 1654; https://doi.org/10.3390/agronomy15071654 - 8 Jul 2025
Viewed by 327
Abstract
Global changes and society’s development necessitate the improvement of water use and irrigation water saving, which require a set of water management measures to best deal with the necessary changes. This study considers the framework of the change process for water management in [...] Read more.
Global changes and society’s development necessitate the improvement of water use and irrigation water saving, which require a set of water management measures to best deal with the necessary changes. This study considers the framework of the change process for water management in the Hetao Irrigation District (HID) of the Yellow River Basin. This paper presents the main measures that have been applied to ensure the sustainability and modernization of Hetao, mitigating water scarcity while maintaining land productivity and environmental value. Several components of modernization projects that have already been implemented are characterized, such as the off-farm canal distribution system, the on-farm surface irrigation, innovative crop and soil management techniques, drainage, and salinity control, including the management of autumn irrigation and advances of drip irrigation at the sector and farm levels. This characterization includes technologies, farmer training, labor needs, energy consumption, water savings, and economic aspects, based on data observed and reported in official reports. Therefore, this study integrates knowledge and analyzes the most limiting aspects in some case studies, evaluating the effectiveness of the solutions used. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

34 pages, 5699 KiB  
Article
Groundwater Management Modeling in the Güzelyurt Region (Northern Cyprus): A Group Model Building Approach
by Farhad Bolouri, Hüseyin Gökçekuş, Vahid Nourani and Youssef Kassem
Water 2025, 17(13), 2004; https://doi.org/10.3390/w17132004 - 3 Jul 2025
Viewed by 387
Abstract
Groundwater plays an important role in areas facing water scarcity, which can cause many problems if poorly managed. In Northern Cyprus, in the Güzelyurt region, where agriculture is thriving, excessive and inappropriate groundwater use has caused a sharp decrease in water levels and [...] Read more.
Groundwater plays an important role in areas facing water scarcity, which can cause many problems if poorly managed. In Northern Cyprus, in the Güzelyurt region, where agriculture is thriving, excessive and inappropriate groundwater use has caused a sharp decrease in water levels and electrical conductivity in many coastal areas. This study explores this problem using system dynamics tools designed to analyze feedback loops and causal links. The qualitative system dynamics approach is employed to investigate complex systems by focusing on structural and behavioral patterns through qualitative elements such as feedback loops, causal relationships, and system archetypes, rather than relying solely on numerical data. For this purpose, group model building is used, for which a basic model is built using library studies, and then the model is developed and improved through numerous interviews and meetings held with policymakers, farmers, soil and water managers, university professors, and representatives from the local community. The study examines water management practices, including transferring water from Turkey to Northern Cyprus and allocating a portion for agricultural use in Güzelyurt. It also explores agricultural strategies and the employment of advanced irrigation methods. In the tourism and urban consumption sectors, raising public awareness and educating citizens about water scarcity linked to climate change are highlighted as essential measures in promoting sustainable water usage. Full article
Show Figures

Figure 1

28 pages, 3748 KiB  
Article
Carob–Thyme Intercropping Systems Can Improve Yield Efficiency and Environmental Footprint Compared to Conservation Tillage
by Sofia Matsi, Dimitrios Sarris and Vassilis Litskas
Agronomy 2025, 15(7), 1560; https://doi.org/10.3390/agronomy15071560 - 26 Jun 2025
Viewed by 318
Abstract
Living mulch intercropping systems are considered as nature-based solutions with a low environmental footprint for managing weeds, improving biodiversity and agroecosystem sustainability. In drylands, however, they may increase intra/inter-specific competition for water, reducing crop productivity. We tested conservation tillage (TLG) carob plots with [...] Read more.
Living mulch intercropping systems are considered as nature-based solutions with a low environmental footprint for managing weeds, improving biodiversity and agroecosystem sustainability. In drylands, however, they may increase intra/inter-specific competition for water, reducing crop productivity. We tested conservation tillage (TLG) carob plots with and without irrigation (TLGirr; TLGdry) vs. rainfed intercropping systems of carob and (i) thyme (Thymbra capitata; T-System) or (ii) clover (Trifolium squarrosum; C-System), strategically planted on the south (sun)-exposed soil side (SES) of carobs, to reduce soil temperature/evaporation. Carob water relations, productivity and environmental footprints were examined for three years under semi-arid, low weed-competition (Skarinou-SKR) and arid high weed-competition (Vrysoules-VRY) conditions in Cyprus. Carob yield efficiency (kg/m3) in SKR, was >27% higher for the T-System (p < 0.05; SES cover ca. 85%; year-3), matching a higher leaf water content (p < 0.001) compared to TLGdry. The T-System reached 28% and 56% of TLGirr yields during very dry and normal rainfall years; TLGdry yields approached zero. For VRY, no negative impacts on carob leaf water, at 25% SES cover, were found. SKR’s C-System improved leaf water content (p < 0.05) for only one year. The T-System also outperformed TLGirr and TLGdry in terms of reducing irrigation needs and energy consumption, breaking new grounds for dryland agroforestry. Full article
Show Figures

Figure 1

14 pages, 3247 KiB  
Review
Biological Approach for Lead (Pb) Removal from Meat and Meat Products in Bangladesh
by Nowshin Sharmily Maisa, Sumaya Binte Hoque and Sazzad Hossen Toushik
Processes 2025, 13(7), 2018; https://doi.org/10.3390/pr13072018 - 25 Jun 2025
Viewed by 479
Abstract
Heavy metal contamination, particularly lead (Pb) poisoning, is a significant public health issue worldwide. In Bangladesh, Pb contamination of water, soil, air, and food is detected alarmingly. Chronic exposure to Pb leads to severe health complications in the human body, including neurotoxicity, cardiovascular [...] Read more.
Heavy metal contamination, particularly lead (Pb) poisoning, is a significant public health issue worldwide. In Bangladesh, Pb contamination of water, soil, air, and food is detected alarmingly. Chronic exposure to Pb leads to severe health complications in the human body, including neurotoxicity, cardiovascular disease, developmental delays, and kidney damage. Research has established that there is “no safe level” of Pb exposure, as even minimal exposure can cause detrimental effects. Although existing physical and chemical methods are widely used, they come with limitations, such as high costs and the generation of toxic byproducts. As a green, sustainable alternative, the potential of probiotics as an effective biosorption agent has been explored to reduce Pb contamination in food, especially meat, while preserving its nutritional and sensory properties. This paper aims to integrate current knowledge from these two fields and highlight their capacity to decontaminate Pb-laden meat, the primary protein source in Bangladesh. The study also investigates optimal biosorption parameters, including temperature, pH, and exposure time, to enhance effectiveness. The proposed application of lactic acid bacteria (LAB) in meat processing and packaging is expected to significantly lower Pb levels in meat, ensuring safer consumption. Full article
(This article belongs to the Special Issue Biological Methods of Diagnosis in the Microbiology)
Show Figures

Figure 1

30 pages, 9389 KiB  
Article
Evaluating Coupling Security and Joint Risks in Northeast China Agricultural Systems Based on Copula Functions and the Rel–Cor–Res Framework
by Huanyu Chang, Yong Zhao, Yongqiang Cao, He Ren, Jiaqi Yao, Rong Liu and Wei Li
Agriculture 2025, 15(13), 1338; https://doi.org/10.3390/agriculture15131338 - 21 Jun 2025
Cited by 2 | Viewed by 458
Abstract
Ensuring the security of agricultural systems is essential for achieving national food security and sustainable development. Given that agricultural systems are inherently complex and composed of coupled subsystems—such as water, land, and energy—a comprehensive and multidimensional assessment of system security is necessary. This [...] Read more.
Ensuring the security of agricultural systems is essential for achieving national food security and sustainable development. Given that agricultural systems are inherently complex and composed of coupled subsystems—such as water, land, and energy—a comprehensive and multidimensional assessment of system security is necessary. This study focuses on Northeast China, a major food-producing region, and introduces the concept of agricultural system coupling security, defined as the integrated performance of an agricultural system in terms of resource adequacy, internal coordination, and adaptive resilience under external stress. To operationalize this concept, a coupling security evaluation framework is constructed based on three key dimensions: reliability (Rel), coordination (Cor), and resilience (Res). An Agricultural System Coupling Security Index (AS-CSI) is developed using the entropy weight method, the Criteria Importance Through Intercriteria Correlation (CRITIC) method, and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, while obstacle factor diagnosis is employed to identify key constraints. Furthermore, bivariate and trivariate Copula models are used to estimate joint risk probabilities. The results show that from 2001 to 2022, the AS-CSI in Northeast China increased from 0.38 to 0.62, indicating a transition from insecurity to relative security. Among the provinces, Jilin exhibited the highest CSI due to balanced performance across all Rel-Cor-Res dimensions, while Liaoning experienced lower Rel, hindering its overall security level. Five indicators, including area under soil erosion control, reservoir storage capacity per capita, pesticide application amount, rural electricity consumption per capita, and proportion of agricultural water use, were identified as critical threats to regional agricultural system security. Copula-based risk analysis revealed that the probability of Rel–Cor reaching the relatively secure threshold (0.8) was the highest at 0.7643, and the probabilities for Rel–Res and Cor–Res to reach the same threshold were lower, at 0.7164 and 0.7318, respectively. The probability of Rel–Cor-Res reaching the relatively secure threshold (0.8) exceeds 0.54, with Jilin exhibiting the highest probability at 0.5538. This study provides valuable insights for transitioning from static assessments to dynamic risk identification and offers a scientific basis for enhancing regional sustainability and economic resilience in agricultural systems. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

16 pages, 266 KiB  
Review
Roles of Organic Agriculture for Water Optimization in Arid and Semi-Arid Regions
by Shikha Sharma, Matt A. Yost and Jennifer R. Reeve
Sustainability 2025, 17(12), 5452; https://doi.org/10.3390/su17125452 - 13 Jun 2025
Viewed by 985
Abstract
Water scarcity is a critical challenge in arid and semi-arid regions, where agricultural water consumption accounts for a significant portion of freshwater use. Conventional agriculture (CA) methods with high reliance on chemical and mechanical inputs often exacerbate this issue through soil degradation and [...] Read more.
Water scarcity is a critical challenge in arid and semi-arid regions, where agricultural water consumption accounts for a significant portion of freshwater use. Conventional agriculture (CA) methods with high reliance on chemical and mechanical inputs often exacerbate this issue through soil degradation and water loss. This review aims to examine how different organic practices, such as mulching, cover cropping, composting, crop rotation, and no-till (NT) in combination with precision technologies, can contribute to water optimization, and it discusses the opportunities and challenges for the adoption and implementation of those practices. Previous findings show that organic agriculture (OA) may outperform CA in drought conditions. However, the problems of weed management in organic NT, trade-offs in cover crop biomass and moisture conservation, limited access to irrigation technologies, lack of awareness, and certification barriers challenge agricultural resilience and sustainability. Since the outcomes of OA practices depend on the crop type, local environment, and accessibility of knowledge and inputs, further context-specific research is needed to refine a scalable solution that maintains both productivity and resilience. Full article
(This article belongs to the Special Issue Effects of Soil and Water Conservation on Sustainable Agriculture)
23 pages, 1892 KiB  
Review
A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America
by Gamal El Afandi, Muhammad Irfan, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Urban Sci. 2025, 9(6), 214; https://doi.org/10.3390/urbansci9060214 - 10 Jun 2025
Viewed by 1841
Abstract
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is [...] Read more.
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is further aggravated by the increasing utilization of available open spaces for residential and industrial development, leading to heightened energy consumption, elevated pollution levels, and increased carbon emissions, all of which negatively affect public health. The primary objective of this review article is to provide a comprehensive evaluation of current research, with a particular focus on the innovative use of residual biomass from urban vegetation for biochar production in the United States. This research entails an exhaustive review of existing literature to assess the implementation of a carbon-negative wood biomass biochar system as a strategic approach to sustainable urban management. By transforming urban wood waste—including tree trimmings, construction debris, and storm-damaged timber—into biochar through pyrolysis, a thermochemical process that sequesters carbon while generating renewable energy, we can leverage this valuable resource. The resulting biochar offers a range of co-benefits: it enhances soil health, improves water retention, reduces stormwater runoff, and lowers greenhouse gas emissions when applied in urban green spaces, agriculture, and land restoration projects. This review highlights the advantages and potential of converting urban wood waste into biochar while exploring how municipalities can strengthen their green ecosystems. Furthermore, it aims to provide a thorough understanding of how the utilization of woody biomass biochar can contribute to mitigating urban carbon emissions across the United States. Full article
(This article belongs to the Special Issue Sustainable Energy Management and Planning in Urban Areas)
Show Figures

Figure 1

Back to TopTop