Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = soil insects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 718 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
8 pages, 405 KiB  
Brief Report
Characterization of DNA Viruses in Hindgut Contents of Protaetia brevitarsis Larvae
by Jean Geung Min, Namkyong Min, Binh T. Nguyen, Rochelle A. Flores and Dongjean Yim
Insects 2025, 16(8), 800; https://doi.org/10.3390/insects16080800 - 1 Aug 2025
Viewed by 264
Abstract
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in [...] Read more.
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in animal health and homeostasis. We previously conducted a comparative analysis of the gut microbiota of third-instar larvae of P. brevitarsis obtained from five different farms and found significant differences in the composition of the gut bacterial microbiota between farms. To better understand the gut microbiota, the composition of DNA viruses in the hindgut contents of P. brevitarsis larvae obtained from five farms was investigated using metagenomic sequencing in this study. The β-diversity was significantly different between metagenomic data obtained from the five farms (PERMANOVA, pseudo-F = 46.95, p = 0.002). Family-based taxonomic analysis indicated that the relative abundance of viruses in the gut overall metagenome varied significantly between farms, with viral reads comprising approximately 41.2%, 15.0%, 4.3%, 4.0%, and 1.6% of metagenomic sequences from the farms Tohamsan gumbengi farm (TO), Secomnalagum gumbengi (IS), Gumbengi brothers (BR), Kyungpook farm (KB), and Jhbio (JH), respectively. More than 98% of the DNA viruses in the hindgut were bacteriophages, mainly belonging to the Siphoviridae family. At the species level, Phage Min1, infecting the genus Microbacterium, was detected in all farms, and it was the most abundant bacteriophage in intestinal microbiota, with a prevalence of 0.9% to 29.09%. The detected eukaryotic DNA viruses accounted for 0.01% to 0.06% of the intestinal microbiota and showed little or no relationship with insect viruses. Therefore, they most likely originated from contaminated feed or soil. These results suggest that the condition of substrates used as feed is more important than genetic factors in shaping the intestinal viral microbiota of P. brevitarsis larvae. These results can be used as reference data for understanding the hindgut microbiota of P. brevitarsis larvae and, more generally, the gut virome of insects. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

13 pages, 513 KiB  
Article
Impact of Dietary Inputs on Carbapenem Resistance Gene Dynamics and Microbial Safety During Bioconversion of Agri-Food Waste and Anaerobic Digestate by Hermetia illucens Larvae
by Andrea Marcelli, Alessio Ilari, Vesna Milanović, Ester Foppa Pedretti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Giorgia Rampanti, Andrea Osimani, Cristiana Garofalo and Lucia Aquilanti
Genes 2025, 16(8), 907; https://doi.org/10.3390/genes16080907 - 29 Jul 2025
Viewed by 211
Abstract
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of [...] Read more.
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of these genes and opportunistic pathogens, raises important safety concerns. This study aimed to assess the influence of different agri-food-based diets on Enterobacteriaceae loads and the CRG occurrence during the bioconversion process. Methods: Four experimental diets were formulated from agri-food residues and anaerobic digestate: Diet 1 (peas and chickpea waste), Diet 2 (peas and wheat waste), Diet 3 (onion and wheat waste), and Diet 4 (wheat waste and digestate). Enterobacteriaceae were quantified by viable counts, while five CRGs (blaKPC, blaNDM, blaOXA-48, blaVIM, and blaGES) were detected and quantified using quantitative PCRs (qPCRs). Analyses were performed on individual substrates, formulated diets, larvae (before and after bioconversion), and frass. Results: Plant-based diets sustained moderate Enterobacteriaceae loads. In contrast, the digestate-based diet led to a significant increase in Enterobacteriaceae in both the frass and mature larvae. CRGs were detected only in legume-based diets: blaVIM and blaGES were found in both mature larvae and frass, while blaOXA-48 and blaKPC were found exclusively in either larvae or frass. No CRGs were detected in onion- or digestate-based diets nor in young larvae or diet inputs. Conclusions: The findings suggest that the diet composition may influence the proliferation of Enterobacteriaceae and the persistence of CRGs. Careful substrate selection and process monitoring are essential to minimize antimicrobial resistance risks in insect-based bioconversion systems. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3186 KiB  
Article
Distribution, Characterization, and Pathogenicity of Entomopathogenic Nematodes in Agricultural Crops in Amazcala, Querétaro
by Gobinath Chandrakasan, Mariana Beatriz Ávila López, Markus Gastauer, Genaro Martin Soto Zarazua, Arantza Elena Sánchez Gutiérrez and Betsie Martinez Cano
Agriculture 2025, 15(15), 1603; https://doi.org/10.3390/agriculture15151603 - 25 Jul 2025
Viewed by 299
Abstract
This study investigates the potential of entomopathogenic nematodes (EPNs) as biological control agents by exploring their occurrence and diversity in Amazcala, Querétaro. The aim was to characterise their distribution and evaluate their pathogenicity against insect pests. Soil samples were collected from various agricultural [...] Read more.
This study investigates the potential of entomopathogenic nematodes (EPNs) as biological control agents by exploring their occurrence and diversity in Amazcala, Querétaro. The aim was to characterise their distribution and evaluate their pathogenicity against insect pests. Soil samples were collected from various agricultural lands, followed by laboratory isolation and the molecular identification of EPN species. Morphological and genetic analyses confirmed the presence of several species with distinct pathogenic profiles. Pathogenicity assays using the larval stages of Galleria mellonella and Tenebrio molitor revealed that Heterorhabditis bacteriophora and Heterorhabditis atacamensis exhibited significant virulence, with Galleria mellonella being more susceptible. Among the 12 recovered EPN isolates, three strains—AMZX05 (Heterorhabditis atacamensis), AMZX10 (Heterorhabditis bacteriophora), and AMZX13 (Heterorhabditis atacamensis)—demonstrated particularly high pathogenic potential. These strains represent promising candidates for biological control and could contribute to sustainable integrated pest management (IPM) strategies. Further research is recommended to optimise their application across diverse agroecosystems. Full article
(This article belongs to the Special Issue Advances in Biological Pest Control in Agroecosystems)
Show Figures

Figure 1

12 pages, 1597 KiB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 297
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

18 pages, 4047 KiB  
Article
A Methodological Approach for the Integrated Assessment of the Condition of Field Protective Forest Belts in Southern Dobrudzha, Bulgaria
by Yonko Dodev, Georgi Georgiev, Margarita Georgieva, Veselin Ivanov and Lyubomira Georgieva
Forests 2025, 16(7), 1184; https://doi.org/10.3390/f16071184 - 18 Jul 2025
Viewed by 188
Abstract
A system of field protective forest belts (FPFBs) was created in the middle of the 20th century in Southern Dobrudzha (Northern Bulgaria) to reduce wind erosion, improve soil moisture storage, and increase agricultural crop yields. Since 2020, prolonged climatic drought during growing seasons [...] Read more.
A system of field protective forest belts (FPFBs) was created in the middle of the 20th century in Southern Dobrudzha (Northern Bulgaria) to reduce wind erosion, improve soil moisture storage, and increase agricultural crop yields. Since 2020, prolonged climatic drought during growing seasons and the advanced age of trees have adversely impacted the health status of planted species and resulted in the decline and dieback of the FPFBs. Physiologically stressed trees have become less able to resist pests, such as insects and diseases. In this work, an original new methodology for the integrated assessment of the condition of FPFBs and their protective capacity is presented. The presented methods include the assessment of structural and functional characteristics, as well as the health status of the dominant tree species. Five indicators were identified that, to the greatest extent, present the ability of forest belts to perform their protective functions. Each indicator was evaluated separately, and then an overlay analysis was applied to generate an integrated assessment of the condition of individual forest belts. Three groups of FPFBs were differentiated according to their condition: in good condition, in moderate condition, and in bad condition. The methodology was successfully tested in Southern Dobrudzha, but it could be applied to other regions in Bulgaria where FPFBs were planted, regardless of their location, composition, origin, and age. This methodological approach could be transferred to other countries after adapting to their geo-ecological and agroforest specifics. The methodological approach is an informative and useful tool to support decision-making about FPFB management, as well as the proactive planning of necessary forestry activities for the reconstruction of degraded belts. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

16 pages, 1111 KiB  
Article
Improvement of Bacillus thuringiensis Protein Contents with Increased Nitrogen Fertilizer Application in Gossypium hirsutum
by Yuting Liu, Fuqin Zhou, Mao Hong, Shaoyang Wang, Yuan Li, Shu Dong, Yuan Chen, Dehua Chen and Xiang Zhang
Agronomy 2025, 15(7), 1730; https://doi.org/10.3390/agronomy15071730 - 18 Jul 2025
Viewed by 282
Abstract
The insect resistance expression of Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) is unstable due to temporal and spatial variations in the Bt protein content in different organs and growth stages. The aim of this study was to improve the Bt protein [...] Read more.
The insect resistance expression of Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) is unstable due to temporal and spatial variations in the Bt protein content in different organs and growth stages. The aim of this study was to improve the Bt protein content in cotton flowers and investigate the underlying physiological mechanism using biochemical analytical methods. In this study, a split-plot design with three replications was used. The main plots included two Bt cotton cultivars (a conventional cultivar, Sikang1 (S1), and a hybrid cultivar, Sikang3 (S3)), while five soil nitrogen application levels (CK (control check): normal level; N1: 125% of the CK; N2: 150% of the CK; N3: 175% of the CK; N4: 200% of the CK) constituted the subplots. The Bt protein content and related nitrogen metabolism parameters were measured. We found that the Bt protein content increased and then decreased with increasing nitrogen rates. It reached its maximum at N3, with significant increases of 71.86% in 2021 and 39.36% in 2022 compared to the CK. Correlation analysis indicated that the Bt protein content was significantly positively related to the soluble protein and free amino acid contents, as well as the GPT (glutamic pyruvic transaminase), GOT (glutamic oxaloacetic transaminase), GS (glutamine synthetase) and GOGAT (glutamate synthetase) activities. On the other hand, negative correlations were found between the Bt protein content and protease and peptidase activities. In addition, stepwise regression and path analysis indicated that the increased Bt protein content was mainly due to the enhanced GS and GOGAT activities. In summary, appropriately increasing nitrogen fertilizer application is a practical way to increase flower Bt protein content and insecticidal efficacy of Bt cotton. These findings provide an actionable agronomic strategy for sustaining Bt expression during the critical flowering period. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 1097 KiB  
Article
Reduced Soil Moisture Decreases Nectar Sugar Resources Offered to Pollinators in the Popular White Mustard (Brassica alba L.) Crop: Experimental Evidence from Poland
by Bożena Denisow, Sławomir Michałek, Monika Strzałkowska-Abramek and Urszula Bronowicka-Mielniczuk
Sustainability 2025, 17(14), 6550; https://doi.org/10.3390/su17146550 - 17 Jul 2025
Viewed by 349
Abstract
Climate change can severely impact plant-pollinator interactions and have serious effects on ecosystem services such as pollination. This study was carried out in 2023 and 2024, and it examined the effects of drought on flowering and nectar production in one cultivar of white [...] Read more.
Climate change can severely impact plant-pollinator interactions and have serious effects on ecosystem services such as pollination. This study was carried out in 2023 and 2024, and it examined the effects of drought on flowering and nectar production in one cultivar of white mustard (Brassica alba cv. Palma), an important entomophilous crop of the temperate zone with several attributes that make it promising for sustainable agricultural practices. Drought-stressed plants delayed the flowering time, shortened the flowering duration, and developed significantly fewer flowers. Nectar production in white mustard depends on soil moisture levels and short-term changes in meteorological conditions (e.g., air humidity, air temperature). At reduced soil moisture, the total sugar yield per plant decreased by 60%, compared to control plants, resulting in lower availability of caloric food resources, which should be considered when developing strategies supporting pollinators. Changes in floral traits resulted in differences in the frequency of insect visits, which may exert a negative impact on white mustard pollination under drought stress and may have indirect consequences for seed yield resulting from increased drought intensity associated with climate change. The results provide important data for the management of the white mustard crop and indicate the need for broader evaluation of cultivars to promote drought-resistant B. alba cultivars. Full article
Show Figures

Figure 1

15 pages, 2091 KiB  
Review
AI Roles in 4R Crop Pest Management—A Review
by Hengyuan Yang, Yuexia Jin, Lili Jiang, Jia Lu and Guoqi Wen
Agronomy 2025, 15(7), 1629; https://doi.org/10.3390/agronomy15071629 - 3 Jul 2025
Viewed by 1012
Abstract
Insect pests are a major threat to agricultural production, causing significant crop yield reductions annually. Integrated pest management (IPM) is well-studied, but its precise application in farmlands is still challenging due to variable weather, diverse insect behaviors, crop variability, and soil heterogeneity. Recent [...] Read more.
Insect pests are a major threat to agricultural production, causing significant crop yield reductions annually. Integrated pest management (IPM) is well-studied, but its precise application in farmlands is still challenging due to variable weather, diverse insect behaviors, crop variability, and soil heterogeneity. Recent advancements in Artificial Intelligence (AI) have shown the potential to revolutionize pest management by implementing 4R pest stewardship: right pest identification, right method selection, right control timing, and right action taken. This review explores the roles of AI technologies within the 4R framework, highlighting AI models for accurate pest identification, computer vision systems for real-time monitoring, predictive analytics for optimizing control timing, and tools for selecting and applying pest control measures. Innovations in remote sensing, UAV surveillance, and IoT-enabled smart traps further strengthen pest monitoring and intervention strategies. By integrating AI into 4R pest management, this study underscores the potential of precision agriculture to develop sustainable, adaptive, and highly efficient pest control systems. Despite these advancements, challenges persist in data availability, model generalization, and economic feasibility for widespread adoption. The lack of interpretability in AI models also makes some agronomists hesitant to adopt these technologies. Future research should focus on scalable AI solutions, interdisciplinary collaborations, and real-world validation to enhance AI-driven pest management in field crops. Full article
Show Figures

Figure 1

20 pages, 23317 KiB  
Article
Land Use and Land Cover (LULC) Mapping Accuracy Using Single-Date Sentinel-2 MSI Imagery with Random Forest and Classification and Regression Tree Classifiers
by Sercan Gülci, Michael Wing and Abdullah Emin Akay
Geomatics 2025, 5(3), 29; https://doi.org/10.3390/geomatics5030029 - 1 Jul 2025
Viewed by 607
Abstract
The use of Google Earth Engine (GEE), a cloud-based computing platform, in spatio-temporal evaluation studies has increased rapidly in natural sciences such as forestry. In this study, Sentinel-2 satellite imagery and Shuttle Radar Topography Mission (SRTM) elevation data and image classification algorithms based [...] Read more.
The use of Google Earth Engine (GEE), a cloud-based computing platform, in spatio-temporal evaluation studies has increased rapidly in natural sciences such as forestry. In this study, Sentinel-2 satellite imagery and Shuttle Radar Topography Mission (SRTM) elevation data and image classification algorithms based on two machine learning techniques were examined. Random Forest (RF) and Classification and Regression Trees (CART) were used to classify land use and land cover (LULC) in western Oregon (USA). To classify the LULC from the spectral bands of satellite images, a composition consisting of vegetation difference indices NDVI, NDWI, EVI, and BSI, and a digital elevation model (DEM) were used. The study area was selected due to a diversity of land cover types including research forest, botanical gardens, recreation area, and agricultural lands covered with diverse plant species. Five land classes (forest, agriculture, soil, water, and settlement) were delineated for LULC classification testing. Different spatial points (totaling 75, 150, 300, and 2500) were used as training and test data. The most successful model performance was RF, with an accuracy of 98% and a kappa value of 0.97, while the accuracy and kappa values for CART were 95% and 0.94, respectively. The accuracy of the generated LULC maps was evaluated using 500 independent reference points, in addition to the training and testing datasets. Based on this assessment, the RF classifier that included elevation data achieved an overall accuracy of 92% and a kappa coefficient of 0.90. The combination of vegetation difference indices with elevation data was successful in determining the areas where clear-cutting occurred in the forest. Our results present a promising technique for the detection of forests and forest openings, which was helpful in identifying clear-cut sites. In addition, the GEE and RF classifier can help identify and map storm damage, wind damage, insect defoliation, fire, and management activities in forest areas. Full article
Show Figures

Figure 1

25 pages, 931 KiB  
Review
Use, Risk and Revalorization of Veterinary Antibiotics: A Canadian Perspective
by Laurence Auger, Linda Saucier, Marie-Lou Gaucher, Grant W. Vandenberg, Antony T. Vincent, Alexandre Thibodeau and Marie-Hélène Deschamps
Antibiotics 2025, 14(7), 665; https://doi.org/10.3390/antibiotics14070665 - 30 Jun 2025
Viewed by 783
Abstract
The extensive use of veterinary antibiotics in livestock production is a growing concern, particularly in terms of environmental sustainability and health security. This review presents the case of veterinary antibiotic use and regulations in Canada before exploring a potential novel avenue for agricultural [...] Read more.
The extensive use of veterinary antibiotics in livestock production is a growing concern, particularly in terms of environmental sustainability and health security. This review presents the case of veterinary antibiotic use and regulations in Canada before exploring a potential novel avenue for agricultural antibiotics waste up-cycling. The impact of the widespread use of antibiotics in animal husbandry is reviewed, and the dissemination routes of antibiotic residues and antibiotic-resistant bacteria from farms to the environment are explored to identify potential weaknesses in the management of veterinary antibiotics. The presence of antibiotic residues in livestock products and manure poses significant challenges, as these residues contribute to the development of antibiotic-resistant bacteria, which poses a threat to both the environment and health. The review examines the fate of animal waste contaminated with antibiotics in the environment, exploring the impact of management practices on antibiotic degradation and their persistence in soil and water systems. Additionally, the potential risks to human and animal health are addressed, emphasizing the links between antibiotic residues in the environment and the rising threat of antimicrobial resistance. The last part of this review focuses on exploring how up-cycling veterinary antibiotic residues in insects for feed and fertilizers could contribute to mitigating these risks. Overall, this review calls for more integrated solutions that balance the need for antibiotics in animal agriculture with the prevention of environmental contamination and the antibiotic resistance threat, while meeting the rising demand for animal proteins, highlighting the need for more region-specific surveillance programs. Full article
Show Figures

Graphical abstract

21 pages, 1321 KiB  
Review
Exploration of Multi-Source Lignocellulose-Degrading Microbial Resources and Bioaugmentation Strategies: Implications for Rumen Efficiency
by Xiaokang Lv, Zhanhong Qiao, Chao Chen, Jinling Hua and Chuanshe Zhou
Animals 2025, 15(13), 1920; https://doi.org/10.3390/ani15131920 - 29 Jun 2025
Viewed by 302
Abstract
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive [...] Read more.
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive tracts, forest soil, and microbial populations in papermaking processes. The rumen of ruminants harbors a diverse range of microbial species, making it a promising source of lignocellulose-degrading microorganisms. Exploring alternative systems like insect intestines and forest soil is essential for future research. Current studies primarily rely on traditional microbial isolation techniques to identify lignocellulose-degrading strains, underscoring the necessity to transition to utilizing microbial culturomics and genome-editing technologies for discovering and manipulating cellulose-degrading microbes. This review provides an overview of lignocellulose-degrading microbial communities from diverse environments, encompassing bacterial and fungal populations. It also delves into the use of metagenomic, metatranscriptomic, and metaproteomic approaches to pinpoint highly efficient cellulase genes, along with the application of genome-editing tools for engineering lignocellulose-degrading microorganisms. The primary objective of this review is to offer insights for further exploration of potential lignocellulose-degrading microbial resources and high-performance cellulase genes to enhance roughage utilization in ruminant rumen ecosystems. Full article
Show Figures

Figure 1

25 pages, 800 KiB  
Review
Microbial Solutions in Agriculture: Enhancing Soil Health and Resilience Through Bio-Inoculants and Bioremediation
by Rahul Kumar, Beatrice Farda, Amedeo Mignini, Rihab Djebaili, Leonard Koolman, Alivia Paul, Subhankar Mondal, Joy M. Joel, Aditi Pandit, Periyasamy Panneerselvam, Marika Pellegrini and Debasis Mitra
Bacteria 2025, 4(3), 28; https://doi.org/10.3390/bacteria4030028 - 24 Jun 2025
Cited by 1 | Viewed by 874
Abstract
Soil microbes are important for maintaining agricultural ecosystems by promoting nutrient cycling, plant growth, and soil resilience. Microbial-based inoculants, such as bio-inoculants and bioremediation agents, have been identified as suitable means to promote soil health, reduce environmental deterioration, and achieve sustainable agriculture. Bio-inoculants, [...] Read more.
Soil microbes are important for maintaining agricultural ecosystems by promoting nutrient cycling, plant growth, and soil resilience. Microbial-based inoculants, such as bio-inoculants and bioremediation agents, have been identified as suitable means to promote soil health, reduce environmental deterioration, and achieve sustainable agriculture. Bio-inoculants, such as biofertilizers and biopesticides, promote nutrient availability, plant growth, and chemical input dependency reduction. Diverse microbial populations, especially plant growth-promoting bacteria (PGPB), enhance resistance by promoting a symbiotic association with plants and inducing natural resistance against insects. Bioremediation, the second significant microbial intervention, is the use of microorganisms for detoxifying and rehabilitating polluted soils. Methods effectively degrade organic pollutants, immobilize heavy metals, and mitigate the toxic effects of industrial and agricultural pollutants. Recent advances in microbial ecology and biotechnology, such as metagenomics, have transformed the knowledge of microbial soil communities, and tailor-made microbial formulations and monitoring equipment may be developed to maximize their activity. Though promising, environmental heterogeneity, scalability, and lack of field-based evidence constrain their widespread application. Multidimensional applications of microbial solutions in agroecology are explored in this review, with a focus on their potential in maintaining soil health, crop production, and environmental sustainability. It also addresses the application of bioremediation and microbial inoculants in agroecosystems and technological innovations with future research objectives. Microbial innovation to shape the soil microbiome offers a valid tool for addressing global challenges in agriculture, food security, and ecological resilience in the context of climate change. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Graphical abstract

20 pages, 2544 KiB  
Article
The Possibilities of Using Non-Traditional Raw Materials for Fertilizing Products
by Goda Gudinskaitė and Rasa Paleckienė
Sustainability 2025, 17(13), 5710; https://doi.org/10.3390/su17135710 - 20 Jun 2025
Viewed by 511
Abstract
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable [...] Read more.
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable agricultural practices. These practices include replacing synthetic fertilizers with more natural alternatives and substituting chemical plant protection products with biological solutions. A noteworthy prospect in this context is the growing insect farming industry, which opens up new possibilities for the food industry via waste processing. In Lithuania, insect farming is also expanding rapidly, with companies producing several hundred tons of frass (insect excrement and residues from growing media) every year. As insect farming is projected to increase rapidly over the next decade, the amount of frass produced will also increase. Therefore, it is necessary to find sustainable ways to use this byproduct. Frass is emerging as an important area of research and practical innovation with great potential for fertilizer production. Initial studies show that frass can contain up to 6% nitrogen, 2% phosphorus and 3% potassium, making it a valuable alternative to synthetic fertilizers. The chitin content (nearly 14%) in frass not only improves the soil but also improves plant resistance to disease. In addition, its organic composition improves soil structure and microbiological activity, contributing in the long term to increasing soil fertility. This paper analyses different samples of frass, assesses their physical and chemical properties and discusses the possible applications of these products in the context of sustainable agriculture. The studies show that frass can be a valuable raw material for fertilizer production, potentially reducing the need for synthetic fertilizers and contributing to the reduction in agricultural waste. By combining economic benefits with ecological sustainability, this research contributes to wider sustainable agricultural innovation. Full article
Show Figures

Figure 1

13 pages, 1340 KiB  
Article
The Influence of Plant Protection on Carabids (Coleoptera, Carabidae) in Potato Crops Cultivated in a Four-Year Rotation
by Agnieszka Kosewska, Renata Kędzior, Dariusz Drożdżyński, Mariusz Nietupski, Emilia Ludwiczak and Beata Bąk
Appl. Sci. 2025, 15(12), 6572; https://doi.org/10.3390/app15126572 - 11 Jun 2025
Viewed by 391
Abstract
Ground beetles (Coleoptera, Carabidae) are common predators found in agricultural ecosystems. They feed on crop pests and help reduce pest population. Additionally, they are used as bioindicators to determine the impact of human activities on entomofauna and habitat conditions. The aim of this [...] Read more.
Ground beetles (Coleoptera, Carabidae) are common predators found in agricultural ecosystems. They feed on crop pests and help reduce pest population. Additionally, they are used as bioindicators to determine the impact of human activities on entomofauna and habitat conditions. The aim of this study was to investigate the ground beetles that inhabit chemically protected (CP) and non-chemically protected (NCP) potato crops and to assess the impact of pesticide use on these beneficial insects. This study was conducted in Poland, on potato fields where ground beetles were caught during four-year crop rotation cycles in 2004, 2008, 2012, and 2016. Two fields with potato crops were chosen: one without chemical protection and the other with chemical protection. Soil traps were used to catch insects, resulting in 7095 individuals of Carabidae, belonging to 41 species, caught throughout the study. The abundance and species richness of ground beetles fluctuated depending on the year of the study and the type of crop protection. Results showed that pesticide use in potato crops decreased ground beetle abundance while species richness remained unaffected. Furthermore, the use of chemical plant protection (CP) induced changes in some life traits of the carabids, leading to a decrease in the abundance of hemizoophages and autumn-breeding carabids. The abundance of the other ecological groups of Carabidae was also year-dependent. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

Back to TopTop