Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = soil fauna community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2980 KiB  
Article
Assessing Two Decades of Organic Farming: Effects on Soil Heavy Metal Concentrations and Biodiversity for Sustainable Management
by Yizhi Chen, Jianning Guo, Hanyue Zhao, Guangyu Qu, Siqi Han and Caide Huang
Sustainability 2025, 17(15), 6817; https://doi.org/10.3390/su17156817 - 27 Jul 2025
Viewed by 314
Abstract
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional [...] Read more.
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional farming systems. A comparative analysis was conducted on 24 plot soils from two paired organic and conventional farm systems in Beijing, each managed continuously for over 20 years. Our results revealed that soils under organic management consistently contained 10.8% to 73.7% lower heavy metals, along with reduced geo-accumulation indices (Igeo, a standardized metric for soil contamination assessment), indicating decreased contamination risks. In terms of soil fauna, while conventional soils showed higher Collembola abundance, organic farming significantly enhanced Collembola richness and diversity by 20.6% to 55.0%. Microbial sequencing likewise revealed enhanced richness and diversity of bacteria and fungi in organic soils. These microbial communities also displayed shifts in dominant taxa and more stable co-occurrence networks under organic management. Principal component analysis and Mantel tests identified soil pH and nutrients as key drivers of soil biodiversity, while heavy metals also imposed negative influences. Collectively, these findings demonstrate that long-term organic farming not only mitigates environmental risks associated with soil contaminants but also promotes belowground ecological integrity by supporting biodiversity of soil fauna and microbiota. This study highlights the ecological significance of sustained organic practices and provides critical insights for advancing sustainable agricultural developments. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Graphical abstract

24 pages, 2639 KiB  
Review
Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review
by Alina Bărbulescu and Kamal Hosen
Toxics 2025, 13(7), 587; https://doi.org/10.3390/toxics13070587 - 14 Jul 2025
Viewed by 1276
Abstract
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to [...] Read more.
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to air, water, and soil degradation and are linked to severe health conditions in nearby populations, including respiratory disorders, cardiovascular diseases, and increased mortality rates. Noise pollution is also a significant issue, inducing auditory diseases that affect most workers in cement plants, and disturbing the population living in the neighborhoods and fauna behavior. This review explores the pollution paths and the multifaceted impacts of cement production on the environment. It also highlights the social challenges faced by communities, underscoring the urgent need for stricter environmental policies and the adoption of greener technologies to mitigate the adverse effects of cement production on both the environment and human health. Full article
Show Figures

Graphical abstract

20 pages, 6716 KiB  
Article
Floodplain Forest Soil Nematode Communities as Influenced by Non-Native Acer negundo L. Invasion
by Marek Renčo, Andrea Čerevková and Erika Gömöryová
Diversity 2025, 17(6), 376; https://doi.org/10.3390/d17060376 - 26 May 2025
Viewed by 464
Abstract
Invasive plants can significantly alter the composition and functioning of soil ecosystems, which in turn affects soil fauna such as microorganisms; mesofauna including mites, springtails, nematodes, and insects; and other invertebrates. We used clusters of three different tree species to investigate how they [...] Read more.
Invasive plants can significantly alter the composition and functioning of soil ecosystems, which in turn affects soil fauna such as microorganisms; mesofauna including mites, springtails, nematodes, and insects; and other invertebrates. We used clusters of three different tree species to investigate how they affect the composition of belowground soil nematode communities. The clusters included Acer negundo (L.) (an invasive, non-native species), Fraxinus excelsior (L.), and Alnus glutinosa (Gaertn.) (both as native representatives) in floodplain forest habitats of the Morava River. We investigated the families, genera, trophic groups, and functional guilds of soil nematodes in each tree cluster to assess the usefulness of nematodes as indicators of the impact of alien tree species on native communities. The study was complemented by measuring basic soil physico-chemical properties. The data show that nematode communities were not sensitive to A. negundo invasion, as clusters of invasive trees had similar nematode abundance, genus richness, diversity, family and genus composition, and trophic structure compared to species-specific clusters of two native tree species. A cumulative total of 96 nematode genera, belonging to 52 families, were recorded in the investigated floodplain forest sites. The most abundant families across all clusters were Alaimidae, Cephalobidae, Hoplolaimidae, and Rhabditidae for all tree clusters. Among the genera, Helicotylenchus, Pratylenchus, Paratylenchus (as obligate plant parasites), Filenchus, and Malenchus (as facultative plant parasites), as well as Acrobeloides, Eucephalobus, Plectus, and Rhabditis (as bacterivores), were the most dominant taxa. The measured soil properties did not differ significantly among tree species (p < 0.05). Nevertheless, redundancy analysis identified a significant correlation between soil moisture content and abundance of several nematode genera, nematode trophic groups, and functional guilds. The results indicate that the presence of invasive ash-leaved maple trees in the studied floodplain forests had no adverse effect on the diversity and functional structure of soil nematode communities. This study offers initial insights into nematode communities in Acer negundo invaded habitats, but further studies are needed to verify these findings. Full article
Show Figures

Figure 1

15 pages, 1095 KiB  
Article
Virgin and Photoaged Polyethylene Microplastics Have Different Effects on Collembola and Enchytraeids
by Elise Quigley, Ana L. Patrício Silva, Sónia Chelinho, Maria J. I. Briones and Jose P. Sousa
Environments 2025, 12(6), 175; https://doi.org/10.3390/environments12060175 - 25 May 2025
Viewed by 608
Abstract
Wariness is increasing about resident times of microplastics (MPs) in soils; however, limited knowledge is available on ultraviolet (UV) light exposure of MPs to soil fauna. This study investigated the effects of virgin and photoaged polyethylene microplastics (PE MPs) on soil mesofauna (enchytraeids [...] Read more.
Wariness is increasing about resident times of microplastics (MPs) in soils; however, limited knowledge is available on ultraviolet (UV) light exposure of MPs to soil fauna. This study investigated the effects of virgin and photoaged polyethylene microplastics (PE MPs) on soil mesofauna (enchytraeids and collembolans) at environmentally relevant concentrations in a microcosm incubation experiment. Ten individuals of each Enchytraeus crypticus and Folsomia candida and twenty Proisotoma minuta were exposed separately to virgin and photoaged PE MPs (40–48 μm) admixed in agricultural soil (0.2–2000 mg/kg) to evaluate reproduction and survival. After 28 d of exposure to photoaged PE MPs, there was a moderate survival reduction but reproduction promotion of E. crypticus. Contrastingly, F. candida exhibited an opposite trend, with survival enhancement and reproduction depression rates when exposed to both PE MP contaminated soils. However, P. minuta was the only species with significant apical endpoint changes after PE MP exposure; at 20 mg/kg photoaged and 2000 mg/kg virgin PE MP exposure, there was a 34% and 31% decrease in survival, respectively, and at 200 mg/kg photoaged PE MP exposure, an increase of 39% for reproduction. PE MPs had contrasting impacts on soil mesofauna species, which highlights the need to account for these variable results when understanding the repercussions of MP pollution on community assemblage and population dynamics in soils. Full article
(This article belongs to the Special Issue Ecotoxicity of Microplastics)
Show Figures

Figure 1

15 pages, 2796 KiB  
Article
Soil Fauna-Indicators of Ungrazed Versus Grazed Grassland Ecosystems in Romania
by Minodora Manu, Raluca Ioana Băncilă and Marilena Onete
Diversity 2025, 17(5), 323; https://doi.org/10.3390/d17050323 - 29 Apr 2025
Viewed by 487
Abstract
In order to establish the influence of grazing regime on soil fauna communities, a complex study was conducted on eight mountain grasslands in Romania. The grassland sites were grouped by management regime: ungrazed or intensely grazed by sheep. Eight environmental factors were measured, [...] Read more.
In order to establish the influence of grazing regime on soil fauna communities, a complex study was conducted on eight mountain grasslands in Romania. The grassland sites were grouped by management regime: ungrazed or intensely grazed by sheep. Eight environmental factors were measured, both abiotic (soil acidity, soil resistance at penetration, soil and air humidity, soil and air temperature, and soil electrical conductivity) and biotic (vegetation coverage). There was significant variability in the average values of these factors at the microhabitat level (between all grasslands investigated). Analysis of eighty soil samples allowed for the identification of sixteen soil fauna taxa, which constituted the database for statistical processing. The community status of these soil invertebrate faunas was mainly evaluated using three parameters: numerical abundance, taxa richness, and Shannon–Wiener index of diversity. Collembola and Oribatida were the most dominant taxa. The numerical abundance and taxa diversity recorded high values in ungrazed grasslands. Soil resistance at penetration, vegetation coverage, and soil pH influenced the numerical abundance of soil fauna communities significantly. Grassland management influenced the composition of soil invertebrates in both regimes, with Chilopoda, Staphylinidae, Diplopoda, and Enchytraeidae clearly preferring ungrazed ecosystems, whilst Mesostigmata was much commoner in grazed sites. The study revealed that correlations between the species composition of soil communities and environmental parameters under differing management regimes (ungrazed vs. grazed), demonstrated that these invertebrates can be used as bioindicators in such terrestrial ecosystems. Full article
Show Figures

Figure 1

21 pages, 5924 KiB  
Review
Integrating Strategies Aimed at Biodiversity and Water Resource Sustainability in the Amazonian Region
by Samuel Carvalho De Benedicto, Regina Márcia Longo, Denise Helena Lombardo Ferreira, Cibele Roberta Sugahara, Admilson Írio Ribeiro, Juan Arturo Castañeda-Ayarza and Luiz Henrique Vieira da Silva
Sustainability 2025, 17(9), 4010; https://doi.org/10.3390/su17094010 - 29 Apr 2025
Viewed by 1020
Abstract
The Amazonian region comprises a set of ecosystems that play an essential role in stabilizing global climate and regulating carbon and water cycles. However, several environmental issues of anthropogenic origin threaten climate stability in this region: agribusiness, illegal mining, illegal timber exports, pesticide [...] Read more.
The Amazonian region comprises a set of ecosystems that play an essential role in stabilizing global climate and regulating carbon and water cycles. However, several environmental issues of anthropogenic origin threaten climate stability in this region: agribusiness, illegal mining, illegal timber exports, pesticide use, and biopiracy, among others. These actions lead to deforestation, soil erosion, fauna biodiversity loss, water resource contamination, land conflicts, violence against indigenous peoples, and epidemics. The present study aims to feature the current degradation process faced by the Amazonian biome and identify strategic alternatives based on science to inhibit and minimize the degradation of its biodiversity and water resources. This applied research, based on a systematic review, highlighted the complexity, fragility, and importance of the functioning of the Amazonian ecosystem. Although activities such as mining and agriculture notoriously cause soil degradation, this research focused on the scenarios of biodiversity and water resource degradation. The dynamics of the current Amazon degradation process associated with human activity and climate change advancement were also described. Ultimately, the study emphasizes that, given the invaluable importance of the Amazon’s biodiversity and natural resources for global climate balance and food and water security, anthropogenic threats endanger its sustainability. Beyond the well-known human-induced impacts on the forest and life, the findings highlight the need for strategies that integrate forest conservation, sustainable land management, and public policies focused on the region’s sustainable development. These strategies, supported by partnerships, include reducing deforestation and burning, promoting environmental education, engaging local communities, enforcing public policies, and conducting continuous monitoring using satellite remote sensing technology. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

14 pages, 672 KiB  
Article
Taxonomic Diversity and Abundance of Soil Macrofauna in Temperate Forests Under Different Types of Forest Management: A Case Study in European Russia
by Daniil I. Korobushkin, Nina A. Pronina, Ruslan A. Saifutdinov, Polina A. Guseva, Sergey M. Tsurikov and Ksenia V. Dudova
Diversity 2025, 17(3), 216; https://doi.org/10.3390/d17030216 - 18 Mar 2025
Viewed by 671
Abstract
Soil fauna perform a plethora of vital ecological functions and are often used as indicators of ecosystem disturbances. Investigating their taxa, functional diversity, and abundance is essential to assess ecosystem resilience, detect environmental stress, and guide conservation efforts. In this study, we investigated [...] Read more.
Soil fauna perform a plethora of vital ecological functions and are often used as indicators of ecosystem disturbances. Investigating their taxa, functional diversity, and abundance is essential to assess ecosystem resilience, detect environmental stress, and guide conservation efforts. In this study, we investigated the taxonomic richness, diversity, and total and functional group abundance of soil macrofauna, as well as the environmental parameters of five model forests with different types of forest management (referred to as the “forest type”) within a temperate region of European Russia. These model forest types were subject to various types of forest management and were located in and around the Central Forest State Nature Biosphere Reserve (Tver Oblast, Russia): zonal forest (hereinafter referred to as the “zonal forest” treatment), forest disturbed by recreation (“recreational forest”), spruce forest monoculture (“monoculture”), secondary birch forest (“secondary forest”), and clear-cut site (“clear-cut”). We found that there was a significant difference in the total and average taxonomic richness of the macrofauna between the studied model forests, but no difference in mean abundance. The greatest difference was observed between the recreational (26 taxa, 11.2 ± 1.3 per site), monocultural (12 taxa, 4.8 ± 1.9 per site), and zonal (13 taxa, 4.5 ± 1.3 per site) forest types, while the macrofauna taxonomic composition was similar between the monocultural and control forests and significantly differed from that in the recreational and secondary forests and clear-cuts. Mobile taxa, mainly predators, were prevalent in the clear-cuts, while saprophages and phytophages dominated in the zonal forests and monocultures. The most important environmental factors influencing the macrofauna communities were the depth, mass, and composition of the litter, which depended on the presence of spruce (Picea abies), but not on soil parameters, the projective vegetation cover, or the abundance of microorganisms. Our study showed that anthropogenic disturbance in natural forests may not significantly alter the total abundance of the macrofauna, but it can impact the taxonomic composition and diversity of soil invertebrates. Therefore, greater attention should be given to analyzing functional and taxonomic diversity rather than relying solely on abundance data. Our findings highlight the importance of studying both the roles and diversity of soil species, not just their abundance, to better understand and protect natural ecosystems in the face of human impact. Full article
(This article belongs to the Section Biodiversity Loss & Dynamics)
Show Figures

Figure 1

24 pages, 3851 KiB  
Article
Euedaphic Rather than Hemiedaphic or Epedaphic Collembola Are More Sensitive to Different Climate Conditions in the Black Soil Region of Northeast China
by Chunbo Li, Shaoqing Zhang, Baifeng Wang, Zihan Ai, Sha Zhang, Yongbo Shao, Jing Du, Chenxu Wang, Sidra Wajid, Donghui Wu and Liang Chang
Insects 2025, 16(3), 275; https://doi.org/10.3390/insects16030275 - 5 Mar 2025
Viewed by 978
Abstract
Soil biodiversity is profoundly affected by variations in climate conditions and land use practices. As one of the major grain-producing areas in China, the belowground biodiversity of the black soil region of the Northeast is also affected by the variations in climate conditions [...] Read more.
Soil biodiversity is profoundly affected by variations in climate conditions and land use practices. As one of the major grain-producing areas in China, the belowground biodiversity of the black soil region of the Northeast is also affected by the variations in climate conditions and land use types. However, most of the previous studies have focused on aboveground biodiversity, and the research of soil biodiversity is limited. The main aim of this study was to investigate the effects of variations in climate conditions and land use practices on Collembola communities of different life forms in the black soil region of Northeast China. Here, we selected three climatic areas from high to low latitudes in the black soil region of the Northeast, with three variations in land use practices (soybean, maize, and rice) sampled in each area. We found that higher temperatures and higher humidity and land use practices from rice to soybean and maize are associated with a higher Collembola density and species richness. Specifically, the density and species richness of euedaphic Colmbola are higher in climate conditions with higher temperatures and humidity, while the density and species richness of all three life forms of Collembola are higher in land use practices from rice to soybean and maize. Additionally, we discovered that environmental factors and feeding resources (soil microorganisms) both have significant effects on Collembola communities, with environmental factors exerting a more substantial influence. Our results suggest that euedaphic Collembola are more vulnerable to climate differences than epedaphic and hemiedaphic Collembola. Consequently, this may alter the vertical distribution characteristics of soil fauna (e.g., increasing soil-dwelling fauna) as well as the ecological processes associated with soil fauna in different agricultural environments. Full article
(This article belongs to the Special Issue Diversity and Function of Collembola)
Show Figures

Figure 1

21 pages, 45648 KiB  
Article
A Big Data Approach for the Regional-Scale Spatial Pattern Analysis of Amazonian Palm Locations
by Matthew J. Drouillard and Anthony R. Cummings
Remote Sens. 2025, 17(5), 784; https://doi.org/10.3390/rs17050784 - 24 Feb 2025
Viewed by 564
Abstract
Arecaceae (palms) are an important resource for indigenous communities as well as fauna populations across Amazonia. Understanding the spatial patterns and the environmental factors that determine the habitats of palms is of considerable interest to rainforest ecologists. Here, we utilize remotely sensed imagery [...] Read more.
Arecaceae (palms) are an important resource for indigenous communities as well as fauna populations across Amazonia. Understanding the spatial patterns and the environmental factors that determine the habitats of palms is of considerable interest to rainforest ecologists. Here, we utilize remotely sensed imagery in conjunction with topography and soil attribute data and employ a generalized cluster identification algorithm, Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), to study the underlying patterns of palms in two areas of Guyana, South America. The results of the HDBSCAN assessment were cross-validated with several point pattern analysis methods commonly used by ecologists (the quadrat test for complete spatial randomness, Morista Index, Ripley’s L-function, and the pair correlation function). A spatial logistic regression model was generated to understand the multivariate environmental influences driving the placement of cluster and outlier palms. Our results showed that palms are strongly clustered in the areas of interest and that the HDBSCAN’s clustering output correlates well with traditional analytical methods. The environmental factors influencing palm clusters or outliers, as determined by logistic regression, exhibit qualitative similarities to those identified in conventional ground-based palm surveys. These findings are promising for prospective research aiming to integrate remote flora identification techniques with traditional data collection studies. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

15 pages, 1721 KiB  
Article
The Effect of the Vaccinium myrtillus L. Rhizosphere on the Maturity Index for Predatory Mites (Mesostigmata: Gamasina) in Assessing Anthropogenic Pollution of Forest Soils
by Gabriela Barczyk, Aleksandra Nadgórska-Socha and Marta Kandziora-Ciupa
Forests 2024, 15(12), 2245; https://doi.org/10.3390/f15122245 - 20 Dec 2024
Viewed by 695
Abstract
The soil’s biological quality and its functions are closely linked. They determine the ecological processes and ecosystem services. Therefore, the heavy metal contamination of forest soils, leading to their degradation, is a major international problem. Soil is a habitat for many organisms, and [...] Read more.
The soil’s biological quality and its functions are closely linked. They determine the ecological processes and ecosystem services. Therefore, the heavy metal contamination of forest soils, leading to their degradation, is a major international problem. Soil is a habitat for many organisms, and the strong correlations between soil properties, vegetation, and soil fauna are particularly evident in the rhizosphere. Therefore, comprehensive soil monitoring must take all these elements into account. In forest soils, Vaccinium myrtillus plays a vital role. Despite this, there is still a lack of information in the literature on the interrelationship between microarthropod biodiversity, including predatory soil mites, and heavy metals in the rhizosphere zone of blueberry plants. To fill this gap, we assessed the impact of the V. myrtillus rhizosphere on soil stability and biological quality using a bioindicator based on predatory mites. We conducted the study in Poland, on selected forest sites characterised by varying degrees of soil contamination. In our study, we used a combined analysis based on the following indicators: maturity index (MI), contamination factor (CF), pollution load index (PLI), and potential ecological risk index (PERI), which allowed us to determine the level of soil contamination. We extracted 4190 Gamasina mites from soil samples. We also investigated soil properties such as pH, organic matter content, total carbon, total nitrogen, C/N ratio, and heavy metal concentrations (Cd, Cu, Zn, Pb, and Ni). Our study proved that the rhizosphere zone significantly influences the stability of the predatory soil mite community, but this influence depends on the degree of soil contamination. We found that in unpolluted or moderately polluted soil, soil mites prefer habitats with less biological activity, i.e., non-rhizosphere zones. These main results are fascinating and indicate the need for further in-depth research. Our study’s comprehensive combination of methods provides valuable information that can facilitate the interpretation of environmental results. In addition, our study can be a starting point for analysing the impact of the rhizosphere zones of many other plant species, especially those used in the reclamation or urban spaces. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 5459 KiB  
Article
Forest Development Determines the Compositions and Structures of Soil Invertebrate Communities in Reclaimed Coastal Lands
by Lili Cao, Yuanyuan Li, Xiaoming Zou, Jiajie Cao, Guobing Wang and Honghua Ruan
Forests 2024, 15(12), 2096; https://doi.org/10.3390/f15122096 - 26 Nov 2024
Viewed by 1044
Abstract
Soil fauna is integral to facilitating material cycles, energy flows, and the conservation of biodiversity in terrestrial ecosystems. However, the impacts of forest development on the compositions and structures of soil invertebrates remain uncertain. Here, we assessed the dynamics in abundance and diversity [...] Read more.
Soil fauna is integral to facilitating material cycles, energy flows, and the conservation of biodiversity in terrestrial ecosystems. However, the impacts of forest development on the compositions and structures of soil invertebrates remain uncertain. Here, we assessed the dynamics in abundance and diversity of soil invertebrates across eight successional age stages of Metasequoia glyptostroboides tree plantations (7-, 16-, 21-, 26-, 31-, 36-, 41-, 46-year-old stands) in a reclaimed coastal land in China. We used pitfall traps to collect soil invertebrates and analyzed key soil and litter properties to understand their relationships with the faunal communities. The results revealed that the total abundance of soil invertebrates initially decreased during the young to near-mature stand period (7- to 31-year-old stands), whereas it increased along the age series, from the near-mature to overmature stand period (31- to 46-year-old stands). Specifically, the dynamics showed a U-shaped curve with stand development. Further, there was a significantly negative correlation between the Shannon–Wiener diversity index and the total abundance of soil invertebrates across this plantation chronosequence. The variations in abundance of detritivores were consistent with the total abundance of soil invertebrates during stand development. The abundance and diversity of the soil invertebrates were strongly correlated with the soil environment (e.g., soil organic carbon, litter biomass, and microbial biomass nitrogen). These findings highlight that the compositions and structures of soil invertebrates were significantly altered with M. glyptostroboides stand development. Thus, the management of plantations should consider the abundance and diversity of soil invertebrates and functional groups for improving soil structure and fertility. This provides important insights for studying the interconnection of above- and below-ground plantation ecosystems toward their optimal management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

40 pages, 42482 KiB  
Article
Mites from the Suborder Uropodina (Acari: Mesostigmata) in Bory Tucholskie National Park—One of the Youngest National Parks in Poland
by Jerzy Błoszyk, Jacek Wendzonka, Karolina Lubińska, Marta Kulczak and Agnieszka Napierała
Diversity 2024, 16(11), 699; https://doi.org/10.3390/d16110699 - 14 Nov 2024
Viewed by 1033
Abstract
The state of research into acarofauna in Polish national parks is very uneven. One of the least examined areas in this regard is Bory Tucholskie National Park (BTNP), established in 1996. The aim of the current research was to explore the species diversity [...] Read more.
The state of research into acarofauna in Polish national parks is very uneven. One of the least examined areas in this regard is Bory Tucholskie National Park (BTNP), established in 1996. The aim of the current research was to explore the species diversity and community structure of mites from the suborder Uropodina (Acari: Mesostigmata), inhabiting different forest, open, and unstable microhabitats in the area of BTNP. Based on the analysis of over 300 samples collected in BTNP between 2004 and 2024, 29 taxa of Uropodina were identified, with 3839 specimens found in the analyzed material. The highest species diversity has been observed in different types of pine forests (19 species), in transformed alder and alder forests (15 species, each), and in reeds (12 species), while the lowest diversity occurred in peat bog areas (8 species) and inland dunes (5 species). The spatial distribution analyses for Uropodina in the area of BTNP have been made and distribution maps for each species have been drawn. Moreover, the Maturity Index (MI) was also calculated to compare the species diversity of the Uropodina communities in BTNP with those in other Polish national parks. The Uropodina community in BTNP ranked eighth in terms of species richness among 13 national parks explored in Poland so far. Finally, the comparative analysis of the MI for the selected Polish national parks has revealed that BTNP could be ranked fourth in terms of the faunistic value for the discussed mite group. Full article
(This article belongs to the Special Issue Diversity and Ecology of the Acari)
Show Figures

Figure 1

16 pages, 1325 KiB  
Article
Assessing the Effectiveness of Rotation Growing of Industrial Hemp and Alfalfa in Post-Mining Agricultural Reclamation: Using Soil Fauna as an Indicator
by Krassimira Ilieva-Makulec, Anna Augustyniuk-Kram, Kamil Karaban, Jacek Kołodziej and Jerzy Mańkowski
Agriculture 2024, 14(9), 1621; https://doi.org/10.3390/agriculture14091621 - 16 Sep 2024
Cited by 1 | Viewed by 1511
Abstract
The reclamation of post-mining land for agricultural purposes has continued to be a big challenge. Our study concerns the use of soil microfauna (nematodes) and mesofauna (mites and springtails) as indicators of soil quality after 6 years of agricultural reclamation of a post-mining [...] Read more.
The reclamation of post-mining land for agricultural purposes has continued to be a big challenge. Our study concerns the use of soil microfauna (nematodes) and mesofauna (mites and springtails) as indicators of soil quality after 6 years of agricultural reclamation of a post-mining area in west–central Poland. A new method, which involves rotation growing of industrial hemp (H) and alfalfa (A) and incorporating the resulting biomass into the soil, was used to reclaim two sites (5 and 15 years after mining) representing different types of post-mining deposits (clayey and sandy). On each site, two plots were established, where each crop was grown for three years, but in a different order during the rotation cycle (3H3A and 3A3H). The results showed significant differences in the abundance and structure of the fauna communities between 3H3A and 3A3H reclamation practices, as well as between the reclaimed plots and non-reclaimed (NR) plots, where spontaneous succession proceeded. The three animal groups were more abundant in the reclaimed soil compared to the NR soil. The highest densities for nematodes were observed in the 3H3A plots and for the mesofauna in the 3A3H plots. The reclamation practices had a positive effect on groups involved in the regulation of C and N mineralisation, particularly bacterial- and hyphal-feeding nematodes and oribatid mites, and a negative effect on plant-feeding nematodes and euedaphic collembolans. The finding that most of the parameters of the studied biota had values resembling those of agricultural soils after 6 years of reclamation clearly indicates the effectiveness of the applied practices for transforming degraded land into soils that mirror soils under agricultural use. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 5858 KiB  
Article
Collaborative Changes between Soil Fauna and Urbanization Gradients in Guangzhou’s Remnant Forests
by Zhijian Wu, Shiqin Yu, Guoliang Xu, Yunan Ling, Lingzi Mo, Yuying Chen and Hongfu Wan
Urban Sci. 2024, 8(3), 122; https://doi.org/10.3390/urbansci8030122 - 23 Aug 2024
Viewed by 1234
Abstract
Remnant forests are vital in urban ecosystems as they serve as a crucial link between organisms, inorganic environments, and human settlements. However, there is a lack of research on how urbanization affects the physical and chemical properties of soil in remnant forests, as [...] Read more.
Remnant forests are vital in urban ecosystems as they serve as a crucial link between organisms, inorganic environments, and human settlements. However, there is a lack of research on how urbanization affects the physical and chemical properties of soil in remnant forests, as well as the response of soil fauna to environmental changes within these forests. Our study utilized the urbanization gradient research method to investigate the characteristics of the soil fauna community in remnant forests across different urbanization gradients and to understand its intrinsic response to environmental changes. Our results indicate support for the “moderate disturbance hypothesis” based on the statistical values of diversity indices. Additionally, it was found that SOM and Pb are the primary factors influencing soil fauna diversity in the remnant forests, while SOM and Zn are the main influencing factors for the dominant soil fauna groups. To elucidate the impact of urbanization on soil fauna biodiversity in remnant forests, future studies should consider other urbanization factors. Full article
Show Figures

Figure 1

26 pages, 5132 KiB  
Article
Microbial Diversity of Soil in a Mediterranean Biodiversity Hotspot: Parque Nacional La Campana, Chile
by Carolina Quinteros-Urquieta, Jean-Pierre Francois, Polette Aguilar-Muñoz, Roberto Orellana, Rodrigo Villaseñor, Andres Moreira-Muñoz and Verónica Molina
Microorganisms 2024, 12(8), 1569; https://doi.org/10.3390/microorganisms12081569 - 31 Jul 2024
Cited by 2 | Viewed by 1970
Abstract
Parque Nacional La Campana (PNLC) is recognized worldwide for its flora and fauna, rather than for its microbial richness. Our goal was to characterize the structure and composition of microbial communities (bacteria, archaea and fungi) and their relationship with the plant communities typical [...] Read more.
Parque Nacional La Campana (PNLC) is recognized worldwide for its flora and fauna, rather than for its microbial richness. Our goal was to characterize the structure and composition of microbial communities (bacteria, archaea and fungi) and their relationship with the plant communities typical of PNLC, such as sclerophyllous forest, xerophytic shrubland, hygrophilous forest and dry sclerophyllous forest, distributed along topoclimatic variables, namely, exposure, elevation and slope. The plant ecosystems, the physical and chemical properties of organic matter and the soil microbial composition were characterized by massive sequencing (iTag-16S rRNA, V4 and ITS1-5F) from the DNA extracted from the soil surface (5 cm, n = 16). A contribution of environmental variables, particularly related to each location, is observed. Proteobacteria (35.43%), Actinobacteria (32.86%), Acidobacteria (10.07%), Ascomycota (76.11%) and Basidiomycota (15.62%) were the dominant phyla. The beta diversity (~80% in its axes) indicates that bacteria and archaea are linked to their plant categories, where the xerophytic shrub stands out with the most particular microbial community. More specifically, Crenarchaeote, Humicola and Mortierella were dominant in the sclerophyllous forest; Chloroflexi, Cyanobacteria and Alternaria in the xerophytic shrubland; Solicoccozyma in the dry sclerophyllous forest; and Cladophialophora in the hygrophilous forest. In conclusion, the structure and composition of the microbial consortia is characteristic of PNLC’s vegetation, related to its topoclimatic variables, which suggests a strong association within the soil microbiome. Full article
(This article belongs to the Special Issue Advances in Soil Microbial Ecology)
Show Figures

Figure 1

Back to TopTop