Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = soft MEMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2809 KiB  
Article
Underwater Magnetic Sensors Network
by Arkadiusz Adamczyk, Maciej Klebba, Mariusz Wąż and Ivan Pavić
Sensors 2025, 25(8), 2493; https://doi.org/10.3390/s25082493 - 15 Apr 2025
Viewed by 613
Abstract
This study explores the design and performance of an underwater magnetic sensor network (UMSN) tailored for intrusion detection in complex environments such as riverbeds and areas with dense vegetation. The system utilizes wireless sensor network (WSN) principles and integrates AMR-based magnetic sensors (e.g., [...] Read more.
This study explores the design and performance of an underwater magnetic sensor network (UMSN) tailored for intrusion detection in complex environments such as riverbeds and areas with dense vegetation. The system utilizes wireless sensor network (WSN) principles and integrates AMR-based magnetic sensors (e.g., LSM303AGR) with MEMS-based accelerometers to provide accurate and high-resolution magnetic field measurements. Extensive calibration techniques were employed to correct hard-iron and soft-iron distortions, ensuring reliable performance in fluctuating environmental conditions. Field tests included both controlled setups and real-world scenarios, such as detecting intrusions across river sections, shorelines, and coordinated land-water activities. The results showed detection rates consistently above 90%, with response times averaging 2.5 s and a maximum detection range of 5 m. The system also performed well under adverse weather conditions, including fog and rain, demonstrating its adaptability. The findings underline the potential of UMSN as a scalable and cost-efficient solution for monitoring sensitive areas. By addressing the limitations of traditional surveillance systems, this research offers a practical framework for enhancing security in critical regions, laying the groundwork for future developments in magnetic sensor technology. Full article
Show Figures

Figure 1

14 pages, 8993 KiB  
Case Report
Congenital Malignant Ectomesenchymoma Presenting as a Neck Mass in a Newborn
by Ianna S. C. Blanchard, Ravi C. Bhavsar, Ashley M. Olszewski, Nathan R. Shelman, John A. D’Orazio, Prasad Bhandary and Thitinart Sithisarn
Children 2025, 12(4), 480; https://doi.org/10.3390/children12040480 - 8 Apr 2025
Viewed by 734
Abstract
Background: Malignant Ectomesenchymoma (MEM) is a rare, aggressive soft tissue neoplasm with both neuroectodermal and mesenchymal differentiation. Congenital cases are extremely uncommon, posing significant diagnostic and therapeutic challenges. Case Presentation: We report a case of a full-term male neonate presenting with [...] Read more.
Background: Malignant Ectomesenchymoma (MEM) is a rare, aggressive soft tissue neoplasm with both neuroectodermal and mesenchymal differentiation. Congenital cases are extremely uncommon, posing significant diagnostic and therapeutic challenges. Case Presentation: We report a case of a full-term male neonate presenting with a large congenital neck mass and respiratory distress at birth. Imaging revealed a lobulated, heterogeneously enhancing mass in the left submandibular region with a mass effect on the airway. Open biopsy and gross resection on day six of life confirmed MEM with rhabdomyoblastic and neuroectodermal differentiation. Post-surgical staging classified the tumor as Stage I, Clinical Group II. Despite initial chemotherapy with Vincristine, Actinomycin, and Cyclophosphamide (VAC), tumor recurrence was detected at week nine of chemotherapy, necessitating a transition to Vincristine, Irinotecan, and Temozolomide (VIT). Discussion: MEM is an extremely rare neoplasm in infants, particularly in congenital presentations. Diagnosis is challenging due to its mixed histopathological features and broad differential diagnosis, including rhabdomyosarcoma, fibrosarcoma, lymphangioma, and neuroblastoma. Management typically involves multimodal therapy, with surgical resection being the mainstay of treatment. Chemotherapy is often tailored to the tumor’s most aggressive component, though standardized treatment protocols remain undefined. Conclusions: This case highlights the importance of early recognition and a multidisciplinary approach in managing congenital MEM, as a differential diagnosis of soft tissue masses in infants, particularly in the head and neck region. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

16 pages, 20095 KiB  
Article
Finite Element Analysis of Soft-Pad Moldless Stamping of Bistable Circular Micro Shells
by Mark M. Kantor, Asaf Asher, Rivka Gilat and Skava Krylov
Micromachines 2025, 16(3), 294; https://doi.org/10.3390/mi16030294 - 28 Feb 2025
Viewed by 715
Abstract
Bistable microstructures are promising for implementation in many mictroelectromechanical system (MEMS)-based applications due to their ability to stay in several equilibrium states, high tunability and unprecedented sensitivity to external stimuli. As opposed to the extensively investigated one-dimensional curved beam-type devices of this kind, [...] Read more.
Bistable microstructures are promising for implementation in many mictroelectromechanical system (MEMS)-based applications due to their ability to stay in several equilibrium states, high tunability and unprecedented sensitivity to external stimuli. As opposed to the extensively investigated one-dimensional curved beam-type devices of this kind, microfabrication of non-planar two-dimensional bistable structures, such as plates or shells, represents a remarkable challenge. Recently reported by us, a new moldless stamping procedure, based on pressing a soft stamp over a thin suspended metallic film, was demonstrated to be a feasible direction for the fabrication of initially curved micro plates. However, reliable implementation of this fabrication paradigm and its further development requires better understanding of the role of the process parameters, and of the effect of both the plate and the stamp material properties on the shape of the formed shell and on the postfabrication residual stresses, and therefore on the shell behavior. The need for an appropriate choice of these parameters requires the development of a systematic modeling approach to the stamping process. Here, we report on a finite element (FE)-based methodology for modeling the processing sequences of a successfully fabricated aluminum (Al) micro shell of realistic geometry. The model accounts for the elasto-plastic behavior of the plate material, the nonlinear material behavior of the foam and the contact between them. It was found that the stamping pressure and the plate material parameters are the key parameters affecting the residual shell curvature as well as its shape. Consistently with previously presented experimental results, we show that the fabrication procedure partially relieves the prestresses emerging during preceding fabrication steps, leaving a nontrivial distribution of residual stresses in the formed shell. The presented analysis approach and results provide tools for designers and manufacturers of systems including micro structural elements of shell type. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

21 pages, 1786 KiB  
Article
Reliability Analysis for Degradation-Shock Processes with State-Varying Degradation Patterns Using Approximate Bayesian Computation (ABC) for Parameter Estimation
by Isyaku Muhammad, Mustapha Muhammad, Baohua Wang, Wang Chen, Badamasi Abba and Mustapha Mukhtar Usman
Symmetry 2024, 16(10), 1364; https://doi.org/10.3390/sym16101364 - 14 Oct 2024
Cited by 2 | Viewed by 3796
Abstract
The degradation of products is an integral part of their life-cycle, often following predictable trajectories. However, sudden, unexpected events, termed ’shocks’, can substantially alter these degradation paths. Shocks can significantly influence the pace of degradation, leading to accelerated system failure. Moreover, they may [...] Read more.
The degradation of products is an integral part of their life-cycle, often following predictable trajectories. However, sudden, unexpected events, termed ’shocks’, can substantially alter these degradation paths. Shocks can significantly influence the pace of degradation, leading to accelerated system failure. Moreover, they may initiate changes in degradation patterns, transitioning from linear to non-linear or random trajectories. To address this challenge, we present a novel multi-state reliability model for competing failure processes that account for degradation-shock dependencies by considering the state-varying degradation pattern. The degradation process is divided into s-states, with each state treated according to its pattern based on the time-transform Wiener process. The reliability function is derived based on soft failure caused by continuous degradation involving the s-states, the sudden increase in degradation caused by random shocks, and hard failure due to some shock processes. Additionally, we performed a sensitivity analysis to determine which parameters have the most significant impact on product reliability. Due to the complexity of the likelihood function, we adopted the ABC method to estimate the model parameters. A simulation study and a practical application with micro-electro-mechanical systems (MEMS) degradation results are used to demonstrate the efficiency and effectiveness of the proposed approach. Full article
Show Figures

Figure 1

10 pages, 3800 KiB  
Article
Implementation of Highly Reliable Contacts for RF MEMS Switches
by Lili Jiang, Lifeng Wang, Xiaodong Huang, Zhen Huang and Min Huang
Micromachines 2024, 15(1), 155; https://doi.org/10.3390/mi15010155 - 20 Jan 2024
Cited by 6 | Viewed by 3011
Abstract
A contact is the key structure of RF MEMS (Radio Frequency Microelectromechanical System) switches, which has a direct impact on the switch’s electrical and mechanical properties. In this paper, the implementation of highly reliable contacts for direct-contact RF MEMS switches is provided. As [...] Read more.
A contact is the key structure of RF MEMS (Radio Frequency Microelectromechanical System) switches, which has a direct impact on the switch’s electrical and mechanical properties. In this paper, the implementation of highly reliable contacts for direct-contact RF MEMS switches is provided. As a soft metal material, gold has the advantages of low contact resistance, high chemical stability, and mature process preparation, so it is chosen as the metal material for the beam structure as well as the contacts of the switch. However, a Pt film is used in the bottom contact area to enhance the reliability of the contact. Three kinds of contacts with various shapes are fabricated using different processes. Particularly, a circular-shaped contact is obtained by dry/wet combined processes. The detailed fabrication process of the contacts as well as the Pt film on the bottom contact area are given. The experimental test shows that the contact shape has little effect on the RF performance of the switches. However, the circular contact shows better reliability than other contacts and can work well even after 1.2 × 109 cycles. Full article
Show Figures

Figure 1

15 pages, 3812 KiB  
Article
Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing
by Rishikesh Srinivasaraghavan Govindarajan, Stanislav Sikulskyi, Zefu Ren, Taylor Stark and Daewon Kim
Polymers 2023, 15(22), 4377; https://doi.org/10.3390/polym15224377 - 10 Nov 2023
Cited by 7 | Viewed by 3620
Abstract
Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered [...] Read more.
Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered the market of two-photon polymerization (2PP) AM. To facilitate the development of microdevices with soft components through the application of 2PP technique and IP-PDMS material, this research paper presents a comprehensive material characterization of IP-PDMS. The significance of this study lies in the scarcity of existing research on this material and the thorough investigation of its properties, many of which are reported here for the first time. Particularly, for uncured IP-PDMS resin, this work evaluates a surface tension of 26.7 ± 4.2 mN/m, a contact angle with glass of 11.5 ± 0.6°, spin-coating behavior, a transmittance of more than 90% above 440 nm wavelength, and FTIR with all the properties reported for the first time. For cured IP-PDMS, novel characterizations include a small mechanical creep, a velocity-dependent friction coefficient with glass, a typical dielectric permittivity value of 2.63 ± 0.02, a high dielectric/breakdown strength for 3D-printed elastomers of up to 73.3 ± 13.3 V/µm and typical values for a spin coated elastomer of 85.7 ± 12.4 V/µm, while the measured contact angle with water of 103.7 ± 0.5°, Young’s modulus of 5.96 ± 0.2 MPa, and viscoelastic DMA mechanical characterization are compared with the previously reported values. Friction, permittivity, contact angle with water, and some of the breakdown strength measurements were performed with spin-coated cured IP-PDMS samples. Based on the performed characterization, IP-PDMS shows itself to be a promising material for micro-scale soft MEMS, including microfluidics, storage devices, and micro-scale smart material technologies. Full article
(This article belongs to the Special Issue Polymer Materials: Microstructure and Macroproperties Representation)
Show Figures

Figure 1

22 pages, 4671 KiB  
Article
Microfabrication Process Development for a Polymer-Based Lab-on-Chip Concept Applied in Attenuated Total Reflection Fourier Transform Infrared Spectroelectrochemistry
by Noah Atkinson, Tyler A. Morhart, Garth Wells, Grace T. Flaman, Eric Petro, Stuart Read, Scott M. Rosendahl, Ian J. Burgess and Sven Achenbach
Sensors 2023, 23(14), 6251; https://doi.org/10.3390/s23146251 - 8 Jul 2023
Cited by 7 | Viewed by 3498
Abstract
Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical [...] Read more.
Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical transparency. Often, additional materials, such as metals, ceramics, or silicon, are needed for functional or auxiliary purposes, e.g., as electrodes. Hybrid patterning and integration of material composites require an increasing range of fabrication approaches, which must often be newly developed or at least adapted and optimized. Here, a microfabrication process concept is developed that allows one to implement attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electrochemistry on an LoC device. It is designed to spatially resolve chemical sensitivity and selectivity, which are instrumental for the detection of chemical distributions, e.g., during on-flow chemical and biological reaction chemistry. The processing sequence involves (i) direct-write and soft-contact UV lithography in SUEX dry resist and replication in polydimethylsiloxane (PDMS) elastomers as the fluidic structure; (ii) surface functionalization of PDMS with oxygen plasma, 3-aminopropyl-triethoxysilane (APTES), and a UV-curable glue (NOA 73) for bonding the fluidic structure to the substrate; (iii) double-sided patterning of silicon nitride-coated silicon wafers serving as the ATR-FTIR-active internal reflection element (IRE) on one side and the electrode-covered substrate for microfluidics on the back side with lift-off and sputter-based patterning of gold electrodes; and (iv) a custom-designed active vacuum positioning and alignment setup. Fluidic channels of 100 μm height and 600 μm width in 5 mm thick PDMS were fabricated on 2” and 4” demonstrators. Electrochemistry on-chip functionality was demonstrated by cyclic voltammetry (CV) of redox reactions involving iron cyanides in different oxidation states. Further, ATR-FTIR measurements of laminar co-flows of H2O and D2O demonstrated the chemical mapping capabilities of the modular fabrication concept of the LoC devices. Full article
(This article belongs to the Special Issue Process Technologies for Polymer-Based Sensor Systems)
Show Figures

Figure 1

20 pages, 6934 KiB  
Article
Design and Optimization of Hemispherical Resonators Based on PSO-BP and NSGA-II
by Jinghao Liu, Pinghua Li, Xuye Zhuang, Yunlong Sheng, Qi Qiao, Mingchen Lv, Zhongfeng Gao and Jialuo Liao
Micromachines 2023, 14(5), 1054; https://doi.org/10.3390/mi14051054 - 16 May 2023
Cited by 11 | Viewed by 2018
Abstract
Although one of the poster children of high-performance MEMS (Micro Electro Mechanical Systems) gyroscopes, the MEMS hemispherical resonator gyroscope (HRG) is faced with the barrier of technical and process limits, which makes it unable to form a resonator with the best structure. How [...] Read more.
Although one of the poster children of high-performance MEMS (Micro Electro Mechanical Systems) gyroscopes, the MEMS hemispherical resonator gyroscope (HRG) is faced with the barrier of technical and process limits, which makes it unable to form a resonator with the best structure. How to obtain the best resonator under specific technical and process limits is a significant topic for us. In this paper, the optimization of a MEMS polysilicon hemispherical resonator, designed by patterns based on PSO-BP and NSGA-II, was introduced. Firstly, the geometric parameters that significantly contribute to the performance of the resonator were determined via a thermoelastic model and process characteristics. Variety regulation between its performance parameters and geometric characteristics was discovered preliminarily using finite element simulation under a specified range. Then, the mapping between performance parameters and structure parameters was determined and stored in the BP neural network, which was optimized via PSO. Finally, the structure parameters in a specific numerical range corresponding to the best performance were obtained via the selection, heredity, and variation of NSGAII. Additionally, it was demonstrated using commercial finite element soft analysis that the output of the NSGAII, which corresponded to the Q factor of 42,454 and frequency difference of 8539, was a better structure for the resonator (generated by polysilicon under this process within a selected range) than the original. Instead of experimental processing, this study provides an effective and economical alternative for the design and optimization of high-performance HRGs under specific technical and process limits. Full article
(This article belongs to the Special Issue Design and Fabrication of Micro/Nano Sensors and Actuators, Volume II)
Show Figures

Figure 1

13 pages, 8123 KiB  
Article
Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates
by Mengyu Liu, Zhenbao Wang, Ziqin Meng, Xuecheng Sun, Yong Huang, Yongbin Guo and Zhen Yang
Micromachines 2023, 14(5), 1002; https://doi.org/10.3390/mi14051002 - 6 May 2023
Cited by 4 | Viewed by 2934
Abstract
The giant magnetoimpedance effect of multilayered thin films under stress has great application prospects in magnetic sensing, but related studies are rarely reported. Therefore, the giant magnetoimpedance effects in multilayered thin film meanders under different stresses were thoroughly investigated. Firstly, multilayered FeNi/Cu/FeNi thin [...] Read more.
The giant magnetoimpedance effect of multilayered thin films under stress has great application prospects in magnetic sensing, but related studies are rarely reported. Therefore, the giant magnetoimpedance effects in multilayered thin film meanders under different stresses were thoroughly investigated. Firstly, multilayered FeNi/Cu/FeNi thin film meanders with the same thickness were manufactured on polyimide (PI) and polyester (PET) substrates by DC magnetron sputtering and MEMS technology. The characterization of meanders was analyzed by SEM, AFM, XRD, and VSM. The results show that multilayered thin film meanders on flexible substrates also have the advantages of good density, high crystallinity, and excellent soft magnetic properties. Then, we observed the giant magnetoimpedance effect under tensile and compressive stresses. The results show that the application of longitudinal compressive stress increases the transverse anisotropy and enhances the GMI effect of multilayered thin film meanders, while the application of longitudinal tensile stress yields the opposite result. The results provide novel solutions for the fabrication of more stable and flexible giant magnetoimpedance sensors, as well as for the development of stress sensors. Full article
(This article belongs to the Special Issue NEMS/MEMS Devices and Applications)
Show Figures

Figure 1

13 pages, 5695 KiB  
Article
SiCNFe Ceramics as Soft Magnetic Material for MEMS Magnetic Devices: A Mössbauer Study
by Ion Stiharu, Sergey Andronenko, Almaz Zinnatullin and Farit Vagizov
Micromachines 2023, 14(5), 925; https://doi.org/10.3390/mi14050925 - 25 Apr 2023
Cited by 5 | Viewed by 1827
Abstract
Polymer-derived SiCNFe ceramics is a prospective material that can be used as soft magnets in MEMS magnetic applications. The optimal synthesis process and low-cost appropriate microfabrication should be developed for best result. Homogeneous and uniform magnetic material is required for developing such MEMS [...] Read more.
Polymer-derived SiCNFe ceramics is a prospective material that can be used as soft magnets in MEMS magnetic applications. The optimal synthesis process and low-cost appropriate microfabrication should be developed for best result. Homogeneous and uniform magnetic material is required for developing such MEMS devices. Therefore, the knowledge of exact composition of SiCNFe ceramics is very important for the microfabrication of magnetic MEMS devices. The Mössbauer spectrum of SiCN ceramics, doped with Fe (III) ions, and annealed at 1100 °C, was investigated at room temperature to accurately establish the phase composition of Fe-containing magnetic nanoparticles, which were formed in this material at pyrolysis and which determine their magnetic properties. The analysis of Mössbauer data shows the formation of several Fe-containing magnetic nanoparticles in SiCN/Fe ceramics, such as α-Fe, FexSiyCz, traces of Fe-N and paramagnetic Fe3+ with octahedral oxygen environment. The presence of iron nitride and paramagnetic Fe3+ ions shows that the pyrolysis process was not completed in SiCNFe ceramics annealed at 1100 °C. These new observations confirm the formation of different Fe-containing nanoparticles with complex composition in SiCNFe ceramic composite. Full article
Show Figures

Figure 1

15 pages, 9808 KiB  
Article
Uneven Terrain Walking with Linear and Angular Momentum Allocation
by Zhicheng He, Songhao Piao, Xiaokun Leng and Yucong Wu
Sensors 2023, 23(4), 2027; https://doi.org/10.3390/s23042027 - 10 Feb 2023
Viewed by 2681
Abstract
Uneven terrain walking is hard to achieve for most child-size humanoid robots, as they are unable to accurately detect ground conditions. In order to reduce the demand for ground detection accuracy, a walking control framework based on centroidal momentum allocation is studied in [...] Read more.
Uneven terrain walking is hard to achieve for most child-size humanoid robots, as they are unable to accurately detect ground conditions. In order to reduce the demand for ground detection accuracy, a walking control framework based on centroidal momentum allocation is studied in this paper, enabling a child-size humanoid robot to walk on uneven terrain without using ground flatness information. The control framework consists of three controllers: momentum decreasing controller, posture controller, admittance controller. First, the momentum decreasing controller is used to quickly stabilize the robot after disturbance. Then, the posture controller restores the robot posture to adapt to the unknown terrain. Finally, the admittance controller aims to decrease contact impact and adapt the robot to the terrain. Note that the robot uses a mems-based inertial measurement unit (IMU) and joint position encoders to calculate centroidal momentum and use force-sensitive resistors (FSR) on the robot foot to perform admittance control. None of these is a high-cost component. Experiments are conducted to test the proposed framework, including standing posture balancing, structured non-flat ground walking, and soft uneven terrain walking, with a speed of 2.8 s per step, showing the effectiveness of the momentum allocation method. Full article
(This article belongs to the Special Issue Sensors and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 4371 KiB  
Article
Decoupling Transmission and Transduction for Improved Durability of Highly Stretchable, Soft Strain Sensing: Applications in Human Health Monitoring
by Ali Kight, Ileana Pirozzi, Xinyi Liang, Doff B. McElhinney, Amy Kyungwon Han, Seraina A. Dual and Mark Cutkosky
Sensors 2023, 23(4), 1955; https://doi.org/10.3390/s23041955 - 9 Feb 2023
Cited by 3 | Viewed by 3690
Abstract
This work presents a modular approach to the development of strain sensors for large deformations. The proposed method separates the extension and signal transduction mechanisms using a soft, elastomeric transmission and a high-sensitivity microelectromechanical system (MEMS) transducer. By separating the transmission and transduction, [...] Read more.
This work presents a modular approach to the development of strain sensors for large deformations. The proposed method separates the extension and signal transduction mechanisms using a soft, elastomeric transmission and a high-sensitivity microelectromechanical system (MEMS) transducer. By separating the transmission and transduction, they can be optimized independently for application-specific mechanical and electrical performance. This work investigates the potential of this approach for human health monitoring as an implantable cardiac strain sensor for measuring global longitudinal strain (GLS). The durability of the sensor was evaluated by conducting cyclic loading tests over one million cycles, and the results showed negligible drift. To account for hysteresis and frequency-dependent effects, a lumped-parameter model was developed to represent the viscoelastic behavior of the sensor. Multiple model orders were considered and compared using validation and test data sets that mimic physiologically relevant dynamics. Results support the choice of a second-order model, which reduces error by 73% compared to a linear calibration. In addition, we evaluated the suitability of this sensor for the proposed application by demonstrating its ability to operate on compliant, curved surfaces. The effects of friction and boundary conditions are also empirically assessed and discussed. Full article
Show Figures

Graphical abstract

24 pages, 845 KiB  
Article
A Micromechanical Model for Damage Evolution in Thin Piezoelectric Films
by Raffaella Rizzoni, Michele Serpilli, Maria Letizia Raffa and Frédéric Lebon
Coatings 2023, 13(1), 82; https://doi.org/10.3390/coatings13010082 - 3 Jan 2023
Cited by 3 | Viewed by 2308
Abstract
Thin-film piezoelectric materials are advantageous in microelectromechanical systems (MEMS), due to large motion generation, high available energy and low power requirements. In this kind of application, thin piezoelectric films are subject to mechanical and electric cyclic loading, during which damage can accumulate and [...] Read more.
Thin-film piezoelectric materials are advantageous in microelectromechanical systems (MEMS), due to large motion generation, high available energy and low power requirements. In this kind of application, thin piezoelectric films are subject to mechanical and electric cyclic loading, during which damage can accumulate and eventually lead to fracture. In the present study, continuum damage mechanics and asymptotic theory are adopted to model damage evolution in piezoelectric thin films. Our purpose is to develop a new interface model for thin piezoelectric films accounting for micro-cracking damage of the material. The methods used are matched asymptotic expansions, to develop an interface law, and the classic thermodynamic framework of continuum damage mechanics combined with Kachanov and Sevostianov’s theory of homogenization of micro-cracked media, to characterize the damaging behavior of the interface. The main finding of the paper is a soft imperfect interface model able to simulate the elastic and piezoelectric behavior of thin piezoelectric film in the presence of micro-cracking and damage evolution. The obtained interface model is expected to be a useful tool for damage evaluation in MEMS applications. As an example, an electromechanically active stack incorporating a damaging piezoelectric layer is studied. The numerical results indicate a non-linear evolution of the macroscopic response and a damage accumulation qualitatively consistent with experimental observations. Full article
(This article belongs to the Special Issue Recent Developments in Interfaces and Surfaces Engineering)
Show Figures

Figure 1

10 pages, 2328 KiB  
Article
GNSS Based Low-Cost Magnetometer Calibration
by Ján Andel, Vojtech Šimák, Alžbeta Kanálikova and Rastislav Pirník
Sensors 2022, 22(21), 8447; https://doi.org/10.3390/s22218447 - 3 Nov 2022
Cited by 4 | Viewed by 3423
Abstract
With the development of MEMS sensors, the magnetometer has increasingly become a part of various wearable devices. The magnetometer measures the intensity of the magnetic field in all three axes, resulting in a 3D vector—direction and power. Calibration must be done before using [...] Read more.
With the development of MEMS sensors, the magnetometer has increasingly become a part of various wearable devices. The magnetometer measures the intensity of the magnetic field in all three axes, resulting in a 3D vector—direction and power. Calibration must be done before using a magnetometer, especially in wearable electronics, due to the low quality of the sensor and high proximity to other electromagnetic emission sources. Several magnetometer calibration algorithms exist in the literature, with most of them requiring multi-sided rotation. However, such calibration is highly impractical when the sensor is mounted on larger objects, e.g., vehicles, which cannot easily be rotated. Vehicles contain a large amount of ferromagnetic soft and hard material that affects the measured magnetic field. A magnetometer can be useful for an INS system in a car as long as it does not drift over time. This article describes how to calibrate a magnetometer using the GNSS motion vector. The calibration is performed using data from the initial section of the vehicle’s trajectory. The quality of the calibration is then validated using the remaining section of the trajectory, comparing the deviation between the azimuth obtained by GNSS and by the calibrated magnetometer. Based on the azimuth and speed of the vehicle, we predicted the position of the vehicle and plotted the prediction on the map. The experiment showed that such calibration is functional. The uncalibrated data were unusable due to the strong effect of ferromagnetic soft and hard materials in the vehicle. Full article
Show Figures

Figure 1

13 pages, 7665 KiB  
Article
Vision Feedback Control for the Automation of the Pick-and-Place of a Capillary Force Gripper
by Takatoshi Ito, Eri Fukuchi, Kenta Tanaka, Yuki Nishiyama, Naoto Watanabe and Ohmi Fuchiwaki
Micromachines 2022, 13(8), 1270; https://doi.org/10.3390/mi13081270 - 7 Aug 2022
Cited by 5 | Viewed by 2305
Abstract
In this paper, we describe a newly developed vision feedback method for improving the placement accuracy and success rate of a single nozzle capillary force gripper. The capillary force gripper was developed for the pick-and-place of mm-sized objects. The gripper picks up an [...] Read more.
In this paper, we describe a newly developed vision feedback method for improving the placement accuracy and success rate of a single nozzle capillary force gripper. The capillary force gripper was developed for the pick-and-place of mm-sized objects. The gripper picks up an object by contacting the top surface of the object with a droplet formed on its nozzle and places the object by contacting the bottom surface of the object with a droplet previously applied to the place surface. To improve the placement accuracy, we developed a vision feedback system combined with two cameras. First, a side camera was installed to capture images of the object and nozzle from the side. Second, from the captured images, the contour of the pre-applied droplet for placement and the contour of the object picked up by the nozzle were detected. Lastly, from the detected contours, the distance between the top surface of the droplet for object release and the bottom surface of the object was measured to determine the appropriate amount of nozzle descent. Through the experiments, we verified that the size matching effect worked reasonably well; the average placement error minimizes when the size of the cross-section of the objects is closer to that of the nozzle. We attributed this result to the self-alignment effect. We also confirmed that we could control the attitude of the object when we matched the shape of the nozzle to that of the sample. These results support the feasibility of the developed vision feedback system, which uses the capillary force gripper for heterogeneous and complex-shaped micro-objects in flexible electronics, micro-electro-mechanical systems (MEMS), soft robotics, soft matter, and biomedical fields. Full article
(This article belongs to the Special Issue Flexible Micromanipulators and Micromanipulation)
Show Figures

Figure 1

Back to TopTop