Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = snow water equivalent (SWE) retrieval

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8088 KiB  
Article
Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains
by Fabio Bovenga, Antonella Belmonte, Alberto Refice and Ilenia Argentiero
Remote Sens. 2025, 17(14), 2479; https://doi.org/10.3390/rs17142479 - 17 Jul 2025
Viewed by 297
Abstract
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DInSAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This [...] Read more.
Snow water equivalent (SWE) can be estimated using Differential SAR Interferometry (DInSAR), which captures changes in snow depth and density between two SAR acquisitions. However, challenges arise due to SAR signal penetration into the snowpack and the intrinsic limitations of DInSAR measurements. This study addresses these issues and explores the use of multi-band SAR data to derive SWE maps in alpine regions characterized by steep terrain, small spatial extent, and a potentially heterogeneous snowpack. We first conducted a performance analysis to assess SWE estimation precision and the maximum unambiguous SWE variation, considering incidence angle, wavelength, and coherence. Based on these results, we selected C-band Sentinel-1 and L-band SAOCOM data acquired over alpine areas and applied tailored DInSAR processing. Atmospheric artifacts were corrected using zenith total delay maps from the GACOS service. Additionally, sensitivity maps were generated for each interferometric pair to identify pixels suitable for reliable SWE estimation. A comparative analysis of the C- and L-band results revealed several critical issues, including significant atmospheric artifacts, phase decorrelation, and phase unwrapping errors, which impact SWE retrieval accuracy. A comparison between our Sentinel-1-based SWE estimations and independent measurements over an instrumented site shows results fairly in line with previous works exploiting C-band data, with an RSME in the order of a few tens of mm. Full article
(This article belongs to the Special Issue Understanding Snow Hydrology Through Remote Sensing Technologies)
Show Figures

Figure 1

23 pages, 11258 KiB  
Article
A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models
by Yuanhao Cao, Chunzeng Luo, Shurun Tan, Do-Hyuk Kang, Yiwen Fang and Jinmei Pan
Remote Sens. 2024, 16(10), 1732; https://doi.org/10.3390/rs16101732 - 14 May 2024
Viewed by 1497
Abstract
The retrieval of continuous snow water equivalent (SWE) directly from passive microwave observations is hampered by ambiguity, which can potentially be mitigated by incorporating knowledge on snow hydrological processes. In this paper, we present a data assimilation (DA)-based SWE retrieval framework coupling the [...] Read more.
The retrieval of continuous snow water equivalent (SWE) directly from passive microwave observations is hampered by ambiguity, which can potentially be mitigated by incorporating knowledge on snow hydrological processes. In this paper, we present a data assimilation (DA)-based SWE retrieval framework coupling the QCA-Mie scattering (DMRT-QMS) model (a dense medium radiative transfer (RT) microwave scattering model) and a one-dimensional column-based multiple-layer snow hydrology model. The snow hydrology model provides realistic estimates of the snowpack physical parameters required to drive the DMRT-QMS model. This paper devises a strategy to specify those internal parameters in the snow hydrology and RT models that lack observational records. The modeled snow depth is updated by assimilating brightness temperatures (Tbs) from the X, Ku, and Ka bands using an ensemble Kalman filter (EnKF). The updated snow depth is then used to predict the SWE. The proposed framework was tested using the European Space Agency’s Nordic Snow Radar Experiment (ESA NoSREx) dataset for a snow field experiment from 2009 to 2012 in Sodankylä, Finland. The achieved SWE retrieval root mean square error of 34.31 mm meets the requirements of NASA and ESA snow missions and is about 70% less than the open-loop SWE. In summary, this paper introduces a novel SWE retrieval framework that leverages the combined strengths of a snow hydrology model and a radiative transfer model. This approach ensures physically realistic retrievals of snow depth and SWE. We investigated the impact of various factors on the framework’s performance, including observation time intervals and combinations of microwave observation channels. Our results demonstrate that a one-week observation interval achieves acceptable retrieval accuracy. Furthermore, the use of multi-channel and multi-polarization Tbs is preferred for optimal SWE retrieval performance. Full article
Show Figures

Figure 1

25 pages, 33171 KiB  
Article
Spatial Estimation of Snow Water Equivalent for Glaciers and Seasonal Snow in Iceland Using Remote Sensing Snow Cover and Albedo
by Andri Gunnarsson and Sigurdur M. Gardarsson
Hydrology 2024, 11(1), 3; https://doi.org/10.3390/hydrology11010003 - 26 Dec 2023
Cited by 2 | Viewed by 3674
Abstract
Efficient water resource management in glacier- and snow-dominated basins requires accurate estimates of the snow water equivalent (SWE) in late winter and spring and melt onset timing and intensity. To understand the high spatio-temporal variability of snow and glacier ablation, a spatially distributed [...] Read more.
Efficient water resource management in glacier- and snow-dominated basins requires accurate estimates of the snow water equivalent (SWE) in late winter and spring and melt onset timing and intensity. To understand the high spatio-temporal variability of snow and glacier ablation, a spatially distributed energy balance model combining satellite-based retrievals of albedo and snow cover was applied. Incoming short-wave energy, contributing to daily estimates of melt energy, was constrained by remotely sensed surface albedo for snow-covered surfaces. Fractional snow cover was used for non-glaciated areas, as it provides estimates of snow cover for each pixel to better constrain snow melt. Thus, available daily estimates of melt energy in a given area were the product of the possible melt energy and the fractional snow cover of the area or pixel for non-glaciated areas. This provided daily estimates of melt water to determine seasonal snow and glacier ablation in Iceland for the period 2000–2019. Observations from snow pits on land and glacier summer mass balance were used for evaluation, and observations from land and glacier-based automatic weather stations were used to evaluate model inputs for the energy balance model. The results show that the interannual SWE variability was generally high both for seasonal snow and glaciers. For seasonal snow, the largest SWE (>1000 mm) was found in mountainous and alpine areas close to the coast, notably in the East- and Westfjords, Tröllaskaga, and in the vicinity of glacier margins. Lower SWE values were observed in the central highlands, flatter inland areas, and at lower elevations. For glaciers, more SWE (glacier ablation) was associated with lower glacier elevations while less melt was observed at higher elevations. For the impurity-rich bare-ice areas that are exposed annually, observed SWE was more than 3000 mm. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

18 pages, 4414 KiB  
Article
Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau
by Yecheng Yuan, Baolin Li, Xizhang Gao, Wei Liu, Ying Li and Rui Li
Remote Sens. 2022, 14(22), 5642; https://doi.org/10.3390/rs14225642 - 8 Nov 2022
Cited by 9 | Viewed by 2276
Abstract
Accurate daily snow cover extent is a significant input for hydrological applications in the Qinghai–Tibetan Plateau (QTP). Although several Moderate Resolution Imaging Spectroradiometer (MODIS) daily cloud-free snow cover products over the QTP are openly accessible, the cloud-gap-filled snow cover from these products has [...] Read more.
Accurate daily snow cover extent is a significant input for hydrological applications in the Qinghai–Tibetan Plateau (QTP). Although several Moderate Resolution Imaging Spectroradiometer (MODIS) daily cloud-free snow cover products over the QTP are openly accessible, the cloud-gap-filled snow cover from these products has not yet been validated. This study assessed the accuracy of cloud-gap-filled snow cover from three open accessible MODIS daily products based on snow maps retrieved from Landsat TM images. The F1-score (FS) from daily cloud-free MODIS snow cover for the combined MOD10A1F and MYD10A1F (SC1) was 64.4%, which was 7.4% points and 5.3% points higher than the other two commonly used products (SC2 and SC3), respectively. The superior accuracies from SC1 were more evident in regions with altitudes lower than 5000 m, with a weighted average FS by the area percentage of the altitude regions of 58.3%, which was 6.9% points and 9.1% points higher than SC2 and SC3. The improved SC1 accuracies also indicated regional clustering characteristics with higher FS values compared to SC2 and SC3. The lower accuracies of cloud-gap-filled snow cover from SC2 and SC3 were mainly due to the limitation in determining snow cover based on the method of the inferred snow line and the overestimation of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) snow water equivalent (SWE). These results indicate that the temporal filter approach used in SC1 is a good solution to produce daily cloud-gap-filled snow cover data for the QTP because of its higher accuracy and simple computation. The findings can be helpful for the selection of cloud-removal algorithms for determining snow cover dynamics and phenological parameters on the QTP. Full article
(This article belongs to the Special Issue Remote Sensing in Snow and Glacier Hydrology)
Show Figures

Figure 1

19 pages, 9970 KiB  
Article
On the Relationship of Arctic Oscillation with Atmospheric Rivers and Snowpack in the Western United States Using Long-Term Multi-Platform Dataset
by Samuel Liner, Ju-Mee Ryoo and Sen Chiao
Water 2022, 14(15), 2392; https://doi.org/10.3390/w14152392 - 2 Aug 2022
Cited by 2 | Viewed by 3180
Abstract
Atmospheric rivers (ARs) are narrow bands of enhanced integrated water vapor transport, modulated by large-scale and synoptic-scale variability. Here, we investigate how ARs and snowpack are shaped by large-scale variability such as arctic oscillation (AO) by examining the synoptic conditions and characteristics of [...] Read more.
Atmospheric rivers (ARs) are narrow bands of enhanced integrated water vapor transport, modulated by large-scale and synoptic-scale variability. Here, we investigate how ARs and snowpack are shaped by large-scale variability such as arctic oscillation (AO) by examining the synoptic conditions and characteristics of ARs and snowpack in the different phases of AO. Using Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) data, Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data, and in-situ observation data over the eastern Pacific and western United States. we found that more precipitation is observed in lower latitudes (35° N–45° N) during negative AO months and farther north (north of 45° N) in latitude during positive AO months. These are associated with wavelike synoptic patterns in negative AO months and more straight-line type synoptic patterns in positive AO months. The different phases of AO also modulate the AR characteristics: 2.6% less intense (5.3% more intense) integrated water vapor transport and total precipitation, and 16.0% shorter (21.1% longer) duration of ARs than the climatological mean (1980–2019) for positive AO (negative AO) phase. AR frequency is also higher (~50.4%) than the climatological mean for negative AO phase, but there is no statistically significant difference between either negative AO or positive AO phase, especially in southern California. In addition, the snow water equivalent (SWE) tends to be reduced in the positive AO phase and under high-temperature conditions, especially in recent years (2010s). The similar relationships are found in the early 1990s and 2000s, but their statistical significances are low. Considering that lower atmospheric temperature keeps increasing over the eastern Pacific and the western U.S., and SWE tends to be reduced in the positive AO phase in recent years, SWE may decrease over northern California if the warming condition persists. These findings highlight how the characteristics of local extreme weather can be shaped by large-scale climate variability. Full article
Show Figures

Figure 1

24 pages, 6072 KiB  
Article
Spatiotemporal Variations in Liquid Water Content in a Seasonal Snowpack: Implications for Radar Remote Sensing
by Randall Bonnell, Daniel McGrath, Keith Williams, Ryan Webb, Steven R. Fassnacht and Hans-Peter Marshall
Remote Sens. 2021, 13(21), 4223; https://doi.org/10.3390/rs13214223 - 21 Oct 2021
Cited by 13 | Viewed by 3517
Abstract
Radar instruments have been widely used to measure snow water equivalent (SWE) and Interferometric Synthetic Aperture Radar is a promising approach for doing so from spaceborne platforms. Electromagnetic waves propagate through the snowpack at a velocity determined by its dielectric permittivity. Velocity estimates [...] Read more.
Radar instruments have been widely used to measure snow water equivalent (SWE) and Interferometric Synthetic Aperture Radar is a promising approach for doing so from spaceborne platforms. Electromagnetic waves propagate through the snowpack at a velocity determined by its dielectric permittivity. Velocity estimates are a significant source of uncertainty in radar SWE retrievals, especially in wet snow. In dry snow, velocity can be calculated from relations between permittivity and snow density. However, wet snow velocity is a function of both snow density and liquid water content (LWC); the latter exhibits high spatiotemporal variability, there is no standard observation method, and it is not typically measured by automated stations. In this study, we used ground-penetrating radar (GPR), probed snow depths, and measured in situ vertically-averaged density to estimate SWE and bulk LWC for seven survey dates at Cameron Pass, Colorado (~3120 m) from April to June 2019. During this cooler than average season, median LWC for individual survey dates never exceeded 7 vol. %. However, in June, LWC values greater than 10 vol. % were observed in isolated areas where the ground and the base of the snowpack were saturated and therefore inhibited further meltwater output. LWC development was modulated by canopy cover and meltwater drainage was influenced by ground slope. We generated synthetic SWE retrievals that resemble the planned footprint of the NASA-ISRO L-band InSAR satellite (NISAR) from GPR using a dry snow density model. Synthetic SWE retrievals overestimated observed SWE by as much as 40% during the melt season due to the presence of LWC. Our findings emphasize the importance of considering LWC variability in order to fully realize the potential of future spaceborne radar missions for measuring SWE. Full article
Show Figures

Graphical abstract

19 pages, 40305 KiB  
Article
Quantitative Investigation of Radiometric Interactions between Snowfall, Snow Cover, and Cloud Liquid Water over Land
by Zeinab Takbiri, Lisa Milani, Clement Guilloteau and Efi Foufoula-Georgiou
Remote Sens. 2021, 13(13), 2641; https://doi.org/10.3390/rs13132641 - 5 Jul 2021
Cited by 5 | Viewed by 3429
Abstract
Falling snow alters its own microwave signatures when it begins to accumulate on the ground, making retrieval of snowfall challenging. This paper investigates the effects of snow-cover depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis data and [...] Read more.
Falling snow alters its own microwave signatures when it begins to accumulate on the ground, making retrieval of snowfall challenging. This paper investigates the effects of snow-cover depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis data and multi-annual observations by the Global Precipitation Measurement (GPM) core satellite with particular emphasis on the 89 and 166 GHz channels. It is found that over shallow snow cover (snow water equivalent (SWE) 100 kg m2) and low values of cloud liquid water path (LWP 100–150 g m2), the scattering of light snowfall (intensities 0.5 mm h1) is detectable only at frequency 166 GHz, while for higher snowfall rates, the signal can also be detected at 89 GHz. However, when SWE exceeds 200 kg m2 and the LWP is greater than 100–150 g m2, the emission from the increased liquid water content in snowing clouds becomes the only surrogate microwave signal of snowfall that is stronger at frequency 89 than 166 GHz. The results also reveal that over high latitudes above 60°N where the SWE is greater than 200 kg m2 and LWP is lower than 100–150 g m2, the snowfall microwave signal could not be detected with GPM without considering a priori data about SWE and LWP. Our findings provide quantitative insights for improving retrieval of snowfall in particular over snow-covered terrain. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation at the Mid- to High-Latitudes)
Show Figures

Graphical abstract

22 pages, 5175 KiB  
Article
Evaluating the Preconditions of Two Remote Sensing SWE Retrieval Algorithms over the US
by Shadi Oveisgharan, Daniel Esteban-Fernandez, Duane Waliser, Randall Friedl, Son Nghiem and Xubin Zeng
Remote Sens. 2020, 12(12), 2021; https://doi.org/10.3390/rs12122021 - 24 Jun 2020
Cited by 7 | Viewed by 2578 | Correction
Abstract
A large amount of fresh water resources are stored in the snowpack, which is the primary source of water for streamflow in many places at middle-to-high latitude areas. Therefore, snow water equivalent (SWE) is a key parameter in the water cycle. Active and [...] Read more.
A large amount of fresh water resources are stored in the snowpack, which is the primary source of water for streamflow in many places at middle-to-high latitude areas. Therefore, snow water equivalent (SWE) is a key parameter in the water cycle. Active and passive microwave remote sensing methods have been used to retrieve SWE due to relatively poor resolution of current in situ interpolated maps with good accuracy. However, estimation of SWE has proved challenging, despite several decades of efforts to develop retrieval approaches. Active sensors provide higher-resolution observations. Two recent promising retrieval algorithms using active data are dual frequency dual polarization backscattered power and differential interferometry. These retrieval algorithms have some restrictions on snow characteristics, the environment, and instrument properties. The restrictions limit the snow that is suitable for the specific retrieval algorithm. In order to better understand how much of the snowpack satisfies the precondition of these retrieval approaches, we use a 4 km gridded snowpack product over the contiguous US for years 1997 and 2015. We use a simple scattering model to simulate the scattering characteristics of snow. The snow property maps, simulated scattering characteristics of snow, and environmental conditions are used to filter the suitable snow for each retrieval algorithm. We show that snow wetness and vegetation coverage are the two main limiting conditions for these retrieval algorithms. We show that 39% and 44% of the grid-points with snow satisfy the preconditions of dual polarization dual frequency retrieval algorithms at 13.5 GHz (one of the recommended frequencies for this algorithm in the literature) in 1997 and 2015, respectively. The most important limiting factors for dual polarization dual frequency retrieval method are dryness of snow, penetration depth, and vegetation-free constraints. The backscattered power in dual polarization dual frequency method is more sensitive to snow density and grain radius rather than to snow depth. We also show that 55% and 53% of the grid-points with snow satisfy the precondition of differential interferometry retrieval algorithms at 1 GHz (one of the recommended frequencies for this algorithm in the literature) in 1997 and 2015, respectively. The most important precondition-limiting factors for differential interferometry are dryness of snow and vegetation-free constraints. The differential interferometry phase retrieval algorithm is equally sensitive to snow height and snow density variations and is independent of snow grain radius. Full article
Show Figures

Graphical abstract

11 pages, 3149 KiB  
Letter
Retrieval of Snow Depth and Snow Water Equivalent Using Dual Polarization SAR Data
by Akshay Patil, Gulab Singh and Christoph Rüdiger
Remote Sens. 2020, 12(7), 1183; https://doi.org/10.3390/rs12071183 - 7 Apr 2020
Cited by 28 | Viewed by 5705
Abstract
This paper deals with the retrieval of snow depth (SD) and snow water equivalent (SWE) using dual-polarization (HH-VV) synthetic aperture radar (SAR) data. The effect of different snowpack conditions on the SD and SWE inversion accuracy was demonstrated by using three TerraSAR-X acquisitions. [...] Read more.
This paper deals with the retrieval of snow depth (SD) and snow water equivalent (SWE) using dual-polarization (HH-VV) synthetic aperture radar (SAR) data. The effect of different snowpack conditions on the SD and SWE inversion accuracy was demonstrated by using three TerraSAR-X acquisitions. The algorithm is based on the relationship between the SD, the co-polar phase difference (CPD), and particle anisotropy. The Dhundi observatory in the Indian Himalaya was selected as a validation test site where a field campaign was conducted for ground truth measurements in January 2016. Using the field measured values of the snow parameters, the particle anisotropy has been optimized and provided as an input to the SD retrieval algorithm. A spatially variable snow density ( ρ s ) was used for the estimation of the SWE, and a temporal resolution of 90 m was achieved in the inversion process. When the retrieval accuracy was tested for different snowpack conditions, it was found that the proposed algorithm shows good accuracy for recrystallized dry snowpack without distinct layering and low wetness (w). The statistical indices, namely, the root mean square error (RMSE), the mean absolute difference (MAD), and percentage error (PE), were used for the accuracy assessment. The algorithm was able to retrieve SD with an average MAE and RMSE of 6.83 cm and 7.88 cm, respectively. The average MAE and RMSE values for SWE were 17.32 mm and 21.41 mm, respectively. The best case PE in the SD and the SWE retrieval were 8.22 cm and 18.85 mm, respectively. Full article
(This article belongs to the Section Remote Sensing Communications)
Show Figures

Graphical abstract

26 pages, 10853 KiB  
Article
The Consistency of SSM/I vs. SSMIS and the Influence on Snow Cover Detection and Snow Depth Estimation over China
by Jianwei Yang, Lingmei Jiang, Liyun Dai, Jinmei Pan, Shengli Wu and Gongxue Wang
Remote Sens. 2019, 11(16), 1879; https://doi.org/10.3390/rs11161879 - 11 Aug 2019
Cited by 10 | Viewed by 3905
Abstract
The long-term variations in snow depth are important in hydrological, meteorological, and ecological implications and climatological studies. The series of Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) instruments onboard the Defense Meteorological Satellite Program (DMSP) platforms has provided a [...] Read more.
The long-term variations in snow depth are important in hydrological, meteorological, and ecological implications and climatological studies. The series of Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) instruments onboard the Defense Meteorological Satellite Program (DMSP) platforms has provided a consistent 30+ year data record of global observations that is well-suited for the estimation of snow cover, snow depth, and snow water equivalent (SWE). To maximize the use of this continuous microwave observation dataset in long-term snow analysis and obtain an objective result, consistency among the SSM/I and SSMIS sensors is required. In this paper, we evaluated the consistency between the SSM/I and SSMIS concerning the observed brightness temperature (Tb) and the retrieved snow cover area and snow depth from January 2007 to December 2008, where the F13 SSM/I and the F17 SSMIS overlapped. Results showed that Tb bias at 19 GHz spans from −2 to −3 K in snow winter seasons, and from −4 to −5 K in non-snow seasons. There is a slight Tb bias at 37 GHz from −2 to 2 K, regardless of season. For 85 (91) GHz, the bias presents some uncertainty from the scattering effect of the snowpack and atmospheric emission. The overall consistency between SSM/I and SSMIS with respect to snow cover detection is between 80% and 100%, which will result in a maximum snow cover area difference of 25 × 104 km2 in China. The inconsistency in Tb between SSM/I and SSMIS can result in a −2 and −0.67 cm snow depth bias for the dual-channel and multichannel algorithms, respectively. SSMIS tends to yield lower snow depth estimates than SSM/I. Moreover, there are notable bias differences between SSM/I- and SSMIS-estimated snow depths in the tundra and taiga snow classes. Our results indicate the importance of considering the Tb bias in microwave snow cover detection and snow depth retrieval and point out that, due to the sensitivity of bias to seasons, it is better to do the intercalibration with a focus on snow-covered winter seasons. Otherwise, the bias in summer will disturb the calibration coefficients and introduce more error into the snow retrievals if the seasonal difference is not carefully evaluated and separated. Full article
Show Figures

Figure 1

31 pages, 5333 KiB  
Article
Multiple Remotely Sensed Lines of Evidence for a Depleting Seasonal Snowpack in the Near East
by Yeliz A. Yılmaz, Kristoffer Aalstad and Omer L. Sen
Remote Sens. 2019, 11(5), 483; https://doi.org/10.3390/rs11050483 - 26 Feb 2019
Cited by 20 | Viewed by 6090
Abstract
The snow-fed river basins of the Near East region are facing an urgent threat in the form of declining water resources. In this study, we analyzed several remote sensing products (optical, passive microwave, and gravimetric) and outputs of a meteorological reanalysis data set [...] Read more.
The snow-fed river basins of the Near East region are facing an urgent threat in the form of declining water resources. In this study, we analyzed several remote sensing products (optical, passive microwave, and gravimetric) and outputs of a meteorological reanalysis data set to understand the relationship between the terrestrial water storage anomalies and the mountain snowpack. The results from different satellite retrievals show a clear signal of a depletion of both water storage and the seasonal snowpack in four basins in the region. We find a strong reduction in terrestrial water storage over the Gravity Recovery and Climate Experiment (GRACE) observational period, particularly over the higher elevations. Snow-cover duration estimates from Moderate Resolution Imaging Spectroradiometer (MODIS) products point towards negative and significant trends up to one month per decade in the current era. These numbers are a clear indicator of the partial disappearance of the seasonal snow-cover in the region which has been projected to occur by the end of the century. The spatial patterns of changes in the snow-cover duration are positively correlated with both GRACE terrestrial water storage decline and peak snow water equivalent (SWE) depletion from the ERA5 reanalysis. Possible drivers of the snowpack depletion are a significant reduction in the snowfall ratio and an earlier snowmelt. A continued depletion of the montane snowpack in the Near East paints a bleak picture for future water availability in this water-stressed region. Full article
Show Figures

Graphical abstract

19 pages, 11004 KiB  
Article
Advances in Snow Hydrology Using a Combined Approach of GNSS In Situ Stations, Hydrological Modelling and Earth Observation—A Case Study in Canada
by Florian Appel, Franziska Koch, Anja Rösel, Philipp Klug, Patrick Henkel, Markus Lamm, Wolfram Mauser and Heike Bach
Geosciences 2019, 9(1), 44; https://doi.org/10.3390/geosciences9010044 - 15 Jan 2019
Cited by 13 | Viewed by 8361
Abstract
The availability of in situ snow water equivalent (SWE), snowmelt and run-off measurements is still very limited especially in remote areas as the density of operational stations and field observations is often scarce and usually costly, labour-intense and/or risky. With remote sensing products, [...] Read more.
The availability of in situ snow water equivalent (SWE), snowmelt and run-off measurements is still very limited especially in remote areas as the density of operational stations and field observations is often scarce and usually costly, labour-intense and/or risky. With remote sensing products, spatially distributed information on snow is potentially available, but often lacks the required spatial or temporal requirements for hydrological applications. For the assurance of a high spatial and temporal resolution, however, it is often necessary to combine several methods like Earth Observation (EO), modelling and in situ approaches. Such a combination was targeted within the business applications demonstration project SnowSense (2015–2018), co-funded by the European Space Agency (ESA), where we designed, developed and demonstrated an operational snow hydrological service. During the run-time of the project, the entire service was demonstrated for the island of Newfoundland, Canada. The SnowSense service, developed during the demonstration project, is based on three pillars, including (i) newly developed in situ snow monitoring stations based on signals of the Global Navigation Satellite System (GNSS); (ii) EO snow cover products on the snow cover extent and on information whether the snow is dry or wet; and (iii) an integrated physically based hydrological model. The key element of the service is the novel GNSS based in situ sensor, using two static low-cost antennas with one being mounted on the ground and the other one above the snow cover. This sensor setup enables retrieving the snow parameters SWE and liquid water content (LWC) in the snowpack in parallel, using GNSS carrier phase measurements and signal strength information. With the combined approach of the SnowSense service, it is possible to provide spatially distributed SWE to assess run-off and to provide relevant information for hydropower plant management in a high spatial and temporal resolution. This is particularly needed for so far non, or only sparsely equipped catchments in remote areas. We present the results and validation of (i) the GNSS in situ sensor setup for SWE and LWC measurements at the well-equipped study site Forêt Montmorency near Quebec, Canada and (ii) the entire combined in situ, EO and modelling SnowSense service resulting in assimilated SWE maps and run-off information for two different large catchments in Newfoundland, Canada. Full article
(This article belongs to the Special Issue Remote Sensing of Snow and Its Applications)
Show Figures

Figure 1

19 pages, 7531 KiB  
Article
Observations of a Coniferous Forest at 9.6 and 17.2 GHz: Implications for SWE Retrievals
by Aaron Thompson and Richard Kelly
Remote Sens. 2019, 11(1), 6; https://doi.org/10.3390/rs11010006 - 20 Dec 2018
Cited by 7 | Viewed by 3371
Abstract
UWScat, a ground-based Ku- and X-band scatterometer, was used to compare forested and non-forested landscapes in a terrestrial snow accumulation environment as part of the NASA SnowEx17 field campaign. Field observations from Trail Valley Creek, Northwest Territories; Tobermory, Ontario; and the Canadian Snow [...] Read more.
UWScat, a ground-based Ku- and X-band scatterometer, was used to compare forested and non-forested landscapes in a terrestrial snow accumulation environment as part of the NASA SnowEx17 field campaign. Field observations from Trail Valley Creek, Northwest Territories; Tobermory, Ontario; and the Canadian Snow and Ice Experiment (CASIX) campaign in Churchill, Manitoba, were also included. Limited sensitivity to snow was observed at 9.6 GHz, while the forest canopy attenuated the signal from sub-canopy snow at 17.2 GHz. Forested landscapes were distinguishable using the volume scattering component of the Freeman–Durden three-component decomposition model by applying a threshold in which values ≥50% indicated forested landscape. It is suggested that the volume scattering component of the decomposition can be used in current snow water equivalent (SWE) retrieval algorithms in place of the forest cover fraction (FF), which is an optical surrogate for microwave scattering and relies on ancillary data. The performance of the volume scattering component of the decomposition was similar to that of FF when used in a retrieval scheme. The primary benefit of this method is that it provides a current, real-time estimate of the forest state, it automatically accounts for the incidence angle and canopy structure, and it provides coincident information on the forest canopy without the use of ancillary data or modeling, which is especially important in remote regions. Additionally, it enables the estimation of forest canopy transmissivity without ancillary data. This study also demonstrates the use of these frequencies in a forest canopy application, and the use of the Freeman–Durden three-component decomposition on scatterometer observations in a terrestrial snow accumulation environment. Full article
(This article belongs to the Special Issue Data Fusion for Improved Forest Inventories and Planning)
Show Figures

Graphical abstract

19 pages, 3379 KiB  
Article
Generating Observation-Based Snow Depletion Curves for Use in Snow Cover Data Assimilation
by Kristi R. Arsenault and Paul R. Houser
Geosciences 2018, 8(12), 484; https://doi.org/10.3390/geosciences8120484 - 14 Dec 2018
Cited by 7 | Viewed by 5104
Abstract
Snow depletion curves (SDC) are functions that are used to show the relationship between snow covered area and snow depth or water equivalent. Previous snow cover data assimilation (DA) studies have used theoretical SDC models as observation operators to map snow depth to [...] Read more.
Snow depletion curves (SDC) are functions that are used to show the relationship between snow covered area and snow depth or water equivalent. Previous snow cover data assimilation (DA) studies have used theoretical SDC models as observation operators to map snow depth to snow cover fraction (SCF). In this study, a new approach is introduced that uses snow water equivalent (SWE) observations and satellite-based SCF retrievals to derive SDC relationships for use in an Ensemble Kalman filter (EnKF) to assimilate snow cover estimates. A histogram analysis is used to bin the SWE observations, which the corresponding SCF observations are then averaged within, helping to constrain the amount of data dispersion across different temporal and regional conditions. Logarithmic functions are linearly regressed with the binned average values, for two U.S. mountainous states: Colorado and Washington. The SDC-based logarithmic functions are used as EnKF observation operators, and the satellite-based SCF estimates are assimilated into a land surface model. Assimilating satellite-based SCF estimates with the observation-based SDC shows a reduction in SWE-related RMSE values compared to the model-based SDC functions. In addition, observation-based SDC functions were derived for different intra-annual and physiographic conditions, and landcover and elevation bands. Lower SWE-based RMSE values are also found with many of these categorical observation-based SDC EnKF experiments. All assimilation experiments perform better than the open-loop runs, except for the Washington region’s 2004–2005 snow season, which was a major drought year that was difficult to capture with the ensembles and observations. Full article
(This article belongs to the Special Issue Remote Sensing of Snow and Its Applications)
Show Figures

Figure 1

18 pages, 4678 KiB  
Article
The AMSU-Based Hydrological Bundle Climate Data Record—Description and Comparison with Other Data Sets
by Ralph R. Ferraro, Brian R. Nelson, Tom Smith and Olivier P. Prat
Remote Sens. 2018, 10(10), 1640; https://doi.org/10.3390/rs10101640 - 16 Oct 2018
Cited by 7 | Viewed by 5367
Abstract
Passive microwave measurements have been available on satellites back to the 1970s, first flown on research satellites developed by the National Aeronautics and Space Administration (NASA). Since then, several other sensors have been flown to retrieve hydrological products for both operational weather applications [...] Read more.
Passive microwave measurements have been available on satellites back to the 1970s, first flown on research satellites developed by the National Aeronautics and Space Administration (NASA). Since then, several other sensors have been flown to retrieve hydrological products for both operational weather applications (e.g., the Special Sensor Microwave/Imager—SSM/I; the Advanced Microwave Sounding Unit—AMSU) and climate applications (e.g., the Advanced Microwave Scanning Radiometer—AMSR; the Tropical Rainfall Measurement Mission Microwave Imager—TMI; the Global Precipitation Mission Microwave Imager—GMI). Here, the focus is on measurements from the AMSU-A, AMSU-B, and Microwave Humidity Sounder (MHS). These sensors have been in operation since 1998, with the launch of NOAA-15, and are also on board NOAA-16, -17, -18, -19, and the MetOp-A and -B satellites. A data set called the “Hydrological Bundle” is a climate data record (CDR) that utilizes brightness temperatures from fundamental CDRs (FCDRs) to generate thematic CDRs (TCDRs). The TCDRs include total precipitable water (TPW), cloud liquid water (CLW), sea-ice concentration (SIC), land surface temperature (LST), land surface emissivity (LSE) for 23, 31, 50 GHz, rain rate (RR), snow cover (SC), ice water path (IWP), and snow water equivalent (SWE). The TCDRs are shown to be in general good agreement with similar products from other sources, such as the Global Precipitation Climatology Project (GPCP) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2). Due to the careful intercalibration of the FCDRs, little bias is found among the different TCDRs produced from individual NOAA and MetOp satellites, except for normal diurnal cycle differences. Full article
(This article belongs to the Special Issue Remote Sensing of Essential Climate Variables and Their Applications)
Show Figures

Graphical abstract

Back to TopTop