A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. The NoSREx Experiment
2.2. Proposed SWE Retrieval Framework
2.2.1. Multilayer Snow Hydrology Model
2.2.2. DMRT-QMS Model
2.2.3. EnKF Algorithm
2.2.4. Snow Layer Adjustment
2.3. Selection of Undetermined Model Parameters
2.4. Evaluation of Porposed Framework
3. Results
3.1. The Grain Size Scaling Factor and Internal Parameters of the Model
3.2. Assimilation Results for Snow Depth and SWE
3.3. Evaluation of Proposed Framework
3.3.1. Combination of Different Observation Frequencies
3.3.2. Observation Time Intervals
3.3.3. The Size of the Ensemble
3.3.4. Comparison of EnKF Approach with the Commonly Used SWE Retrieval Algorithm
4. Discussion
4.1. Impact of Observation Quality on Snow Depth and SWE Retrieval over Three Years
4.2. The Impact of the Assimilated Snow Depth on Tb Predictions
5. Conclusions
- The relationship of the snow grain size between the snow hydrology model and the DMRT model can be established by a scaling factor . In this framework, the established parameter was from the ESA NoSREx dataset analysis. In this study, a constant soil moisture and surface roughness parameters were assumed.
- The framework presented more flexibility in choosing the appropriate passive microwave observation channel combinations. The six channel observations (V- and H-pol at 10.65 GHz, 18.7 GHz, and 36.5 GHz), when applied together, worked better than other combinations for SWE retrieval.
- Different observation time intervals affected the assimilation results, and the longer the time interval, the more the assimilation results were biased toward the open-loop forecast values. In our test, the framework performed well for observation intervals less than seven days.
- The presented 1D framework can be extended to a wide spatial domain using a large spatial coverage of experimental data (for example, Environment Canada data [54] and NASA data [55]), where a distributed snow hydrology model is required [56,57]. Moreover, a more advanced RT model such as the DMRT-bicontinuous media model [58] can be adopted in the framework to improve the retrieval accuracy of SWE. The framework can also improve the performance of SWE retrieval for future applications that use both active and passive microwave observations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sturm, M.; Goldstein, M.A.; Parr, C. Water and Life from Snow: A Trillion Dollar Science Question. Water Resour. Res. 2017, 53, 3534–3544. [Google Scholar] [CrossRef]
- Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Pomeroy, J.; de Boer, D.; Martz, L.W. Hydrology and Water Resources of Saskatchewan; Centre for Hydrology, University Saskatchewan: Saskatoon, Saskatchewan, 2005. [Google Scholar]
- Déry, S.J.; Stahl, K.; Moore, R.D.; Whitfield, P.H.; Menounos, B.; Burford, J.E. Detection of Runoff Timing Changes in Pluvial, Nival, and Glacial Rivers of Western Canada. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Kim, E.; Gatebe, C.; Hall, D.; Newlin, J.; Misakonis, A.; Elder, K.; Marshall, H.P.; Hiemstra, C.; Brucker, L.; De Marco, E. NASA’s SnowEx Campaign: Observing Seasonal Snow in a Forested Environment. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1388–1390. [Google Scholar]
- Armstrong, R.L.; Chang, A.; Rango, A.; Josberger, E. Snow Depths and Grain-Size Relationships with Relevance for Passive Microwave Studies. Ann. Glaciol. 1993, 17, 171–176. [Google Scholar] [CrossRef]
- Chang, A.T.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR Derived Global Snow Cover Parameters. Ann. Glaciol. 1987, 9, 39–44. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Grandell, J.; Hallikainen, M.T. Retrieval of Surface Temperature in Boreal Forest Zone from SSM/I Data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1188–1200. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Grandell, J.; Hallikainen, M.T. HUT Snow Emission Model and Its Applicability to Snow Water Equivalent Retrieval. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1378–1390. [Google Scholar] [CrossRef]
- Luojus, K.; Pulliainen, J.; Takala, M.; Lemmetyinen, J.; Mortimer, C.; Derksen, C.; Mudryk, L.; Moisander, M.; Hiltunen, M.; Smolander, T. GlobSnow v3. 0 Northern Hemisphere Snow Water Equivalent Dataset. Sci. Data 2021, 8, 163. [Google Scholar] [CrossRef]
- Pan, J.; Durand, M.T.; Vander Jagt, B.J.; Liu, D. Application of a Markov Chain Monte Carlo Algorithm for Snow Water Equivalent Retrieval from Passive Microwave Measurements. Remote Sens. Environ. 2017, 192, 150–165. [Google Scholar] [CrossRef]
- Saberi, N.; Kelly, R.; Pan, J.; Durand, M.; Goh, J.; Scott, K.A. The Use of a Monte Carlo Markov Chain Method for Snow-Depth Retrievals: A Case Study Based on Airborne Microwave Observations and Emission Modeling Experiments of Tundra Snow. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1876–1889. [Google Scholar] [CrossRef]
- Xue, Y.; Forman, B.A. Comparison of Passive Microwave Brightness Temperature Prediction Sensitivities over Snow-Covered Land in North America Using Machine Learning Algorithms and the Advanced Microwave Scanning Radiometer. Remote Sens. Environ. 2015, 170, 153–165. [Google Scholar] [CrossRef]
- Forman, B.A.; Xue, Y. Machine Learning Predictions of Passive Microwave Brightness Temperature over Snow-Covered Land Using the Special Sensor Microwave Imager (SSM/I). Phys. Geogr. 2017, 38, 176–196. [Google Scholar] [CrossRef]
- Ahmad, J.A.; Forman, B.A.; Kwon, Y. Analyzing Machine Learning Predictions of Passive Microwave Brightness Temperature Spectral Difference over Snow-Covered Terrain in High Mountain Asia. Front. Earth Sci. 2019, 7, 212. [Google Scholar] [CrossRef]
- Cui, Y.; Xiong, C.; Lemmetyinen, J.; Shi, J.; Jiang, L.; Peng, B.; Li, H.; Zhao, T.; Ji, D.; Hu, T. Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss. Remote Sens. 2016, 8, 505. [Google Scholar] [CrossRef]
- Oveisgharan, S.; Esteban-Fernandez, D.; Waliser, D.; Friedl, R.; Nghiem, S.; Zeng, X. Evaluating the Preconditions of Two Remote Sensing Swe Retrieval Algorithms over the Us. Remote Sens. 2020, 12, 2021. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; van Kampenhout, L.; Kennedy, D. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface Soil Moisture Parameterization of the VIC-2L Model: Evaluation and Modification. Glob. Planet. Change 1996, 13, 195–206. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. Model Description and Evaluation with Local-scale Measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Lettenmaier, D.P. Assimilating Remotely Sensed Snow Observations into a Macroscale Hydrology Model. Adv. Water Resour. 2006, 29, 872–886. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Lettenmaier, D.P. Implications of Representing Snowpack Stratigraphy for the Assimilation of Passive Microwave Satellite Observations. J. Hydrometeorol. 2012, 13, 1493–1506. [Google Scholar] [CrossRef]
- Slater, A.G.; Clark, M.P. Snow Data Assimilation via an Ensemble Kalman Filter. J. Hydrometeorol. 2006, 7, 478–493. [Google Scholar] [CrossRef]
- Sun, C.; Walker, J.P.; Houser, P.R. A Methodology for Snow Data Assimilation in a Land Surface Model. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Durand, M.; Molotch, N.P.; Margulis, S.A. A Bayesian Approach to Snow Water Equivalent Reconstruction. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Durand, M.; Kim, E.J.; Margulis, S.A. Radiance Assimilation Shows Promise for Snowpack Characterization. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Huang, C. Assimilating Passive Microwave Remote Sensing Data into a Land Surface Model to Improve the Estimation of Snow Depth. Remote Sens. Environ. 2014, 143, 54–63. [Google Scholar] [CrossRef]
- Durand, M.; Kim, E.J.; Margulis, S.A.; Molotch, N.P. A First-Order Characterization of Errors from Neglecting Stratigraphy in Forward and Inverse Passive Microwave Modeling of Snow. IEEE Geosci. Remote Sens. Lett. 2011, 8, 730–734. [Google Scholar] [CrossRef]
- Kim, R.S.; Kumar, S.; Vuyovich, C.; Houser, P.; Lundquist, J.; Mudryk, L.; Durand, M.; Barros, A.; Kim, E.J.; Forman, B.A. Snow Ensemble Uncertainty Project (SEUP): Quantification of Snow Water Equivalent Uncertainty across North America via Ensemble Land Surface Modeling. Cryosphere 2021, 15, 771–791. [Google Scholar] [CrossRef]
- Huang, C.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Zheng, X. Evaluation of Snow Data Assimilation Using the Ensemble Kalman Filter for Seasonal Streamflow Prediction in the Western United States. Hydrol. Earth Syst. Sci. 2017, 21, 635–650. [Google Scholar] [CrossRef]
- Kang, D.H.; Tan, S.; Kim, E.J. Evaluation of Brightness Temperature Sensitivity to Snowpack Physical Properties Using Coupled Snow Physics and Microwave Radiative Transfer Models. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10241–10251. [Google Scholar] [CrossRef]
- Luo, C.; Tan, S.; Kang, D.-H. A Snow Water Equivalent Retrieval Framework Coupling Microwave Remote Sensing and Hydrology Model. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 7256–7259. [Google Scholar]
- Tsang, L.; Chen, C.-T.; Chang, A.T.; Guo, J.; Ding, K.-H. Dense Media Radiative Transfer Theory Based on Quasicrystalline Approximation with Applications to Passive Microwave Remote Sensing of Snow. Radio Sci. 2000, 35, 731–749. [Google Scholar] [CrossRef]
- Kang, D.H.; Barros, A.P. Observing System Simulation of Snow Microwave Emissions over Data Sparse Regions—Part I: Single Layer Physics. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1785–1805. [Google Scholar] [CrossRef]
- Kang, D.H.; Barros, A.P. Observing System Simulation of Snow Microwave Emissions over Data Sparse Regions—Part II: Multilayer Physics. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1806–1820. [Google Scholar] [CrossRef]
- Kang, D.H.; Barros, A.P.; Dery, S.J. Evaluating Passive Microwave Radiometry for the Dynamical Transition from Dry to Wet Snowpacks. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3–15. [Google Scholar] [CrossRef]
- Lemmetyinen, J.; Kontu, A.; Pulliainen, J.; Vehviläinen, J.; Rautiainen, K.; Wiesmann, A.; Mätzler, C.; Werner, C.; Rott, H.; Nagler, T. Nordic Snow Radar Experiment. Geosci. Instrum. Methods Data Syst. 2016, 5, 403–415. [Google Scholar] [CrossRef]
- Jordan, R.E. A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM. 89. 1991; pp. 5. Available online: https://erdc-library.erdc.dren.mil/jspui/handle/11681/11677 (accessed on 15 November 2023).
- Tsang, L.; Pan, J.; Liang, D.; Li, Z.; Cline, D.W.; Tan, Y. Modeling Active Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory with Multiple-Scattering Effects. IEEE Trans. Geosci. Remote Sens. 2007, 45, 990–1004. [Google Scholar] [CrossRef]
- Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G. The Effects of Layers in Dry Snow on Its Passive Microwave Emissions Using Dense Media Radiative Transfer Theory Based on the Quasicrystalline Approximation (QCA/DMRT). IEEE Trans. Geosci. Remote Sens. 2008, 46, 3663–3671. [Google Scholar] [CrossRef]
- Chang, W.; Tan, S.; Lemmetyinen, J.; Tsang, L.; Xu, X.; Yueh, S.H. Dense Media Radiative Transfer Applied to SnowScat and SnowSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3811–3825. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean. Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Evensen, G. Data Assimilation: The Ensemble Kalman Filter; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-642-03710-8. [Google Scholar]
- Burgers, G.; van Leeuwen, P.J.; Evensen, G. Analysis Scheme in the Ensemble Kalman Filter. Mon. Weather. Rev. 1998, 126, 1719–1724. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Mitchell, H.L. Data Assimilation Using an Ensemble Kalman Filter Technique. Mon. Wea. Rev. 1998, 126, 796–811. [Google Scholar] [CrossRef]
- Pan, M.; Wood, E.F. Data Assimilation for Estimating the Terrestrial Water Budget Using a Constrained Ensemble Kalman Filter. J. Hydrometeorol. 2006, 7, 534–547. [Google Scholar] [CrossRef]
- Zhang, H.; Hendricks Franssen, H.-J.; Han, X.; Vrugt, J.A.; Vereecken, H. State and Parameter Estimation of Two Land Surface Models Using the Ensemble Kalman Filter and the Particle Filter. Hydrol. Earth Syst. Sci. 2017, 21, 4927–4958. [Google Scholar] [CrossRef]
- Elder, K.; Cline, D.; Liston, G.E.; Armstrong, R. NASA Cold Land Processes Experiment (CLPX 2002/03): Field Measurements of Snowpack Properties and Soil Moisture. J. Hydrometeorol. 2009, 10, 320–329. [Google Scholar] [CrossRef]
- Rott, H.; Duguay, C.; Essery, R.; Haas, C.; Macelloni, G.; Malnes, E. ESA SP-1313/3 Candidate Earth Explorer Core Missions Report for Assessment: CoReH20—Cold Regions Hydrology High Resolution Observatory. ESA Commun. Prod. Off. 2009. [Google Scholar]
- Garnaud, C.; Bélair, S.; Carrera, M.L.; Derksen, C.; Bilodeau, B.; Abrahamowicz, M.; Gauthier, N.; Vionnet, V. Quantifying Snow Mass Mission Concept Trade-Offs Using an Observing System Simulation Experiment. J. Hydrometeorol. 2019, 20, 155–173. [Google Scholar] [CrossRef]
- Xiao, X.; He, T.; Liang, S.; Zhao, T. Improving Fractional Snow Cover Retrieval From Passive Microwave Data Using a Radiative Transfer Model and Machine Learning Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Zschenderlein, L.; Luojus, K.; Takala, M.; Venäläinen, P.; Pulliainen, J. Evaluation of passive microwave dry snow detection algorithms and application to SWE retrieval during seasonal snow accumulation. Remote Sens. Environ. 2023, 288, 113476. [Google Scholar] [CrossRef]
- Carrera, M.L.; Bélair, S.; Bilodeau, B. The Canadian Land Data Assimilation System (CaLDAS): Description and Synthetic Evaluation Study. J. Hydrometeorol. 2015, 16, 1293–1314. [Google Scholar] [CrossRef]
- Kwon, Y.; Forman, B.A.; Ahmad, J.A.; Kumar, S.V.; Yoon, Y. Exploring the Utility of Machine Learning-Based Passive Microwave Brightness Temperature Data Assimilation over Terrestrial Snow in High Mountain Asia. Remote Sens. 2019, 11, 2265. [Google Scholar] [CrossRef]
- Girotto, M.; Musselman, K.N.; Essery, R.L.H. Data Assimilation Improves Estimates of Climate-Sensitive Seasonal Snow. Curr. Clim. Chang. Rep. 2020, 6, 81–94. [Google Scholar] [CrossRef]
- Lehning, M.; Völksch, I.; Gustafsson, D.; Nguyen, T.A.; Stähli, M.; Zappa, M. ALPINE3D: A Detailed Model of Mountain Surface Processes and Its Application to Snow Hydrology. Hydrol. Process. 2006, 20, 2111–2128. [Google Scholar] [CrossRef]
- Tan, S.; Chang, W.; Tsang, L.; Lemmetyinen, J.; Proksch, M. Modeling Both Active and Passive Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory With Multiple Scattering and Backscattering Enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4418–4430. [Google Scholar] [CrossRef]
Standard Deviation Range | Distribution | |
---|---|---|
Rainfall | Normal | |
Snowfall | Normal | |
Air temperature | Normal | |
Wind speed | Normal |
Divide | Compact | |
---|---|---|
Same as top layer | Weighted average by SWE | |
Average | Sum | |
Same as top layer | Weighted average by SWE | |
Same as top layer | Weighted average by SWE | |
Average | Sum |
Hydrology Model | DMRT-QMS | ||
---|---|---|---|
1.5 | 0.25 | ||
1.65 | 0.11 | ||
0.285 | 0.051 |
Year | RMSE of Snow Depth (mm) | RMSE of SWE (mm) | ||
---|---|---|---|---|
Open Loop | EnKF | Open Loop | EnKF | |
2009–2010 | 103.05 | 53.12 | 63.42 | 39.34 |
2010–2011 | 153.79 | 28.12 | 90.77 | 12.43 |
2011–2012 | 270.46 | 143.93 | 187.25 | 51.16 |
Frequency Combination | RMSE of Snow Depth (mm) | RMSE of SWE (mm) |
---|---|---|
Open Loop | 153.79 | 90.77 |
18.7 + 36.5 GHz V | 63.28 | 30.02 |
18.7 + 36.5 GHz H | 97.43 | 45.77 |
18.7 + 36.5 GHz V+H | 48.98 | 28.33 |
10.65 + 18.7 + 36.5 GHz V | 106.25 | 52.52 |
10.65 + 18.7 + 36.5 GHz V+H | 28.12 | 12.43 |
Observation Time Intervals | RMSE of Snow Depth (mm) | RMSE of SWE (mm) |
---|---|---|
Open Loop | 153.79 | 90.77 |
Per 4 h | 28.12 | 12.43 |
Per 1 day | 69.47 | 36.82 |
Per 1 week | 73.62 | 40.13 |
Per 3 weeks | 113.48 | 52.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Luo, C.; Tan, S.; Kang, D.-H.; Fang, Y.; Pan, J. A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models. Remote Sens. 2024, 16, 1732. https://doi.org/10.3390/rs16101732
Cao Y, Luo C, Tan S, Kang D-H, Fang Y, Pan J. A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models. Remote Sensing. 2024; 16(10):1732. https://doi.org/10.3390/rs16101732
Chicago/Turabian StyleCao, Yuanhao, Chunzeng Luo, Shurun Tan, Do-Hyuk Kang, Yiwen Fang, and Jinmei Pan. 2024. "A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models" Remote Sensing 16, no. 10: 1732. https://doi.org/10.3390/rs16101732
APA StyleCao, Y., Luo, C., Tan, S., Kang, D. -H., Fang, Y., & Pan, J. (2024). A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models. Remote Sensing, 16(10), 1732. https://doi.org/10.3390/rs16101732