Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,028)

Search Parameters:
Keywords = smart metering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2795 KiB  
Article
State Analysis of Grouped Smart Meters Driven by Interpretable Random Forest
by Zhongdong Wang, Zhengbo Zhang, Weijiang Wu, Zhen Zhang, Xiaolin Xu and Hongbin Li
Electronics 2025, 14(15), 3105; https://doi.org/10.3390/electronics14153105 - 4 Aug 2025
Abstract
Accurate evaluation of the operational status of smart meters, as the critical interface between the power grid and its users, is essential for ensuring fairness in power transactions. This highlights the importance of implementing rotation management practices based on meter status. However, the [...] Read more.
Accurate evaluation of the operational status of smart meters, as the critical interface between the power grid and its users, is essential for ensuring fairness in power transactions. This highlights the importance of implementing rotation management practices based on meter status. However, the traditional expiration-based rotation method has become inadequate due to the extended service life of modern smart meters, necessitating a shift toward status-driven targeted management. Existing multifactor comprehensive assessment methods often face challenges in balancing accuracy and interpretability. To address these limitations, this study proposes a novel method for analyzing the status of smart meter groups using an interpretable random forest model. The approach incorporates an expert-knowledge-guided grouping assessment strategy, develops a multi-source heterogeneous feature set with strong correlations to meter status, and enhances the random forest model with the SHAP (SHapley Additive exPlanations) interpretability framework. Compared to conventional methods, the proposed approach demonstrates superior efficiency and reliability in predicting the failure rates of smart meter groups within distribution network areas, offering robust support for the maintenance and management of smart meters. Full article
Show Figures

Figure 1

22 pages, 3301 KiB  
Article
Parameter Identification of Distribution Zone Transformers Under Three-Phase Asymmetric Conditions
by Panrun Jin, Wenqin Song and Yankui Zhang
Eng 2025, 6(8), 181; https://doi.org/10.3390/eng6080181 - 2 Aug 2025
Viewed by 143
Abstract
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing [...] Read more.
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing system operation. However, existing identification methods typically require synchronized high- and low-voltage data and are limited to symmetric three-phase conditions, which limits their application in practical distribution systems. To address these challenges, this paper proposes a parameter identification method for DZTs under three-phase unbalanced conditions. Firstly, based on the transformer’s T-equivalent circuit considering the load, the power flow equations are derived without involving the synchronization issue of high-voltage and low-voltage side data, and the sum of the impedances on both sides is treated as an independent parameter. Then, a novel power flow equation under three-phase unbalanced conditions is established, and an adaptive recursive least squares (ARLS) solution method is constructed using the measurement data sequence provided by the smart meter of the intelligent transformer terminal unit (TTU) to achieve online identification of the transformer winding parameters. The effectiveness and robustness of the method are verified through practical case studies. Full article
Show Figures

Figure 1

20 pages, 3593 KiB  
Article
A Feature Engineering Framework for Smart Meter Group Failure Rate Prediction
by Yihong Li, Xia Xiao, Zhengbo Zhang and Wenao Liu
Mathematics 2025, 13(15), 2472; https://doi.org/10.3390/math13152472 - 31 Jul 2025
Viewed by 197
Abstract
Smart meters play a significant role in power systems, but their condition assessment faces challenges such as inconsistent evaluation criteria and inaccurate assessment results. This paper proposes feature engineering including feature construction and feature selection for smart meter group failure rate prediction. First, [...] Read more.
Smart meters play a significant role in power systems, but their condition assessment faces challenges such as inconsistent evaluation criteria and inaccurate assessment results. This paper proposes feature engineering including feature construction and feature selection for smart meter group failure rate prediction. First, the basic structure and common fault types of smart meters are introduced. Smart meters are grouped by batch and distribution area. Next, 25 condition features are constructed based on failure mechanisms and technical specifications. Then, an evolutionary multi-objective feature selection algorithm combining NSGA-II, Jaccard similarity, and XGBoost is developed, where feature subsets are encoded as binary individuals optimized for three objectives: MSE, 1 − R2, and the number of features. The experimental results demonstrate that the proposed method not only reduces the number of features (25→7) but also improves the prediction accuracy (MSE: 0.0049 → 0.0042, R2: 0.6638 → 0.7228) of smart meter group failure rates. Comparative studies with other feature selection methods further confirm the superiority of our approach. The optimized features enhance interpretability and computational efficiency, providing a practical solution for large-scale smart meter condition assessment in power systems. Full article
(This article belongs to the Special Issue Evolutionary Algorithms and Applications)
Show Figures

Figure 1

10 pages, 6510 KiB  
Proceeding Paper
Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal
by Muhammad Akram, Chiara Martone, Ilenia Perugini and Emmanuele Maria Petruzziello
Eng. Proc. 2025, 101(1), 7; https://doi.org/10.3390/engproc2025101007 - 25 Jul 2025
Viewed by 684
Abstract
Intensive energy consumption in the building sector remains one of the primary contributors to climate change and global warming. Within Renewable Energy Communities (RECs), improving energy management is essential for promoting sustainability and reducing environmental impact. Accurate forecasting of energy consumption at the [...] Read more.
Intensive energy consumption in the building sector remains one of the primary contributors to climate change and global warming. Within Renewable Energy Communities (RECs), improving energy management is essential for promoting sustainability and reducing environmental impact. Accurate forecasting of energy consumption at the community level is a key tool in this effort. Traditionally, engineering-based methods grounded in thermodynamic principles have been employed, offering high accuracy under controlled conditions. However, their reliance on exhaustive building-level data and high computational costs limits their scalability in dynamic REC settings. In contrast, Artificial Intelligence (AI)-driven methods provide flexible and scalable alternatives by learning patterns from historical consumption and environmental data. This study investigates three Machine Learning (ML) models, Decision Tree (DT), Random Forest (RF), and CatBoost, and one Deep Learning (DL) model, Convolutional Neural Network (CNN), to forecast community electricity consumption using real smart meter data and local meteorological variables. The study focuses on a REC in Loureiro, Portugal, consisting of 172 residential users from whom 16 months of 15 min interval electricity consumption data were collected. Temporal features (hour of the day, day of the week, month) were combined with lag-based usage patterns, including features representing energy consumption at the corresponding time in the previous hour and on the previous day, to enhance model accuracy by leveraging short-term dependencies and daily repetition in usage behavior. Models were evaluated using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of Determination R2. Among all models, CatBoost achieved the best performance, with an MSE of 0.1262, MAPE of 4.77%, and an R2 of 0.9018. These results highlight the potential of ensemble learning approaches for improving energy demand forecasting in RECs, supporting smarter energy management and contributing to energy and environmental performance. Full article
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 377
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

41 pages, 5984 KiB  
Article
Socio-Economic Analysis for Adoption of Smart Metering System in SAARC Region: Current Challenges and Future Perspectives
by Zain Khalid, Syed Ali Abbas Kazmi, Muhammad Hassan, Sayyed Ahmad Ali Shah, Mustafa Anwar, Muhammad Yousif and Abdul Haseeb Tariq
Sustainability 2025, 17(15), 6786; https://doi.org/10.3390/su17156786 - 25 Jul 2025
Viewed by 503
Abstract
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector [...] Read more.
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector efficiency. The implementation of smart metering systems in utility management plays a pivotal role in advancing several Sustainable Development Goals (SDGs), i.e.; SDG (Affordable and Clean Energy), and SDG Climate Action. By enabling real-time monitoring, accurate measurement, and data-driven management of energy resources, smart meters promote efficient consumption, reduce losses, and encourage sustainable behaviors among consumers. The adoption of a smart metering system along with Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis, socio-economic analysis, current challenges, and future prospects was also investigated. Besides the economics of the electrical distribution system, one feeder with non-technical losses of about 16% was selected, and the cost–benefit analysis and cost–benefit ratio was estimated for the SAARC region. The import/export ratio is disturbing in various SAARC grids, and a solution in terms of community microgrids is presented from Pakistan’s perspective as a case study. The proposed work gives a guidelines for SAARC countries to reduce their losses and improve their system functionality. It gives a composite solution across multi-faceted evaluation for the betterment of a large region. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Graphical abstract

16 pages, 2521 KiB  
Article
A Machine-Learning-Based Framework for Detection and Recommendation in Response to Cyberattacks in Critical Energy Infrastructures
by Raul Rabadan, Ayaz Hussain, Ester Simó, Eva Rodriguez and Xavi Masip-Bruin
Electronics 2025, 14(15), 2946; https://doi.org/10.3390/electronics14152946 - 24 Jul 2025
Viewed by 222
Abstract
This paper presents an attack detection, response, and recommendation framework designed to protect the integrity and operational continuity of IoT-based critical infrastructure, specifically focusing on an energy use case. With the growing deployment of IoT-enabled smart meters in energy systems, ensuring data integrity [...] Read more.
This paper presents an attack detection, response, and recommendation framework designed to protect the integrity and operational continuity of IoT-based critical infrastructure, specifically focusing on an energy use case. With the growing deployment of IoT-enabled smart meters in energy systems, ensuring data integrity is essential. The proposed framework monitors smart meter data in real time, identifying deviations that may indicate data tampering or device malfunctions. The system comprises two main components: an attack detection and prediction module based on machine learning (ML) models and a response and adaptation module that recommends countermeasures. The detection module employs a forecasting model using a long short-term memory (LSTM) architecture, followed by a dense layer to predict future readings. It also integrates a statistical thresholding technique based on Tukey’s fences to detect abnormal deviations. The system was evaluated on real smart meter data in a testbed environment. It achieved accurate forecasting (MAPE < 2% in most cases) and successfully flagged injected anomalies with a low false positive rate, an effective result given the lightweight, unsupervised, and real-time nature of the approach. These findings confirm the framework’s applicability in resource-constrained energy systems requiring real-time cyberattack detection and mitigation. Full article
(This article belongs to the Special Issue Multimodal Learning and Transfer Learning)
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 256
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

25 pages, 2968 KiB  
Article
Modernizing District Heating Networks: A Strategic Decision-Support Framework for Sustainable Retrofitting
by Reza Bahadori, Matthias Speich and Silvia Ulli-Beer
Energies 2025, 18(14), 3759; https://doi.org/10.3390/en18143759 - 16 Jul 2025
Viewed by 341
Abstract
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct [...] Read more.
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct strategies for retrofitting district heating grids and includes a portfolio analysis. This framework serves as a tool to guide DH operators and stakeholders in selecting well-founded modernization pathways by considering technical, economic, and social dimensions. The review identifies several promising measures, such as reducing operational temperatures at substations, implementing optimized substations, integrating renewable and waste heat sources, implementing thermal energy storage (TES), deploying smart metering and monitoring infrastructure, and expanding networks while addressing public concerns. Additionally, the review highlights the importance of stakeholder engagement and policy support in successfully implementing these strategies. The developed strategic decision-support framework helps practitioners select a tailored modernization strategy aligned with the local context. Furthermore, the findings show the necessity of adopting a comprehensive approach that combines technical upgrades with robust stakeholder involvement and supportive policy measures to facilitate the transition to sustainable urban heating solutions. For example, the development of decision-support tools enables stakeholders to systematically evaluate and select grid modernization strategies, directly helping to reduce transmission losses and lower greenhouse gas (GHG) emissions contributing to climate goals and enhancing energy security. Indeed, as shown in the reviewed literature, retrofitting high-temperature district heating networks with low-temperature distribution and integrating renewables can lead to near-complete decarbonization of the supplied heat. Additionally, integrating advanced digital technologies, such as smart grid systems, can enhance grid efficiency and enable a greater share of variable renewable energy thus supporting national decarbonization targets. Further investigation could point to the most determining context factors for best choices to improve the sustainability and efficiency of existing DH systems. Full article
Show Figures

Figure 1

24 pages, 3773 KiB  
Article
Smart Grid System Based on Blockchain Technology for Enhancing Trust and Preventing Counterfeiting Issues
by Ala’a Shamaseen, Mohammad Qatawneh and Basima Elshqeirat
Energies 2025, 18(13), 3523; https://doi.org/10.3390/en18133523 - 3 Jul 2025
Viewed by 451
Abstract
Traditional systems in real life lack transparency and ease of use due to their reliance on centralization and large infrastructure. Furthermore, many sectors that rely on information technology face major challenges related to data integrity, trust, and counterfeiting, limiting scalability and acceptance in [...] Read more.
Traditional systems in real life lack transparency and ease of use due to their reliance on centralization and large infrastructure. Furthermore, many sectors that rely on information technology face major challenges related to data integrity, trust, and counterfeiting, limiting scalability and acceptance in the community. With the decentralization and digitization of energy transactions in smart grids, security, integrity, and fraud prevention concerns have increased. The main problem addressed in this study is the lack of a secure, tamper-resistant, and decentralized mechanism to facilitate direct consumer-to-prosumer energy transactions. Thus, this is a major challenge in the smart grid. In the blockchain, current consensus algorithms may limit the scalability of smart grids, especially when depending on popular algorithms such as Proof of Work, due to their high energy consumption, which is incompatible with the characteristics of the smart grid. Meanwhile, Proof of Stake algorithms rely on energy or cryptocurrency stake ownership, which may make the smart grid environment in blockchain technology vulnerable to control by the many owning nodes, which is incompatible with the purpose and objective of this study. This study addresses these issues by proposing and implementing a hybrid framework that combines the features of private and public blockchains across three integrated layers: user interface, application, and blockchain. A key contribution of the system is the design of a novel consensus algorithm, Proof of Energy, which selects validators based on node roles and randomized assignment, rather than computational power or stake ownership. This makes it more suitable for smart grid environments. The entire framework was developed without relying on existing decentralized platforms such as Ethereum. The system was evaluated through comprehensive experiments on performance and security. Performance results show a throughput of up to 60.86 transactions per second and an average latency of 3.40 s under a load of 10,000 transactions. Security validation confirmed resistance against digital signature forgery, invalid smart contracts, race conditions, and double-spending attacks. Despite the promising performance, several limitations remain. The current system was developed and tested on a single machine as a simulation-based study using transaction logs without integration of real smart meters or actual energy tokenization in real-time scenarios. In future work, we will focus on integrating real-time smart meters and implementing full energy tokenization to achieve a complete and autonomous smart grid platform. Overall, the proposed system significantly enhances data integrity, trust, and resistance to counterfeiting in smart grids. Full article
Show Figures

Figure 1

21 pages, 666 KiB  
Article
Efficient and Accurate Zero-Day Electricity Theft Detection from Smart Meter Sensor Data Using Prototype and Ensemble Learning
by Alyaman H. Massarani, Mahmoud M. Badr, Mohamed Baza, Hani Alshahrani and Ali Alshehri
Sensors 2025, 25(13), 4111; https://doi.org/10.3390/s25134111 - 1 Jul 2025
Viewed by 678
Abstract
Electricity theft remains a pressing challenge in modern smart grid systems, leading to significant economic losses and compromised grid stability. This paper presents a sensor-driven framework for electricity theft detection that leverages data collected from smart meter sensors, key components in smart grid [...] Read more.
Electricity theft remains a pressing challenge in modern smart grid systems, leading to significant economic losses and compromised grid stability. This paper presents a sensor-driven framework for electricity theft detection that leverages data collected from smart meter sensors, key components in smart grid monitoring infrastructure. The proposed approach combines prototype learning and meta-level ensemble learning to develop a scalable and accurate detection model, capable of identifying zero-day attacks that are not present in the training data. Smart meter data is compressed using Principal Component Analysis (PCA) and K-means clustering to extract representative consumption patterns, i.e., prototypes, achieving a 92% reduction in dataset size while preserving critical anomaly-relevant features. These prototypes are then used to train base-level one-class classifiers, specifically the One-Class Support Vector Machine (OCSVM) and the Gaussian Mixture Model (GMM). The outputs of these classifiers are normalized and fused in a meta-OCSVM layer, which learns decision boundaries in the transformed score space. Experimental results using the Irish CER Smart Metering Project (SMP) dataset show that the proposed sensor-based detection framework achieves superior performance, with an accuracy of 88.45% and a false alarm rate of just 13.85%, while reducing training time by over 75%. By efficiently processing high-frequency smart meter sensor data, this model contributes to developing real-time and energy-efficient anomaly detection systems in smart grid environments. Full article
Show Figures

Figure 1

28 pages, 3513 KiB  
Article
AI-Driven Anomaly Detection in Smart Water Metering Systems Using Ensemble Learning
by Maria Nelago Kanyama, Fungai Bhunu Shava, Attlee Munyaradzi Gamundani and Andreas Hartmann
Water 2025, 17(13), 1933; https://doi.org/10.3390/w17131933 - 27 Jun 2025
Viewed by 443
Abstract
Water, the lifeblood of our planet, sustains ecosystems, economies, and communities. However, climate change and increasing hydrological variability have exacerbated global water scarcity, threatening livelihoods and economic stability. According to the United Nations, over 2 billion people currently live in water-stressed regions, a [...] Read more.
Water, the lifeblood of our planet, sustains ecosystems, economies, and communities. However, climate change and increasing hydrological variability have exacerbated global water scarcity, threatening livelihoods and economic stability. According to the United Nations, over 2 billion people currently live in water-stressed regions, a figure expected to rise significantly by 2030. To address this urgent challenge, this study proposes an AI-driven anomaly detection framework for smart water metering networks (SWMNs) using machine learning (ML) techniques and data resampling methods to enhance water conservation efforts. This research utilizes 6 years of monthly water consumption data from 1375 households from Location A, Windhoek, Namibia, and applies support vector machine (SVM), decision tree (DT), random forest (RF), and k-nearest neighbors (kNN) models within ensemble learning strategies. A significant challenge in real-world datasets is class imbalance, which can reduce model reliability in detecting abnormal patterns. To address this, we employed data resampling techniques including random undersampling (RUS), SMOTE, and SMOTEENN. Among these, SMOTEENN achieved the best overall performance for individual models, with the RF classifier reaching an accuracy of 99.5% and an AUC score of 0.998. Ensemble learning approaches also yielded strong results, with the stacking ensemble achieving 99.6% accuracy, followed by soft voting at 99.2% and hard voting at 98.1%. These results highlight the effectiveness of ensemble methods and advanced sampling techniques in improving anomaly detection under class-imbalanced conditions. To the best of our knowledge, this is the first study to explore and evaluate the combined use of ensemble learning and resampling techniques for ML-based anomaly detection in SWMNs. By integrating artificial intelligence into water systems, this work lays the foundation for scalable, secure, and efficient smart water management solutions, contributing to global efforts in sustainable water governance. Full article
(This article belongs to the Special Issue AI, Machine Learning and Digital Twin Applications in Water)
Show Figures

Figure 1

18 pages, 1754 KiB  
Article
Characterizing Hot-Water Consumption at Household and End-Use Levels Based on Smart-Meter Data
by Filippo Mazzoni, Valentina Marsili and Stefano Alvisi
Water 2025, 17(13), 1906; https://doi.org/10.3390/w17131906 - 26 Jun 2025
Viewed by 514
Abstract
Understanding the characteristics of residential hot-water consumption can be useful for developing effective water-conservation strategies in response to increasing pressure on natural resources. This study systematically investigates residential hot-water consumption through direct monitoring of over 40 domestic fixtures (belonging to six different end-use [...] Read more.
Understanding the characteristics of residential hot-water consumption can be useful for developing effective water-conservation strategies in response to increasing pressure on natural resources. This study systematically investigates residential hot-water consumption through direct monitoring of over 40 domestic fixtures (belonging to six different end-use categories) in five Italian households, recorded over a period ranging from approximately two weeks to nearly four months, and using smart meters with 5 min resolution. A multi-step analysis is applied—at both household and end-use levels, explicitly differentiating tap uses by purpose and location—to (i) quantify daily per capita hot-water consumption, (ii) calculate hot-water ratios, and (iii) assess daily profiles. The results show an average total water consumption of 106.7 L/person/day, with at least 26.1% attributed to hot water. In addition, daily profiles reveal distinct patterns across end uses: hot- and cold-water consumption at kitchen sinks are not aligned over time (with cold water peaking before meals and hot water used predominantly afterward), while bathroom taps show more synchronized use and a marked evening peak in hot-water consumption. Study findings—along with the related open-access dataset—provide a valuable benchmark based on field measurements to support in the process of water demand modeling and the development of targeted demand-management strategies. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Graphical abstract

23 pages, 1420 KiB  
Article
Utilising Smart-Meter Harmonic Data for Low-Voltage Network Topology Identification
by Ali Othman, Neville R. Watson, Andrew Lapthorn and Radnya Mukhedkar
Energies 2025, 18(13), 3333; https://doi.org/10.3390/en18133333 - 25 Jun 2025
Viewed by 358
Abstract
Identifying the topology of low-voltage (LV) networks is becoming increasingly important. Having precise and accurate topology information is crucial for future network operations and network modelling. Topology identification approaches based on smart-meter data typically rely on Root Mean Square (RMS) voltage, current, and [...] Read more.
Identifying the topology of low-voltage (LV) networks is becoming increasingly important. Having precise and accurate topology information is crucial for future network operations and network modelling. Topology identification approaches based on smart-meter data typically rely on Root Mean Square (RMS) voltage, current, and power measurements, which are limited in accuracy due to factors such as time resolution, measurement intervals, and instrument errors. This paper presents a novel methodology for identifying distribution network topologies through the utilisation of smart-meter harmonic data. The methodology introduces, for the first time, the application of voltage Total Harmonic Distortion (THD) and individual harmonic components (V2V20) as topology identifiers. The proposed approach leverages the unique properties of harmonic distortion to improve the accuracy of topology identification. This paper first analyses the influential factors affecting topology identification, establishing that harmonic distortion propagation patterns offer superior discrimination compared to RMS voltage. Through systematic investigation, the findings demonstrate the potential of harmonic-based analysis as a more effective alternative for topology identification in modern power distribution systems. Full article
Show Figures

Figure 1

14 pages, 9483 KiB  
Article
Optimizing an Urban Water Infrastructure Through a Smart Water Network Management System
by Evangelos Ntousakis, Konstantinos Loukakis, Evgenia Petrou, Dimitris Ipsakis and Spiros Papaefthimiou
Electronics 2025, 14(12), 2455; https://doi.org/10.3390/electronics14122455 - 17 Jun 2025
Viewed by 538
Abstract
Water, an essential asset for life and growth, is under growing pressure due to climate change, overpopulation, pollution, and industrialization. At the same time, water distribution within cities relies on piping networks that are over 30 years old and thereby prone to leaks, [...] Read more.
Water, an essential asset for life and growth, is under growing pressure due to climate change, overpopulation, pollution, and industrialization. At the same time, water distribution within cities relies on piping networks that are over 30 years old and thereby prone to leaks, cracking, and losses. Taking this into account, non-revenue water (i.e., water that is distributed to homes and facilities but not returning revenues) is estimated at almost 50%. To this end, intelligent water management via computational advanced tools is required in order to optimize water usage, to mitigate losses, and, more importantly, to ensure sustainability. To address this issue, a case study was developed in this paper, following a step-by-step methodology for the city of Heraklion, Greece, in order to introduce an intelligent water management system that integrates advanced technologies into the aging water distribution infrastructure. The first step involved the digitalization of the network’s spatial data using geographic information systems (GIS), aiming at enhancing the accuracy and accessibility of water asset mapping. This methodology allowed for the creation of a framework that formed a “digital twin”, facilitating real-time analysis and effective water management. Digital twins were developed upon real-time data, validated models, or a combination of the above in order to accurately capture, simulate, and predict the operation of the real system/process, such as water distribution networks. The next step involved the incorporation of a hydraulic simulation and modeling tool that was able to analyze and calculate accurate water flow parameters (e.g., velocity, flowrate), pressure distributions, and potential inefficiencies within the network (e.g., loss of mass balance in/out of the district metered areas). This combination provided a comprehensive overview of the water system’s functionality, fostering decision-making and operational adjustments. Lastly, automatic meter reading (AMR) devices could then provide real-time data on water consumption and pressure throughout the network. These smart water meters enabled continuous monitoring and recording of anomaly detections and allowed for enhanced control over water distribution. All of the above were implemented and depicted in a web-based environment that allows users to detect water meters, check water consumption within specific time-periods, and perform real-time simulations of the implemented water network. Full article
Show Figures

Figure 1

Back to TopTop