Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,140)

Search Parameters:
Keywords = smart features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13770 KB  
Article
Investigation of Audio Feature Application for CO2 Sensor-Based Occupancy Detection Enhancement
by Marija Skromule, Rainers Kozlovskis, Deniss Tiscenko and Janis Judvaitis
Buildings 2026, 16(3), 545; https://doi.org/10.3390/buildings16030545 - 28 Jan 2026
Abstract
This study investigates the integration of audio features with CO2 sensor data to enhance occupancy detection accuracy in naturally ventilated office environments. Accurate occupancy detection is pivotal for smart building energy management, yet CO2-based methods cannot provide fast enough response times and are [...] Read more.
This study investigates the integration of audio features with CO2 sensor data to enhance occupancy detection accuracy in naturally ventilated office environments. Accurate occupancy detection is pivotal for smart building energy management, yet CO2-based methods cannot provide fast enough response times and are sensitive to air circulation changes due to internal convection. In this article we propose a combination of CO2 sensors and audio features from MEMS microphones to improve the occupancy detection accuracy and improve the response times. We use a Random Forest classifier and evaluate the results across two scenarios: CO2-only and CO2 combined with audio features. Results show that incorporating the audio features into the occupancy detection algorithms yields a significant increase in detection accuracy and speed, especially when the environment is subject to frequent air circulation changes due to internal convection, like the opening and closing of windows and doors. Combining the CO2 and audio sensing offers a promising, cost-effective approach to occupancy detection in smart buildings, yet more research on advanced audio processing and feature selection is necessary. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
23 pages, 965 KB  
Article
Smart Protection Relay for Power Transformers Using Time-Domain Feature Recognition
by Hengchu Shi, Hao You, Xiaofan Chen, Ruisi Li, Shoudong Xu, Jianqiao Zhang and Ruiwen He
Processes 2026, 14(3), 449; https://doi.org/10.3390/pr14030449 - 27 Jan 2026
Abstract
Conventional transformer protection schemes are limited by the difficulty in distinguishing inrush currents from internal and external faults, which restricts operational accuracy to below 70%. Existing solutions are constrained by a trade-off: sensitivity is compromised when setting values are increased, while speed is [...] Read more.
Conventional transformer protection schemes are limited by the difficulty in distinguishing inrush currents from internal and external faults, which restricts operational accuracy to below 70%. Existing solutions are constrained by a trade-off: sensitivity is compromised when setting values are increased, while speed is sacrificed when time delays are introduced. To address these limitations, a novel deep learning-based method for transformer fault identification is proposed. First, a feature model is constructed utilizing the time-domain sum of voltage and current fault components alongside current polarity characteristics. Subsequently, a channel attention-based Capsule Network (SE-CapsuleNet) is employed to automatically extract deep features across normal operation, inrush currents, and fault types. Simulation results demonstrate that inrush conditions are accurately differentiated from fault states. Robustness is maintained under high fault resistance (400 Ω) and 20 dB noise interference, while immunity to current transformer (CT) saturation and core residual magnetism is exhibited. The proposed protection relay simultaneously meets the requirements of rapid response, high sensitivity, and safety stability. Full article
(This article belongs to the Special Issue Adaptive Control and Optimization in Power Grids)
30 pages, 8651 KB  
Article
Disease-Seg: A Lightweight and Real-Time Segmentation Framework for Fruit Leaf Diseases
by Liying Cao, Donghui Jiang, Yunxi Wang, Jiankun Cao, Zhihan Liu, Jiaru Li, Xiuli Si and Wen Du
Agronomy 2026, 16(3), 311; https://doi.org/10.3390/agronomy16030311 - 26 Jan 2026
Viewed by 42
Abstract
Accurate segmentation of fruit tree leaf diseases is critical for yield protection and precision crop management, yet it is challenging due to complex field conditions, irregular leaf morphology, and diverse lesion patterns. To address these issues, Disease-Seg, a lightweight real-time segmentation framework, is [...] Read more.
Accurate segmentation of fruit tree leaf diseases is critical for yield protection and precision crop management, yet it is challenging due to complex field conditions, irregular leaf morphology, and diverse lesion patterns. To address these issues, Disease-Seg, a lightweight real-time segmentation framework, is proposed. It integrates CNN and Transformer with a parallel fusion architecture to capture local texture and global semantic context. The Extended Feature Module (EFM) enlarges the receptive field while retaining fine details. A Deep Multi-scale Attention mechanism (DM-Attention) allocates channel weights across scales to reduce redundancy, and a Feature-weighted Fusion Module (FWFM) optimizes integration of heterogeneous feature maps, enhancing multi-scale representation. Experiments show that Disease-Seg achieves 90.32% mIoU and 99.52% accuracy, outperforming representative CNN, Transformer, and hybrid-based methods. Compared with HRNetV2, it improves mIoU by 6.87% and FPS by 31, while using only 4.78 M parameters. It maintains 69 FPS on 512 × 512 crops and requires approximately 49 ms per image on edge devices, demonstrating strong deployment feasibility. On two grape leaf diseases from the PlantVillage dataset, it achieves 91.19% mIoU, confirming robust generalization. These results indicate that Disease-Seg provides an accurate, efficient, and practical solution for fruit leaf disease segmentation, enabling real-time monitoring and smart agriculture applications. Full article
Show Figures

Figure 1

44 pages, 1721 KB  
Systematic Review
Vibration-Based Predictive Maintenance for Wind Turbines: A PRISMA-Guided Systematic Review on Methods, Applications, and Remaining Useful Life Prediction
by Carlos D. Constantino-Robles, Francisco Alberto Castillo Leonardo, Jessica Hernández Galván, Yoisdel Castillo Alvarez, Luis Angel Iturralde Carrera and Juvenal Rodríguez-Reséndiz
Appl. Mech. 2026, 7(1), 11; https://doi.org/10.3390/applmech7010011 - 26 Jan 2026
Viewed by 48
Abstract
This paper presents a systematic review conducted under the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, analyzing 286 scientific articles focused on vibration-based predictive maintenance strategies for wind turbines within the context of advanced Prognostics and Health Management (PHM). The [...] Read more.
This paper presents a systematic review conducted under the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, analyzing 286 scientific articles focused on vibration-based predictive maintenance strategies for wind turbines within the context of advanced Prognostics and Health Management (PHM). The review combines international standards (ISO 10816, ISO 13373, and IEC 61400) with recent developments in sensing technologies, including piezoelectric accelerometers, microelectromechanical systems (MEMS), and fiber Bragg grating (FBG) sensors. Classical signal processing techniques, such as the Fast Fourier Transform (FFT) and wavelet-based methods, are identified as key preprocessing tools for feature extraction prior to the application of machine-learning-based diagnostic algorithms. Special emphasis is placed on machine learning and deep learning techniques, including Support Vector Machines (SVM), Random Forest (RF), Convolutional Neural Networks (CNN), Long Short-Term Memory networks (LSTM), and autoencoders, as well as on hybrid digital twin architectures that enable accurate Remaining Useful Life (RUL) estimation and support autonomous decision-making processes. The bibliometric and case study analysis covering the period 2020–2025 reveals a strong shift toward multisource data fusion—integrating vibration, acoustic, temperature, and Supervisory Control and Data Acquisition (SCADA) data—and the adoption of cloud-based platforms for real-time monitoring, particularly in offshore wind farms where physical accessibility is constrained. The results indicate that vibration-based predictive maintenance strategies can reduce operation and maintenance costs by more than 20%, extend component service life by up to threefold, and achieve turbine availability levels between 95% and 98%. These outcomes confirm that vibration-driven PHM frameworks represent a fundamental pillar for the development of smart, sustainable, and resilient next-generation wind energy systems. Full article
Show Figures

Graphical abstract

35 pages, 5876 KB  
Article
Automatic Sleep Staging Using SleepXLSTM Based on Heterogeneous Representation of Heart Rate Data
by Tianlong Wu, Zisen Mao, Luyang Shi, Huaren Zhou, Chaohua Xie and Bowen Ran
Electronics 2026, 15(3), 505; https://doi.org/10.3390/electronics15030505 - 23 Jan 2026
Viewed by 150
Abstract
Automatic sleep staging technology based on wearable photoplethysmography can provide a non-invasive and continuous solution for large-scale sleep health monitoring. This study accordingly developed a novel cross-scale dynamically coupled extended long short-term memory network (SleepXLSTM) to realize automatic sleep staging based on heart [...] Read more.
Automatic sleep staging technology based on wearable photoplethysmography can provide a non-invasive and continuous solution for large-scale sleep health monitoring. This study accordingly developed a novel cross-scale dynamically coupled extended long short-term memory network (SleepXLSTM) to realize automatic sleep staging based on heart rate signals collected by wearable devices. SleepXLSTM models the relationship between heart rate fluctuations and sleep stage labels by correlating physiological features with clinical semantics using a knowledge graph neural network. Furthermore, an excitation–inhibition dual-effect regulator is applied in an improved multiplicative long short-term memory network along with memory mixing in a scalar long short-term memory network to extract and strengthen the key heart rate timing features while filtering out noise produced by motion artifacts, thereby facilitating subsequent high-precision sleep staging. The benefits and functions of this comprehensive heart rate feature extraction were demonstrated using sleep staging prediction and ablation experiments. The proposed model exhibited a superior accuracy of 91.25% and Cohen’s kappa coefficient of 0.876 compared to an extant state-of-the-art neural network sleep staging model with an accuracy of 69.80% and kappa coefficient of 0.040. On the ISRUC-Sleep dataset, the model achieved an accuracy of 87.51% and F1 score of 0.8760. The dynamic coupling strategy employed by SleepXLSTM for automatic sleep staging using the heterogeneous temporal representation of heart rate data can promote the development of smart wearable devices to provide early warning of sleep disorders and realize cost-effective technical support for sleep health management. Full article
(This article belongs to the Section Artificial Intelligence)
26 pages, 14479 KB  
Article
SpeQNet: Query-Enhanced Spectral Graph Filtering for Spatiotemporal Forecasting
by Zongyao Feng and Konstantin Markov
Appl. Sci. 2026, 16(3), 1176; https://doi.org/10.3390/app16031176 - 23 Jan 2026
Viewed by 51
Abstract
Accurate spatiotemporal forecasting underpins high-stakes decision making in smart urban systems, from traffic control and energy scheduling to environment monitoring. Yet two persistent gaps limit current models: (i) spatial modules are often biased toward low-pass smoothing and struggle to reconcile slow global trends [...] Read more.
Accurate spatiotemporal forecasting underpins high-stakes decision making in smart urban systems, from traffic control and energy scheduling to environment monitoring. Yet two persistent gaps limit current models: (i) spatial modules are often biased toward low-pass smoothing and struggle to reconcile slow global trends with sharp local dynamics; and (ii) the graph structure required for forecasting is frequently latent, while learned graphs can be unstable when built from temporally derived node features alone. We propose SpeQNet, a query-enhanced spectral graph filtering framework that jointly strengthens node representations and graph construction while enabling frequency-selective spatial reasoning. SpeQNet injects global spatial context into temporal embeddings via lightweight learnable spatiotemporal queries, learns a task-oriented adaptive adjacency matrix, and refines node features with an enhanced ChebNetII-based spectral filtering block equipped with channel-wise recalibration and nonlinear refinement. Across twelve real-world benchmarks spanning traffic, electricity, solar power, and weather, SpeQNet achieves state-of-the-art performance and delivers consistent gains on large-scale graphs. Beyond accuracy, SpeQNet is interpretable and robust: the learned spectral operators exhibit a consistent band-stop-like frequency shaping behavior, and performance remains stable across a wide range of Chebyshev polynomial orders. These results suggest that query-enhanced spatiotemporal representation learning and adaptive spectral filtering form a complementary and effective foundation for effective spatiotemporal forecasting. Full article
(This article belongs to the Special Issue Research and Applications of Artificial Neural Network)
20 pages, 1369 KB  
Article
Symmetry-Aware Interpretable Anomaly Alarm Optimization Method for Power Monitoring Systems Based on Hierarchical Attention Deep Reinforcement Learning
by Zepeng Hou, Qiang Fu, Weixun Li, Yao Wang, Zhengkun Dong, Xianlin Ye, Xiaoyu Chen and Fangyu Zhang
Symmetry 2026, 18(2), 216; https://doi.org/10.3390/sym18020216 - 23 Jan 2026
Viewed by 223
Abstract
With the rapid advancement of smart grids driven by renewable energy integration and the extensive deployment of supervisory control and data acquisition (SCADA) and phasor measurement units (PMUs), addressing the escalating alarm flooding via intelligent analysis of large-scale alarm data is pivotal to [...] Read more.
With the rapid advancement of smart grids driven by renewable energy integration and the extensive deployment of supervisory control and data acquisition (SCADA) and phasor measurement units (PMUs), addressing the escalating alarm flooding via intelligent analysis of large-scale alarm data is pivotal to safeguarding the safe and stable operation of power grids. To tackle these challenges, this study introduces a pioneering alarm optimization framework based on symmetry-driven crowdsourced active learning and interpretable deep reinforcement learning (DRL). Firstly, an anomaly alarm annotation method integrating differentiated crowdsourcing and active learning is proposed to mitigate the inherent asymmetry in data distribution. Secondly, a symmetrically structured DRL-based hierarchical attention deep Q-network is designed with a dual-path encoder to balance the processing of multi-scale alarm features. Finally, a SHAP-driven interpretability framework is established, providing global and local attribution to enhance decision transparency. Experimental results on a real-world power alarm dataset demonstrate that the proposed method achieves a Fleiss’ Kappa of 0.82 in annotation consistency and an F1-Score of 0.95 in detection performance, significantly outperforming state-of-the-art baselines. Additionally, the false positive rate is reduced to 0.04, verifying the framework’s effectiveness in suppressing alarm flooding while maintaining high recall. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Data Analysis)
Show Figures

Figure 1

30 pages, 3115 KB  
Article
HST–MB–CREH: A Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN for Rare-Event-Aware PV Power Forecasting
by Guldana Taganova, Jamalbek Tussupov, Assel Abdildayeva, Mira Kaldarova, Alfiya Kazi, Ronald Cowie Simpson, Alma Zakirova and Bakhyt Nurbekov
Algorithms 2026, 19(2), 94; https://doi.org/10.3390/a19020094 - 23 Jan 2026
Viewed by 89
Abstract
We propose the Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN and Extreme-Event Head (HST–MB–CREH), a hybrid spatio-temporal deep learning architecture for joint short-term photovoltaic (PV) power forecasting and the detection of rare extreme events, to support the reliable operation of renewable-rich power systems. The [...] Read more.
We propose the Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN and Extreme-Event Head (HST–MB–CREH), a hybrid spatio-temporal deep learning architecture for joint short-term photovoltaic (PV) power forecasting and the detection of rare extreme events, to support the reliable operation of renewable-rich power systems. The model combines a spatio-temporal transformer encoder with three convolutional neural network (CNN)/recurrent neural network (RNN) branches (CNN → long short-term memory (LSTM), LSTM → gated recurrent unit (GRU), CNN → GRU) and a dense pathway for tabular meteorological and calendar features. A multitask output head simultaneously performs the regression of PV power and binary classification of extremes defined above the 95th percentile. We evaluate HST–MB–CREH on the publicly available Renewable Power Generation and Weather Conditions dataset with hourly resolutions from 2017 to 2022, using a 5-fold TimeSeriesSplit protocol to avoid temporal leakage and to cover multiple seasons. Compared with tree ensembles (RandomForest, XGBoost), recurrent baselines (Stacked GRU, LSTM), and advanced hybrid/transformer models (Hybrid Multi-Branch CNN–LSTM/GRU with Dense Path and Extreme-Event Head (HMB–CLED) and Spatio-Temporal Multitask Transformer with Extreme-Event Head (STM–EEH)), the proposed architecture achieves the best overall trade-off between accuracy and rare-event sensitivity, with normalized performance of RMSE_z = 0.2159 ± 0.0167, MAE_z = 0.1100 ± 0.0085, mean absolute percentage error (MAPE) = 9.17 ± 0.45%, R2 = 0.9534 ± 0.0072, and AUC_ext = 0.9851 ± 0.0051 across folds. Knowledge extraction is supported via attention-based analysis and permutation feature importance, which highlight the dominant role of global horizontal irradiance, diurnal harmonics, and solar geometry features. The results indicate that hybrid spatio-temporal multitask architectures can substantially improve both the forecast accuracy and robustness to extremes, making HST–MB–CREH a promising building block for intelligent decision-support tools in smart grids with a high share of PV generation. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

12 pages, 893 KB  
Proceeding Paper
Real-Time Pollutant Forecasting Using Edge–AI Fusion in Wastewater Treatment Facilities
by Siva Shankar Ramasamy, Vijayalakshmi Subramanian, Leelambika Varadarajan and Alwin Joseph
Eng. Proc. 2025, 117(1), 31; https://doi.org/10.3390/engproc2025117031 - 22 Jan 2026
Viewed by 96
Abstract
Wastewater treatment is one of the major challenges in the reuse of water as a natural resource. Cleaning of water depends on analyzing and treating the water for the pollutants that have a significant impact on the quality of the water. Detecting and [...] Read more.
Wastewater treatment is one of the major challenges in the reuse of water as a natural resource. Cleaning of water depends on analyzing and treating the water for the pollutants that have a significant impact on the quality of the water. Detecting and analyzing the surges of these pollutants well before the recycling process is needed to make intelligent decisions for water cleaning. The dynamic changes in pollutants need constant monitoring and effective planning with appropriate treatment strategies. We propose an edge-computing-based smart framework that captures data from sensors, including ultraviolet, electrochemical, and microfluidic, along with other significant sensor streams. The edge devices send the data from the cluster of sensors to a centralized server that segments anomalies, analyzes the data and suggests the treatment plan that is required, which includes aeration, dosing adjustments, and other treatment plans. A logic layer is designed at the server level to process the real-time data from the sensor clusters and identify the discharge of nutrients, metals, and emerging contaminants in the water that affect the quality. The platform can make decisions on water treatments using its monitoring, prediction, diagnosis, and mitigation measures in a feedback loop. A rule-based Large Language Model (LLM) agent is attached to the server to evaluate data and trigger required actions. A streamlined data pipeline is used to harmonize sensor intervals, flag calibration drift, and store curated features in a local time-series database to run ad hoc analyses even during critical conditions. A user dashboard has also been designed as part of the system to show the recommendations and actions taken. The proposed system acts as an AI-enabled system that makes smart decisions on water treatment, providing an effective cleaning process to improve sustainability. Full article
Show Figures

Figure 1

17 pages, 759 KB  
Article
Unsupervised Detection of SOC Spoofing in OCPP 2.0.1 EV Charging Communication Protocol Using One-Class SVM
by Aisha B. Rahman, Md Sadman Siraj, Eirini Eleni Tsiropoulou, Georgios Fragkos, Ryan Sullivant, Yung Ryn Choe, Jhaell Jimenez, Junghwan Rhee and Kyu Hyung Lee
Future Internet 2026, 18(1), 60; https://doi.org/10.3390/fi18010060 - 21 Jan 2026
Viewed by 82
Abstract
The electric vehicles (EVs) market keeps growing globally; thus, it is critical to secure the EV charging communication protocols in order to guarantee reliable and fair charging operations among the customers. The Open Charge Point Protocol (OCPP) 2.0.1 supports the communication between the [...] Read more.
The electric vehicles (EVs) market keeps growing globally; thus, it is critical to secure the EV charging communication protocols in order to guarantee reliable and fair charging operations among the customers. The Open Charge Point Protocol (OCPP) 2.0.1 supports the communication between the Electric Vehicle Supply Equipment (EVSE) and Charging Station Management Systems (CSMSs); therefore, it becomes vulnerable to several types of attacks, which aim to jeopardize smart charging, billing, and energy management. Specifically, OCPP 2.0.1 allows the self-reporting of the State of Charge (SOC) values, which makes it vulnerable to spoofing-based cyberattacks, which target manipulating the scheduling priorities, distorting the load forecasts, and extending the charging sessions in an unfair manner. In this paper, we try to address this type of attack by providing a comprehensive analysis of the SOC spoofing attacks and introducing a novel unsupervised detection framework based on the One-Class Support Vector Machine (OCSVM) algorithm. Specifically, two types of attack scenarios are analyzed (i.e., priority manipulation and session extension) by deriving engineered features that capture the nonlinear relationships under normal charging behavior. Detailed simulation-based results are derived by utilizing the DESL-EPFL Level 3 EV charging dataset. Our results demonstrate high F1-score and recall in identifying spoofed SOC values and that the proposed OCSVM model demonstrates superior performance compared to alternative clustering and deep-learning based detectors. Full article
Show Figures

Graphical abstract

19 pages, 2984 KB  
Article
Development and Field Testing of an Acoustic Sensor Unit for Smart Crossroads as Part of V2X Infrastructure
by Yury Furletov, Dinara Aptinova, Mekan Mededov, Andrey Keller, Sergey S. Shadrin and Daria A. Makarova
Smart Cities 2026, 9(1), 17; https://doi.org/10.3390/smartcities9010017 - 21 Jan 2026
Viewed by 103
Abstract
Improving city crossroads safety is a critical problem for modern smart transportation systems (STS). This article presents the results of developing, upgrading, and comprehensively experimentally testing an acoustic monitoring system prototype designed for rapid accident detection. Unlike conventional camera- or lidar-based approaches, the [...] Read more.
Improving city crossroads safety is a critical problem for modern smart transportation systems (STS). This article presents the results of developing, upgrading, and comprehensively experimentally testing an acoustic monitoring system prototype designed for rapid accident detection. Unlike conventional camera- or lidar-based approaches, the proposed solution uses passive sound source localization to operate effectively with no direct visibility and in adverse weather conditions, addressing a key limitation of camera- or lidar-based systems. Generalized Cross-Correlation with Phase Transform (GCC-PHAT) algorithms were used to develop a hardware–software complex featuring four microphones, a multichannel audio interface, and a computation module. This study focuses on the gradual upgrading of the algorithm to reduce the mean localization error in real-life urban conditions. Laboratory and complex field tests were conducted on an open-air testing ground of a university campus. During these tests, the system demonstrated that it can accurately determine the coordinates of a sound source imitating accidents (sirens, collisions). The analysis confirmed that the system satisfies the V2X infrastructure integration response time requirement (<200 ms). The results suggest that the system can be used as part of smart transportation systems. Full article
(This article belongs to the Section Physical Infrastructures and Networks in Smart Cities)
Show Figures

Figure 1

50 pages, 5994 KB  
Perspective
Smart Grids and Renewable Energy Communities in Pakistan and the Middle East: Present Situation, Perspectives, Future Developments, and Comparison with EU
by Ateeq Ur Rehman, Dario Atzori, Sandra Corasaniti and Paolo Coppa
Energies 2026, 19(2), 535; https://doi.org/10.3390/en19020535 - 21 Jan 2026
Viewed by 131
Abstract
The shift towards the integration of and transition to renewable energy has led to an increase in renewable energy communities (RECs) and smart grids (SGs). The significance of these RECs is mainly energy self-sufficiency, energy independence, and energy autonomy. Despite this, in low- [...] Read more.
The shift towards the integration of and transition to renewable energy has led to an increase in renewable energy communities (RECs) and smart grids (SGs). The significance of these RECs is mainly energy self-sufficiency, energy independence, and energy autonomy. Despite this, in low- and middle-income countries and regions like Pakistan and the Middle East, SGs and RECs are still in their initial stage. However, they have potential for green energy solutions rooted in their unique geographic and climatic conditions. SGs offer energy monitoring, communication infrastructure, and automation features to help these communities build flexible and efficient energy systems. This work provides an overview of Pakistani and Middle Eastern energy policies, goals, and initiatives while aligning with European comparisons. This work also highlights technical, regulatory, and economic challenges in those regions. The main objectives of the research are to ensure that residential service sizes are optimized to maximize the economic and environmental benefits of green energy. Furthermore, in line with SDG 7, affordable and clean energy, the focus in this study is on the development and transformation of energy systems for sustainability and creating synergies with other SDGs. The paper presents insights on the European Directive, including the amended Renewable Energy Directive (RED II and III), to recommend policy enhancements and regulatory changes that could strengthen the growth of RECs in Asian countries, Pakistan, and the Middle East, paving the way for a more inclusive and sustainable energy future. Additionally, it addresses the main causes that hinder the expansion of RECs and SGs, and offers strategic recommendations to support their development in order to reduce dependency on national electric grids. To perform this, a perspective study of Pakistan’s indicative generation capacity by 2031, along with comparisons of energy capacity in the EU, the Middle East, and Asia, is presented. Pakistan’s solar, wind, and hydro potential is also explored in detail. This study is a baseline and informative resource for policy makers, researchers, industry stakeholders, and energy communities’ promoters, who are committed to the task of promoting sustainable renewable energy solutions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 7167 KB  
Article
Edge-Enhanced YOLOV8 for Spacecraft Instance Segmentation in Cloud-Edge IoT Environments
by Ming Chen, Wenjie Chen, Yanfei Niu, Ping Qi and Fucheng Wang
Future Internet 2026, 18(1), 59; https://doi.org/10.3390/fi18010059 - 20 Jan 2026
Viewed by 99
Abstract
The proliferation of smart devices and the Internet of Things (IoT) has led to massive data generation, particularly in complex domains such as aerospace. Cloud computing provides essential scalability and advanced analytics for processing these vast datasets. However, relying solely on the cloud [...] Read more.
The proliferation of smart devices and the Internet of Things (IoT) has led to massive data generation, particularly in complex domains such as aerospace. Cloud computing provides essential scalability and advanced analytics for processing these vast datasets. However, relying solely on the cloud introduces significant challenges, including high latency, network congestion, and substantial bandwidth costs, which are critical for real-time on-orbit spacecraft services. Cloud-edge Internet of Things (cloud-edge IoT) computing emerges as a promising architecture to mitigate these issues by pushing computation closer to the data source. This paper proposes an improved YOLOV8-based model specifically designed for edge computing scenarios within a cloud-edge IoT framework. By integrating the Cross Stage Partial Spatial Pyramid Pooling Fast (CSPPF) module and the WDIOU loss function, the model achieves enhanced feature extraction and localization accuracy without significantly increasing computational cost, making it suitable for deployment on resource-constrained edge devices. Meanwhile, by processing image data locally at the edge and transmitting only the compact segmentation results to the cloud, the system effectively reduces bandwidth usage and supports efficient cloud-edge collaboration in IoT-based spacecraft monitoring systems. Experimental results show that, compared to the original YOLOV8 and other mainstream models, the proposed model demonstrates superior accuracy and instance segmentation performance at the edge, validating its practicality in cloud-edge IoT environments. Full article
(This article belongs to the Special Issue Convergence of IoT, Edge and Cloud Systems)
Show Figures

Figure 1

20 pages, 578 KB  
Article
Do Smart-Growth-Related Built Environments Promote Housing Affordability? A Case Study of Three Counties in the Portland Metropolitan Area
by Jongho Won
Sustainability 2026, 18(2), 1056; https://doi.org/10.3390/su18021056 - 20 Jan 2026
Viewed by 110
Abstract
This paper focuses on whether smart-related built environments are associated with improved housing affordability for economically disadvantaged groups. Smart growth is a planning theme that aims to address the unintended negative consequences of urban sprawl through combining diverse dimensions across land-use diversity, housing [...] Read more.
This paper focuses on whether smart-related built environments are associated with improved housing affordability for economically disadvantaged groups. Smart growth is a planning theme that aims to address the unintended negative consequences of urban sprawl through combining diverse dimensions across land-use diversity, housing diversity, accessibility, and compact development. Focusing on Clackamas County, Multnomah County, and Washington County within the Portland metropolitan area, the analysis uses census-tract-level data to assess both contemporaneous associations in 2013 and changes in affordability between 2013 and 2019. Overall, the findings suggest that smart-growth tools exhibit both potential and limitations with respect to housing affordability. Greater housing-type diversity and lower reliance on single-family residential land use are consistently associated with higher shares and subsequent increases in affordable housing units for low-income groups. In contrast, other smart-growth features—such as land-use mix and accessibility—show weaker or uneven relationships. These findings suggest that smart growth can contribute to expanding affordable housing supply primarily through housing-related components, while other dimensions of smart growth appear to play a limited role. The results underscore that housing-focused strategies play an important role in shaping affordability outcomes under smart growth. Full article
Show Figures

Figure 1

18 pages, 4205 KB  
Article
Research on Field Weed Target Detection Algorithm Based on Deep Learning
by Ziyang Chen, Le Wu, Zhenhong Jia, Jiajia Wang, Gang Zhou and Zhensen Zhang
Sensors 2026, 26(2), 677; https://doi.org/10.3390/s26020677 - 20 Jan 2026
Viewed by 139
Abstract
Weed detection algorithms based on deep learning are considered crucial for smart agriculture, with the YOLO series algorithms being widely adopted due to their efficiency. However, existing YOLO algorithms struggle to maintain high accuracy, while low parameter requirements and computational efficiency are achieved [...] Read more.
Weed detection algorithms based on deep learning are considered crucial for smart agriculture, with the YOLO series algorithms being widely adopted due to their efficiency. However, existing YOLO algorithms struggle to maintain high accuracy, while low parameter requirements and computational efficiency are achieved when weeds with occlusion or overlap are detected. To address this challenge, a target detection algorithm called SSS-YOLO based on YOLOv9t is proposed in this paper. First, the SCB (Spatial Channel Conv Block) module is introduced, in which large kernel convolution is employed to capture long-range dependencies, occluded weed regions are bypassed by being associated with unobstructed areas, and features of unobstructed regions are enhanced through inter-channel relationships. Second, the SPPF EGAS (Spatial Pyramid Pooling Fast Edge Gaussian Aggregation Super) module is proposed, where multi-scale max pooling is utilized to extract hierarchical contextual features, large receptive fields are leveraged to acquire background information around occluded objects, and features of weed regions obscured by crops are inferred. Finally, the EMSN (Efficient Multi-Scale Spatial-Feedforward Network) module is developed, through which semantic information of occluded regions is reconstructed by contextual reasoning and background vegetation interference is effectively suppressed while visible regional details are preserved. To validate the performance of this method, experiments are conducted on both our self-built dataset and the publicly available Cotton WeedDet12 dataset. The results demonstrate that compared to existing algorithms, significant performance improvements are achieved by the proposed method. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

Back to TopTop