Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,275)

Search Parameters:
Keywords = smart energy community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 665 KiB  
Article
Optimization of Delay Time in ZigBee Sensor Networks for Smart Home Systems Using a Smart-Adaptive Communication Distribution Algorithm
by Igor Medenica, Miloš Jovanović, Jelena Vasiljević, Nikola Radulović and Dragan Lazić
Electronics 2025, 14(15), 3127; https://doi.org/10.3390/electronics14153127 - 6 Aug 2025
Abstract
As smart homes and Internet of Things (IoT) ecosystems continue to expand, the need for energy-efficient and low-latency communication has become increasingly critical. One of the key challenges in these systems is minimizing delay time while ensuring reliable and efficient communication between devices. [...] Read more.
As smart homes and Internet of Things (IoT) ecosystems continue to expand, the need for energy-efficient and low-latency communication has become increasingly critical. One of the key challenges in these systems is minimizing delay time while ensuring reliable and efficient communication between devices. This study focuses on optimizing delay time in ZigBee sensor networks used in smart-home systems. A Smart–Adaptive Communication Distribution Algorithm is proposed, which dynamically adjusts the communication between network nodes based on real-time network conditions. Experimental measurements were conducted under various scenarios to evaluate the performance of the proposed algorithm, with a particular focus on reducing delay and enhancing overall network efficiency. The results demonstrate that the proposed algorithm significantly reduces delay times compared to traditional methods, making it a promising solution for delay-sensitive IoT applications. Furthermore, the findings highlight the importance of adaptive communication strategies in improving the performance of ZigBee-based sensor networks. Full article
(This article belongs to the Special Issue Energy-Efficient Wireless Sensor Networks for IoT Applications)
Show Figures

Figure 1

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 - 1 Aug 2025
Viewed by 181
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 448
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

30 pages, 3898 KiB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 - 31 Jul 2025
Viewed by 235
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

10 pages, 6510 KiB  
Proceeding Paper
Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal
by Muhammad Akram, Chiara Martone, Ilenia Perugini and Emmanuele Maria Petruzziello
Eng. Proc. 2025, 101(1), 7; https://doi.org/10.3390/engproc2025101007 - 25 Jul 2025
Viewed by 756
Abstract
Intensive energy consumption in the building sector remains one of the primary contributors to climate change and global warming. Within Renewable Energy Communities (RECs), improving energy management is essential for promoting sustainability and reducing environmental impact. Accurate forecasting of energy consumption at the [...] Read more.
Intensive energy consumption in the building sector remains one of the primary contributors to climate change and global warming. Within Renewable Energy Communities (RECs), improving energy management is essential for promoting sustainability and reducing environmental impact. Accurate forecasting of energy consumption at the community level is a key tool in this effort. Traditionally, engineering-based methods grounded in thermodynamic principles have been employed, offering high accuracy under controlled conditions. However, their reliance on exhaustive building-level data and high computational costs limits their scalability in dynamic REC settings. In contrast, Artificial Intelligence (AI)-driven methods provide flexible and scalable alternatives by learning patterns from historical consumption and environmental data. This study investigates three Machine Learning (ML) models, Decision Tree (DT), Random Forest (RF), and CatBoost, and one Deep Learning (DL) model, Convolutional Neural Network (CNN), to forecast community electricity consumption using real smart meter data and local meteorological variables. The study focuses on a REC in Loureiro, Portugal, consisting of 172 residential users from whom 16 months of 15 min interval electricity consumption data were collected. Temporal features (hour of the day, day of the week, month) were combined with lag-based usage patterns, including features representing energy consumption at the corresponding time in the previous hour and on the previous day, to enhance model accuracy by leveraging short-term dependencies and daily repetition in usage behavior. Models were evaluated using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of Determination R2. Among all models, CatBoost achieved the best performance, with an MSE of 0.1262, MAPE of 4.77%, and an R2 of 0.9018. These results highlight the potential of ensemble learning approaches for improving energy demand forecasting in RECs, supporting smarter energy management and contributing to energy and environmental performance. Full article
Show Figures

Figure 1

41 pages, 5984 KiB  
Article
Socio-Economic Analysis for Adoption of Smart Metering System in SAARC Region: Current Challenges and Future Perspectives
by Zain Khalid, Syed Ali Abbas Kazmi, Muhammad Hassan, Sayyed Ahmad Ali Shah, Mustafa Anwar, Muhammad Yousif and Abdul Haseeb Tariq
Sustainability 2025, 17(15), 6786; https://doi.org/10.3390/su17156786 - 25 Jul 2025
Viewed by 526
Abstract
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector [...] Read more.
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector efficiency. The implementation of smart metering systems in utility management plays a pivotal role in advancing several Sustainable Development Goals (SDGs), i.e.; SDG (Affordable and Clean Energy), and SDG Climate Action. By enabling real-time monitoring, accurate measurement, and data-driven management of energy resources, smart meters promote efficient consumption, reduce losses, and encourage sustainable behaviors among consumers. The adoption of a smart metering system along with Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis, socio-economic analysis, current challenges, and future prospects was also investigated. Besides the economics of the electrical distribution system, one feeder with non-technical losses of about 16% was selected, and the cost–benefit analysis and cost–benefit ratio was estimated for the SAARC region. The import/export ratio is disturbing in various SAARC grids, and a solution in terms of community microgrids is presented from Pakistan’s perspective as a case study. The proposed work gives a guidelines for SAARC countries to reduce their losses and improve their system functionality. It gives a composite solution across multi-faceted evaluation for the betterment of a large region. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Graphical abstract

29 pages, 766 KiB  
Article
Interpretable Fuzzy Control for Energy Management in Smart Buildings Using JFML-IoT and IEEE Std 1855-2016
by María Martínez-Rojas, Carlos Cano, Jesús Alcalá-Fdez and José Manuel Soto-Hidalgo
Appl. Sci. 2025, 15(15), 8208; https://doi.org/10.3390/app15158208 - 23 Jul 2025
Viewed by 198
Abstract
This paper presents an interpretable and modular framework for energy management in smart buildings based on fuzzy logic and the IEEE Std 1855-2016. The proposed system builds upon the JFML-IoT library, enabling the integration and execution of fuzzy rule-based systems on resource-constrained IoT [...] Read more.
This paper presents an interpretable and modular framework for energy management in smart buildings based on fuzzy logic and the IEEE Std 1855-2016. The proposed system builds upon the JFML-IoT library, enabling the integration and execution of fuzzy rule-based systems on resource-constrained IoT devices using a lightweight and extensible architecture. Unlike conventional data-driven controllers, this approach emphasizes semantic transparency, expert-driven control logic, and compliance with fuzzy markup standards. The system is designed to enhance both operational efficiency and user comfort through transparent and explainable decision-making. A four-layer architecture structures the system into Perception, Communication, Processing, and Application layers, supporting real-time decisions based on environmental data. The fuzzy logic rules are defined collaboratively with domain experts and encoded in Fuzzy Markup Language to ensure interoperability and formalization of expert knowledge. While adherence to IEEE Std 1855-2016 facilitates system integration and standardization, the scientific contribution lies in the deployment of an interpretable, IoT-based control system validated in real conditions. A case study is conducted in a realistic indoor environment, using temperature, humidity, illuminance, occupancy, and CO2 sensors, along with HVAC and lighting actuators. The results demonstrate that the fuzzy inference engine generates context-aware control actions aligned with expert expectations. The proposed framework also opens possibilities for incorporating user-specific preferences and adaptive comfort strategies in future developments. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 351
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

32 pages, 2698 KiB  
Article
Design and Validation of an Edge-AI Fire Safety System with SmartThings Integration for Accelerated Detection and Targeted Suppression
by Seung-Jun Lee, Hong-Sik Yun, Yang-Bae Sim and Sang-Hoon Lee
Appl. Sci. 2025, 15(14), 8118; https://doi.org/10.3390/app15148118 - 21 Jul 2025
Viewed by 658
Abstract
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor [...] Read more.
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor array for early fire recognition, motorized ventilation units for rapid smoke extraction, and a 360° directional nozzle for targeted agent discharge using a residue-free clean extinguishing agent. Experimental trials demonstrated an average fire detection time of 5.8 s and complete flame suppression within 13.2 s, with 90% smoke clearance achieved in under 95 s. No false positives were recorded during non-fire simulations, and the system remained fully functional under simulated cloud communication failure, confirming its edge-resilient architecture. A probabilistic risk analysis based on ISO 31000 and NFPA 551 frameworks showed risk reductions of 75.6% in life safety, 58.0% in property damage, and 67.1% in business disruption. The system achieved a composite risk reduction of approximately 73%, shifting the operational risk level into the ALARP region. These findings demonstrate the system’s capacity to provide proactive, energy-efficient, and spatially targeted fire response suitable for high-value infrastructure. The modular design and SmartThings Edge integration further support scalable deployment and real-time system intelligence, establishing a strong foundation for future adaptive fire protection frameworks. Full article
Show Figures

Figure 1

33 pages, 2299 KiB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 529
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

33 pages, 2022 KiB  
Review
A Novel Community Energy Projects Governance Model and Support Ecosystem Framework Based on Heating and Cooling Projects Enabled by Energy Communities
by Anastasios I. Karameros, Athanasios P. Chassiakos and Theo Tryfonas
Sustainability 2025, 17(14), 6571; https://doi.org/10.3390/su17146571 - 18 Jul 2025
Viewed by 509
Abstract
The EU power market system has successfully maintained a centralized governance structure ensuring stable electricity supply and affordable prices for over two decades. However, the ongoing energy transition towards carbon neutrality has exposed critical governance limitations, leading to challenges in community projects implementation. [...] Read more.
The EU power market system has successfully maintained a centralized governance structure ensuring stable electricity supply and affordable prices for over two decades. However, the ongoing energy transition towards carbon neutrality has exposed critical governance limitations, leading to challenges in community projects implementation. Given that Heating and Cooling (H&C) accounts for more than 50% of the EU’s energy consumption, community H&C initiatives can drive local energy transitions and support renewable integration. This study analyzes the best practices from European community energy initiatives, supplemented by insights from the Energy Leap project. By employing a comparative analysis approach, the study proposes a technically sound and regulatory feasible governance model, alongside a robust ecosystem support framework. The proposed framework introduces new roles and new forms of partnerships between communities—private entities and consumers—taking advantage of the benefits offered by the operation of Energy Communities (ECs), enhancing community engagement and regulatory adaptability. These insights offer practical guidance and contribute to effective policymaking in support of the EU’s energy transition objectives. Full article
Show Figures

Figure 1

12 pages, 1275 KiB  
Article
Performance of G3-PLC Channel in the Presence of Spread Spectrum Modulated Electromagnetic Interference
by Waseem ElSayed, Amr Madi, Piotr Lezynski, Robert Smolenski and Paolo Crovetti
Signals 2025, 6(3), 33; https://doi.org/10.3390/signals6030033 - 17 Jul 2025
Viewed by 265
Abstract
Power converters in the smart grid systems are essential to link renewable energy sources with all grid appliances and equipment. However, this raises the possibility of electromagnetic interference (EMI) between the smart grid elements. Hence, spread spectrum (SS) modulation techniques have been used [...] Read more.
Power converters in the smart grid systems are essential to link renewable energy sources with all grid appliances and equipment. However, this raises the possibility of electromagnetic interference (EMI) between the smart grid elements. Hence, spread spectrum (SS) modulation techniques have been used to mitigate the EMI peaks generated from the power converters. Consequently, the performance of the nearby communication systems is affected under the presence of EMI, which is not covered in many situations. In this paper, the behavior of the G3 Power Line Communication (PLC) channel is evaluated in terms of the Shannon–Hartley equation in the presence of SS-modulated EMI from a buck converter. The SS-modulation technique used is the Random Carrier Frequency Modulation with Constant Duty cycle (RCFMFD). Moreover, The analysis is validated by experimental results obtained with a test setup reproducing the parasitic coupling between the PLC system and the power converter. Full article
Show Figures

Figure 1

23 pages, 3885 KiB  
Article
Sustainable Urban Branding: The Nexus Between Digital Marketing and Smart Cities
by Maria Briana, Roido Mitoula and Eleni Sardianou
Urban Sci. 2025, 9(7), 278; https://doi.org/10.3390/urbansci9070278 - 17 Jul 2025
Viewed by 434
Abstract
Smart cities leverage digital marketing to promote sustainability and build a distinctive global branding. Despite its growing significance, the role digital marketing in smart city development remains underexplored. This study aims to fill this gap by employing bibliometric analysis of 1908 articles indexed [...] Read more.
Smart cities leverage digital marketing to promote sustainability and build a distinctive global branding. Despite its growing significance, the role digital marketing in smart city development remains underexplored. This study aims to fill this gap by employing bibliometric analysis of 1908 articles indexed in the Scopus database (2000–2024), using the Bibliometrix R-Studio (version 1.4.1743) and VOSviewer (version 1.6.20). The analysis reveals two thematic clusters: (1) “Digital Innovation and Sustainability”, which emphasizes technologies such as artificial intelligence (AI), the Internet of Things (IoT), and big data for energy efficiency and green urban development; and (2) “Governance and Policy”, which highlights digital marketing’s role in enabling participatory governance, citizen engagement, and inclusive urban policies. Findings underscore that digital marketing is not only a strategic communication channel but also a driver of sustainable urban transformation. By synthesizing insights from urban planning, technology, and sustainability, this paper provides a novel perspective on the intersection of digital marketing and smart cities. The results provide valuable guidance for policymakers, city planners, and researchers to harness digital marketing in promoting sustainability and further develop the smart city concept. Full article
Show Figures

Figure 1

60 pages, 3843 KiB  
Review
Energy-Efficient Near-Field Integrated Sensing and Communication: A Comprehensive Review
by Mahnoor Anjum, Muhammad Abdullah Khan, Deepak Mishra, Haejoon Jung and Aruna Seneviratne
Energies 2025, 18(14), 3682; https://doi.org/10.3390/en18143682 - 12 Jul 2025
Viewed by 585
Abstract
The pervasive scale of networks brought about by smart city applications has created infeasible energy footprints and necessitates the inclusion of sensing sustained operations with minimal human intervention. Consequently, integrated sensing and communication (ISAC) is emerging as a key technology for 6G systems. [...] Read more.
The pervasive scale of networks brought about by smart city applications has created infeasible energy footprints and necessitates the inclusion of sensing sustained operations with minimal human intervention. Consequently, integrated sensing and communication (ISAC) is emerging as a key technology for 6G systems. ISAC systems realize dual functions using shared spectrum, which complicates interference management. This motivates the development of advanced signal processing and multiplexing techniques. In this context, extremely large antenna arrays (ELAAs) have emerged as a promising solution. ELAAs offer substantial gains in spatial resolution, enabling precise beamforming and higher multiplexing gains by operating in the near-field (NF) region. Despite these advantages, the use of ELAAs increases energy consumption and exacerbates carbon emissions. To address this, NF multiple-input multiple-output (NF-MIMO) systems must incorporate sustainable architectures and scalable solutions. This paper provides a comprehensive review of the various methodologies utilized in the design of energy-efficient NF-MIMO-based ISAC systems. It introduces the foundational principles of the latest research while identifying the strengths and limitations of green NF-MIMO-based ISAC systems. Furthermore, this work provides an in-depth analysis of the open challenges associated with these systems. Finally, it offers a detailed overview of emerging opportunities for sustainable designs, encompassing backscatter communication, dynamic spectrum access, fluid antenna systems, reconfigurable intelligent surfaces, and energy harvesting technologies. Full article
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 304
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

Back to TopTop