Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (524)

Search Parameters:
Keywords = smart city policy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2743 KiB  
Article
Unlocking Synergies: How Digital Infrastructure Reshapes the Pollution-Carbon Reduction Nexus at the Chinese Prefecture-Level Cities
by Zhe Ji, Yuqi Chang and Fengxiu Zhou
Sustainability 2025, 17(15), 7066; https://doi.org/10.3390/su17157066 - 4 Aug 2025
Viewed by 229
Abstract
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, [...] Read more.
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, this study employs a multiperiod difference-in-differences (DID) approach, leveraging smart city pilot policies as a quasinatural experiment, to assess how digital infrastructure affects urban synergistic pollution-carbon mitigation (SPCM). The empirical results show that digital infrastructure increases the urban SPCM index by 1.5%, indicating statistically significant effects. Compared with energy and income effects, digital infrastructure can influence this synergistic effect through indirect channels such as the energy effect, economic agglomeration effect, and income effect, with the economic agglomeration effect accounting for a larger share of the total effect. Additionally, fixed-asset investment has a nonlinear moderating effect on this relationship, with diminishing marginal returns on emission reduction when investment exceeds a threshold. Heterogeneity tests reveal greater impacts in eastern, nonresource-based, and environmentally regulated cities. This study expands the theory of collaborative environmental governance from the perspective of new infrastructure, providing a theoretical foundation for establishing a long-term digital technology-driven mechanism for SPCM. Full article
Show Figures

Figure 1

17 pages, 3062 KiB  
Article
Spatiotemporal Risk-Aware Patrol Planning Using Value-Based Policy Optimization and Sensor-Integrated Graph Navigation in Urban Environments
by Swarnamouli Majumdar, Anjali Awasthi and Lorant Andras Szolga
Appl. Sci. 2025, 15(15), 8565; https://doi.org/10.3390/app15158565 (registering DOI) - 1 Aug 2025
Viewed by 269
Abstract
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal [...] Read more.
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal graph, capturing the evolving intensity and distribution of criminal activity across neighborhoods and time windows. The agent’s state space incorporates synthetic AV sensor inputs—including fuel level, visual anomaly detection, and threat signals—to reflect real-world operational constraints. We evaluate and compare three learning strategies: Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Proximal Policy Optimization (PPO). Experimental results show that DDQN outperforms DQN in convergence speed and reward accumulation, while PPO demonstrates greater adaptability in sensor-rich, high-noise conditions. Real-map simulations and hourly risk heatmaps validate the effectiveness of our approach, highlighting its potential to inform scalable, data-driven patrol strategies in next-generation smart cities. Full article
(This article belongs to the Special Issue AI-Aided Intelligent Vehicle Positioning in Urban Areas)
Show Figures

Figure 1

33 pages, 870 KiB  
Article
Decarbonizing Urban Transport: Policies and Challenges in Bucharest
by Adina-Petruța Pavel and Adina-Roxana Munteanu
Future Transp. 2025, 5(3), 99; https://doi.org/10.3390/futuretransp5030099 (registering DOI) - 1 Aug 2025
Viewed by 209
Abstract
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for [...] Read more.
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for 55 package, are reflected in Romania’s transport policies, with a focus on implementation challenges and urban outcomes in Bucharest. By combining policy analysis, stakeholder mapping, and comparative mobility indicators, the paper critically assesses Bucharest’s current reliance on private vehicles, underperforming public transport satisfaction, and limited progress on active mobility. The study develops a context-sensitive reform framework for the Romanian capital, grounded in transferable lessons from Western and Central European cities. It emphasizes coordinated metropolitan governance, public trust-building, phased car-restraint measures, and investment alignment as key levers. Rather than merely cataloguing policy intentions, the paper offers practical recommendations informed by systemic governance barriers and public attitudes. The findings will contribute to academic debates on urban mobility transitions in post-socialist cities and provide actionable insights for policymakers seeking to operationalize EU decarbonization goals at the metropolitan scale. Full article
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Viewed by 184
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

22 pages, 3476 KiB  
Article
Digital Inequality and Smart Inclusion: A Socio-Spatial Perspective from the Region of Xanthi, Greece
by Kyriaki Kourtidou, Yannis Frangopoulos, Asimenia Salepaki and Dimitris Kourkouridis
Smart Cities 2025, 8(4), 123; https://doi.org/10.3390/smartcities8040123 - 28 Jul 2025
Viewed by 380
Abstract
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with [...] Read more.
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with qualitative insights from semi-structured interviews, aiming to uncover how spatial, demographic, and cultural variables shape digital engagement. Geographic Information System (GIS) tools are employed to map disparities in internet access and ICT infrastructure, revealing significant gaps linked to geography, education, and economic status. The findings demonstrate that digital inequality is particularly acute in rural, minority, and economically marginalized communities, where limited infrastructure intersects with low digital literacy and socio-economic disadvantage. Interview data further illuminate how residents navigate exclusion, emphasizing generational divides, perceptions of technology, and place-based constraints. By bridging spatial analysis with lived experience, this study advances the conceptualization of digitally inclusive smart regions. It offers policy-relevant insights into how territorial inequality undermines the goals of smart development and proposes context-sensitive interventions to promote equitable digital participation. The case of Xanthi underscores the importance of integrating spatial justice into smart city and regional planning agendas. Full article
Show Figures

Figure 1

27 pages, 956 KiB  
Article
Boosting Sustainable Urban Development: How Smart Cities Improve Emergency Management—Evidence from 275 Chinese Cities
by Ming Guo and Yang Zhou
Sustainability 2025, 17(15), 6851; https://doi.org/10.3390/su17156851 - 28 Jul 2025
Viewed by 450
Abstract
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their [...] Read more.
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their causal impact and underlying mechanisms remains limited, particularly in developing economies. Drawing on panel data from 275 Chinese prefecture-level cities over the period 2006–2021 and using China’s smart city pilot policy as a quasi-natural experiment, this study applies a multi-period difference-in-differences (DID) approach to rigorously assess the effects of smart city construction on emergency management capabilities. Results reveal that smart city construction produced a statistically significant improvement in emergency management capabilities, which remained robust after conducting multiple sensitivity checks and controlling for potential confounding policies. The benefits exhibit notable heterogeneity: emergency management capability improvements are most pronounced in central China and in cities at the extremes of population size—megacities (>10 million residents) and small cities (<1 million residents)—while effects remain marginal in medium-sized and eastern cities. Crucially, mechanism analysis reveals that digital technology application fully mediates 86.7% of the total effect, whereas factor allocation efficiency exerts only a direct, non-mediating influence. These findings suggest that smart cities primarily enhance emergency management capabilities through digital enablers, with effectiveness contingent upon regional infrastructure development and urban scale. Policy priorities should therefore emphasize investments in digital infrastructure, interagency data integration, and targeted capacity-building strategies tailored to central and western regions as well as smaller cities. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

22 pages, 2697 KiB  
Article
Empowering the Irish Energy Transition: Harnessing Sensor Technology for Engagement in an Embedded Living Lab
by Madeleine Lyes
Sustainability 2025, 17(15), 6677; https://doi.org/10.3390/su17156677 - 22 Jul 2025
Viewed by 321
Abstract
The transition to a decarbonised energy system in Ireland presents significant socio-technical challenges. This paper, focused on the work of the SMARTLAB project at the Citizen Innovation Lab in Limerick city, investigated the potential of a localised living lab approach to address these [...] Read more.
The transition to a decarbonised energy system in Ireland presents significant socio-technical challenges. This paper, focused on the work of the SMARTLAB project at the Citizen Innovation Lab in Limerick city, investigated the potential of a localised living lab approach to address these challenges. Engaging across 70 buildings and their inhabitants, the project captured the evolution of attitudes and intentions towards the clean energy transition in ways directly relevant to future policy implementation across grid redevelopment, smart service design, and national retrofit. Project methodology was framed by a living lab approach, with wireless energy and indoor environment sensors installed in participant buildings and participant journeys developed by harnessing the Citizen Innovation Lab ecosystem. The results indicate behaviour changes among participants, particularly focusing on indoor environmental conditions. The study concludes that embedded, localised living labs offer a methodological framework which can capture diverse datasets and encompass complex contemporary contexts towards transition goals. Full article
(This article belongs to the Special Issue Sustainable Impact and Systemic Change via Living Labs)
Show Figures

Figure 1

28 pages, 2422 KiB  
Article
Reverse Logistics Network Optimization for Retired BIPV Panels in Smart City Energy Systems
by Cimeng Zhou and Shilong Li
Buildings 2025, 15(14), 2549; https://doi.org/10.3390/buildings15142549 - 19 Jul 2025
Viewed by 314
Abstract
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental [...] Read more.
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental damage because of the close coupling with the building itself. As the first tranche of BIPV projects will enter the end of their life cycle, it is urgent to establish a multi-dimensional collaborative recycling mechanism that meets the characteristics of building pv systems. Based on the theory of reverse logistics network, the research focuses on optimizing the reverse logistics network during the decommissioning stage of BIPV modules, and proposes a dual-objective optimization model that considers both cost and carbon emissions for BIPV. Meanwhile, the multi-level recycling network which covers “building points-regional transfer stations-specialized distribution centers” is designed in the research, the Pareto solution set is solved by the improved NSGA-II algorithm, a “1 + 1” du-al-core construction model of distribution center and transfer station is developed, so as to minimize the total cost and life cycle carbon footprint of the logistics network. At the same time, the research also reveals the driving effect of government reward and punishment policies on the collaborative behavior of enterprise recycling, and provides methodological support for the construction of a closed-loop supply chain of “PV-building-environment” symbiosis. The study concludes that in the process of constructing smart city energy system, the systematic control of resource circulation and environmental risks through the optimization of reverse logistics network can provide technical support for the sustainable development of smart city. Full article
(This article belongs to the Special Issue Research on Smart Healthy Cities and Real Estate)
Show Figures

Figure 1

23 pages, 3885 KiB  
Article
Sustainable Urban Branding: The Nexus Between Digital Marketing and Smart Cities
by Maria Briana, Roido Mitoula and Eleni Sardianou
Urban Sci. 2025, 9(7), 278; https://doi.org/10.3390/urbansci9070278 - 17 Jul 2025
Viewed by 434
Abstract
Smart cities leverage digital marketing to promote sustainability and build a distinctive global branding. Despite its growing significance, the role digital marketing in smart city development remains underexplored. This study aims to fill this gap by employing bibliometric analysis of 1908 articles indexed [...] Read more.
Smart cities leverage digital marketing to promote sustainability and build a distinctive global branding. Despite its growing significance, the role digital marketing in smart city development remains underexplored. This study aims to fill this gap by employing bibliometric analysis of 1908 articles indexed in the Scopus database (2000–2024), using the Bibliometrix R-Studio (version 1.4.1743) and VOSviewer (version 1.6.20). The analysis reveals two thematic clusters: (1) “Digital Innovation and Sustainability”, which emphasizes technologies such as artificial intelligence (AI), the Internet of Things (IoT), and big data for energy efficiency and green urban development; and (2) “Governance and Policy”, which highlights digital marketing’s role in enabling participatory governance, citizen engagement, and inclusive urban policies. Findings underscore that digital marketing is not only a strategic communication channel but also a driver of sustainable urban transformation. By synthesizing insights from urban planning, technology, and sustainability, this paper provides a novel perspective on the intersection of digital marketing and smart cities. The results provide valuable guidance for policymakers, city planners, and researchers to harness digital marketing in promoting sustainability and further develop the smart city concept. Full article
Show Figures

Figure 1

22 pages, 845 KiB  
Article
Bridging Cities and Citizens with Generative AI: Public Readiness and Trust in Urban Planning
by Adnan Alshahrani
Buildings 2025, 15(14), 2494; https://doi.org/10.3390/buildings15142494 - 16 Jul 2025
Viewed by 514
Abstract
As part of its modernisation and economic diversification policies, Saudi Arabia is building smart, sustainable cities intended to improve quality of life and meet environmental goals. However, involving the public in urban planning remains complex, with traditional methods often proving expensive, time-consuming, and [...] Read more.
As part of its modernisation and economic diversification policies, Saudi Arabia is building smart, sustainable cities intended to improve quality of life and meet environmental goals. However, involving the public in urban planning remains complex, with traditional methods often proving expensive, time-consuming, and inaccessible to many groups. Integrating artificial intelligence (AI) into public participation may help to address these limitations. This study explores whether Saudi residents are ready to engage with AI-driven tools in urban planning, how they prefer to interact with them, and what ethical concerns may arise. Using a quantitative, survey-based approach, the study collected data from 232 Saudi residents using non-probability stratified sampling. The survey assessed demographic influences on AI readiness, preferred engagement methods, and perceptions of ethical risks. The results showed a strong willingness among participants (200 respondents, 86%)—especially younger and university-educated respondents—to engage through AI platforms. Visual tools such as image and video analysis were the most preferred (96 respondents, 41%), while chatbots were less favoured (16 respondents, 17%). However, concerns were raised about privacy (76 respondents, 33%), bias (52 respondents, 22%), and over-reliance on technology (84 respondents, 36%). By exploring the intersection of generative AI and participatory urban governance, this study contributes directly to the discourse on inclusive smart city development. The research also offers insights into how AI-driven public engagement tools can be integrated into urban planning workflows to enhance the design, governance, and performance of the built environment. The findings suggest that AI has the potential to improve inclusivity and responsiveness in urban planning, but that its success depends on public trust, ethical safeguards, and the thoughtful design of accessible, user-friendly engagement platforms. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

31 pages, 1059 KiB  
Article
Adaptive Traffic Light Management for Mobility and Accessibility in Smart Cities
by Malik Almaliki, Amna Bamaqa, Mahmoud Badawy, Tamer Ahmed Farrag, Hossam Magdy Balaha and Mostafa A. Elhosseini
Sustainability 2025, 17(14), 6462; https://doi.org/10.3390/su17146462 - 15 Jul 2025
Viewed by 607
Abstract
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM [...] Read more.
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM (a hybrid adaptive traffic lights management), a system utilizing the deep deterministic policy gradient (DDPG) reinforcement learning algorithm to optimize traffic light timings dynamically based on real-time data. The system integrates advanced sensing technologies, such as cameras and inductive loops, to monitor traffic conditions and adaptively adjust signal phases. Experimental results demonstrate significant improvements, including reductions in congestion (up to 50%), increases in throughput (up to 149%), and decreases in clearance times (up to 84%). These findings open the door for integrating accessibility-focused features such as adaptive signaling for accessible vehicles, dedicated lanes for paratransit services, and prioritized traffic flows for inclusive mobility. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 415
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

43 pages, 2590 KiB  
Article
A Study on the Impact of Industrial Robot Applications on Labor Resource Allocation
by Kexu Wu, Zhiwei Tang and Longpeng Zhang
Systems 2025, 13(7), 569; https://doi.org/10.3390/systems13070569 - 11 Jul 2025
Viewed by 512
Abstract
With the rapid advancement of artificial intelligence and smart manufacturing technologies, the penetration of industrial robots into Chinese markets has profoundly reshaped the structure of the labor market. However, existing studies have largely concentrated on the employment substitution effect and the diffusion path [...] Read more.
With the rapid advancement of artificial intelligence and smart manufacturing technologies, the penetration of industrial robots into Chinese markets has profoundly reshaped the structure of the labor market. However, existing studies have largely concentrated on the employment substitution effect and the diffusion path of these technologies, while systematic analyses of how industrial robots affect labor resource allocation efficiency across different regional and industrial contexts in China remain scarce. In particular, research on the mechanisms and heterogeneity of these effects is still underdeveloped, calling for deeper investigation into their transmission channels and policy implications. Drawing on panel data from 280 prefecture-level cities in China from 2006 to 2023, this paper employs a Bartik-style instrumental variable approach to measure the level of industrial robot penetration and constructs a two-way fixed effects model to assess its impact on urban labor misallocation. Furthermore, the analysis introduces two mediating variables, industrial upgrading and urban innovation capacity, and applies a mediation effect model combined with Bootstrap methods to empirically test the underlying transmission mechanisms. The results reveal that a higher level of industrial robot adoption is significantly associated with a lower degree of labor misallocation, indicating a notable improvement in labor resource allocation efficiency. Heterogeneity analysis shows that this effect is more pronounced in cities outside the Yangtze River Economic Belt, in those experiencing severe population aging, and in areas with a relatively weak manufacturing base. Mechanism tests further indicate that industrial robots indirectly promote labor allocation efficiency by facilitating industrial upgrades and enhancing innovation capacity. However, in the short term, improvements in innovation capacity may temporarily intensify labor mismatch due to structural frictions. Overall, industrial robots not only exert a direct positive impact on the efficiency of urban labor allocation but also indirectly contribute to resource optimization through structural transformation and innovation system development. These findings underscore the need to account for regional disparities and demographic structures when advancing intelligent manufacturing strategies. Policymakers should coordinate the development of vocational training systems and innovation ecosystems to strengthen the dynamic alignment between technological adoption and labor market restructuring, thereby fostering more inclusive and high-quality economic growth. Full article
Show Figures

Figure 1

28 pages, 1364 KiB  
Systematic Review
Age Sustainability in Smart City: Seniors as Urban Stakeholders in the Light of Literature Studies
by Izabela Jonek-Kowalska and Maciej Wolny
Sustainability 2025, 17(14), 6333; https://doi.org/10.3390/su17146333 - 10 Jul 2025
Viewed by 329
Abstract
Objectives: An aging population and declining birth rates are among the challenges that smart cities currently face and will continue to face in the near future. In light of the above, this article seeks to answer the following question: Are older people (seniors) [...] Read more.
Objectives: An aging population and declining birth rates are among the challenges that smart cities currently face and will continue to face in the near future. In light of the above, this article seeks to answer the following question: Are older people (seniors) taken into account and described in the literature on smart cities, and if so, how? Methods: To answer this research question, a systematic literature review was conducted using the Bibliometrix package in R. In the process of systematizing the publications, the authors additionally used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method and qualitative text analysis. Findings: The research shows that relatively little attention is paid to seniors in smart cities in the literature on the subject. Among the few publications on smart aging, the technological trend dominates, in which researchers present the possibilities of using IT and ICT to improve medical and social care for seniors, and to improve their quality of life (Smart Living, Smart Mobility). In the non-technological trend, most analyses focus on the determinants of quality of life and the distinguishing features of senior-friendly cities. Implications: There is a clear lack of a “human” perspective on aging in smart cities and publications on Smart Governance and Smart People that would provide guidelines for making elderly people full and equal stakeholders in smart cities. It is also necessary to develop practical documents and procedures that define a comprehensive and long-term urban policy for elderly adults. The analyses contribute to diagnosing current and determining further directions of research on smart aging in smart cities. The results clearly imply the need to intensify social, humanistic, and governance research on the role of seniors in smart cities. Full article
(This article belongs to the Special Issue Smart Cities, Smart Governance and Sustainable Development)
Show Figures

Figure 1

30 pages, 2849 KiB  
Article
A Semantic Link Network Model for Supporting Traceability of Logistics on Blockchain
by Xiaoping Sun, Sirui Zhuge and Hai Zhuge
Smart Cities 2025, 8(4), 115; https://doi.org/10.3390/smartcities8040115 - 9 Jul 2025
Viewed by 259
Abstract
Logistics transports of various resources such as production materials, foods, and products support the operation of smart cities. The ability to trace the states of logistics transports requires an efficient storage and retrieval of the states of logistics transports and locations of logistics [...] Read more.
Logistics transports of various resources such as production materials, foods, and products support the operation of smart cities. The ability to trace the states of logistics transports requires an efficient storage and retrieval of the states of logistics transports and locations of logistics objects. However, the restriction of sharing states and locations of logistics objects across organizations makes it hard to deploy a centralized database for supporting traceability in a cross-organization logistics system. This paper proposes a semantic data model on Blockchain to represent a logistics process based on the Semantic Link Network model, where each semantic link represents a logistics transport of a logistics object between two organizations. A state representation model is designed to represent the states of a logistics transport with semantic links. It enables the locations of logistics objects to be derived from the link states. A mapping from the semantic links into the blockchain transactions is designed to enable the schema of semantic links and the states of semantic links to be published in blockchain transactions. To improve the efficiency of tracing a path of semantic links on a blockchain platform, an algorithm is designed to build shortcuts along the path of semantic links to enable a query on the path of a logistics object to reach the target in logarithmic steps on the blockchain platform. A reward–penalty policy is designed to allow participants to confirm the states of links on the blockchain. Analysis and simulation demonstrate the flexibility, effectiveness, and efficiency of the Semantic Link Network on immutable blockchain for implementing logistics traceability. Full article
Show Figures

Figure 1

Back to TopTop