Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = smart card systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 87429 KiB  
Article
Optimizing Urban Mobility Through Complex Network Analysis and Big Data from Smart Cards
by Li Sun, Negin Ashrafi and Maryam Pishgar
IoT 2025, 6(3), 44; https://doi.org/10.3390/iot6030044 - 6 Aug 2025
Abstract
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation [...] Read more.
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation within such networks. This study introduces a frequency-based framework that differentiates high-frequency (HF) and low-frequency (LF) passengers to examine how distinct user groups shape network structure, congestion vulnerability, and robustness. Using over 20 million smart-card records from Beijing’s multimodal transit system, we construct and analyze directed weighted networks for HF and LF users, integrating topological metrics, temporal comparisons, and community detection. Results reveal that HF networks are densely connected but structurally fragile, exhibiting lower modularity and significantly greater efficiency loss during peak periods. In contrast, LF networks are more spatially dispersed yet resilient, maintaining stronger intracommunity stability. Peak-hour simulation shows a 70% drop in efficiency and a 99% decrease in clustering, with HF networks experiencing higher vulnerability. Based on these findings, we propose differentiated policy strategies for each user group and outline a future optimization framework constrained by budget and equity considerations. This study contributes a scalable, data-driven approach to integrating passenger behavior with network science, offering actionable insights for resilient and inclusive transit planning. Full article
(This article belongs to the Special Issue IoT-Driven Smart Cities)
29 pages, 5923 KiB  
Article
Activity Spaces in Multimodal Transportation Networks: A Nonlinear and Spatial Analysis Perspective
by Kuang Guo, Rui Tang, Haixiao Pan, Dongming Zhang, Yang Liu and Zhuangbin Shi
ISPRS Int. J. Geo-Inf. 2025, 14(8), 281; https://doi.org/10.3390/ijgi14080281 - 22 Jul 2025
Viewed by 336
Abstract
Activity space offers a valuable perspective for analyzing urban travel behavior and evaluating the performance of transportation systems in increasingly complex urban environments. However, the research on measuring activity spaces in multimodal transportation contexts remains limited. This study investigates multimodal transportation activity spaces [...] Read more.
Activity space offers a valuable perspective for analyzing urban travel behavior and evaluating the performance of transportation systems in increasingly complex urban environments. However, the research on measuring activity spaces in multimodal transportation contexts remains limited. This study investigates multimodal transportation activity spaces in Hangzhou using 2023 smart card data. Multimodal travel chains are extracted, and residents’ activity spaces are quantified using 95% confidence ellipses. By applying the XGBoost and GeoShapley models, this study reveals the nonlinear effects and geospatial heterogeneity in how built environment and socioeconomic factors influence activity spaces. The key findings show that the distance to the nearest metro station, commercial POIs, and GDP significantly shape activity spaces through nonlinear relationships. Moreover, the interaction between the distance to the nearest metro station and geographical location generates pronounced geospatial effects. The results highlight the importance of multimodal integration in urban transport planning and provide empirical insights for enhancing system efficiency and sustainability. Full article
Show Figures

Figure 1

20 pages, 459 KiB  
Article
Post-Quantum Secure Multi-Factor Authentication Protocol for Multi-Server Architecture
by Yunhua Wen, Yandong Su and Wei Li
Entropy 2025, 27(7), 765; https://doi.org/10.3390/e27070765 - 18 Jul 2025
Viewed by 236
Abstract
The multi-factor authentication (MFA) protocol requires users to provide a combination of a password, a smart card and biometric data as verification factors to gain access to the services they need. In a single-server MFA system, users accessing multiple distinct servers must register [...] Read more.
The multi-factor authentication (MFA) protocol requires users to provide a combination of a password, a smart card and biometric data as verification factors to gain access to the services they need. In a single-server MFA system, users accessing multiple distinct servers must register separately for each server, manage multiple smart cards, and remember numerous passwords. In contrast, an MFA system designed for multi-server architecture allows users to register once at a registration center (RC) and then access all associated servers with a single smart card and one password. MFA with an offline RC addresses the computational bottleneck and single-point failure issues associated with the RC. In this paper, we propose a post-quantum secure MFA protocol for a multi-server architecture with an offline RC. Our MFA protocol utilizes the post-quantum secure Kyber key encapsulation mechanism and an information-theoretically secure fuzzy extractor as its building blocks. We formally prove the post-quantum semantic security of our MFA protocol under the real or random (ROR) model in the random oracle paradigm. Compared to related protocols, our protocol achieves higher efficiency and maintains reasonable communication overhead. Full article
Show Figures

Figure 1

13 pages, 2141 KiB  
Article
Post-Quantum KEMs for IoT: A Study of Kyber and NTRU
by M. Awais Ehsan, Walaa Alayed, Amad Ur Rehman, Waqar ul Hassan and Ahmed Zeeshan
Symmetry 2025, 17(6), 881; https://doi.org/10.3390/sym17060881 - 5 Jun 2025
Viewed by 989
Abstract
Current improvements in quantum computing present a substantial challenge to classical cryptographic systems, which typically rely on problems that can be solved in polynomial time using quantum algorithms. Consequently, post-quantum cryptography (PQC) has emerged as a promising solution to emerging quantum-based cryptographic challenges. [...] Read more.
Current improvements in quantum computing present a substantial challenge to classical cryptographic systems, which typically rely on problems that can be solved in polynomial time using quantum algorithms. Consequently, post-quantum cryptography (PQC) has emerged as a promising solution to emerging quantum-based cryptographic challenges. The greatest threat is public-key cryptosystems, which are primarily responsible for key exchanges. In PQC, key encapsulation mechanisms (KEMs) are crucial for securing key exchange protocols, particularly in Internet communication, virtual private networks (VPNs), and secure messaging applications. CRYSTALS-Kyber and NTRU are two well-known PQC KEMs offering robust security in the quantum world. However, even when quantum computers are functional, they are not easily accessible. IoT devices will not be able to utilize them directly, so there will still be a requirement to protect IoT devices from quantum attacks. Concerns such as limited computational power, energy efficiency, and memory constraints in devices such as those used in IoTs, embedded systems, and smart cards limit the use of these techniques in constrained environments. These concerns always arise there. To address this issue, this study conducts a broad comparative analysis of Kyber and NTRU, with special focus on their security, performance, and implementation efficiency in such environments (IOT/constrained environments). In addition, a case study was conducted by applying KEMs to a low-power embedded device to analyze their performance in real-world scenarios. These results offer an important comparison for cyber security engineers and cryptographers who are involved in integrating post-quantum cryptography into resource-constrained devices. Full article
(This article belongs to the Special Issue Symmetry in Applied Continuous Mechanics, 2nd Edition)
Show Figures

Figure 1

26 pages, 588 KiB  
Article
An Identity Management Scheme Based on Multi-Factor Authentication and Dynamic Trust Evaluation for Telemedicine
by Yishan Wu, Mengxue Pang, Jianqiang Ma, Wei Ou, Qiuling Yue and Wenbao Han
Sensors 2025, 25(7), 2118; https://doi.org/10.3390/s25072118 - 27 Mar 2025
Viewed by 764
Abstract
Telemedicine diagnosis has become a more flexible and convenient way to receive diagnoses, which is of great significance in enhancing diagnosis, cutting costs, and serving remote users. However, telemedicine faces many security problems, such as the complexity of user authentication, the balance of [...] Read more.
Telemedicine diagnosis has become a more flexible and convenient way to receive diagnoses, which is of great significance in enhancing diagnosis, cutting costs, and serving remote users. However, telemedicine faces many security problems, such as the complexity of user authentication, the balance of the existing biometric factor authentication scheme, the unpredictability of user behavior, and the difficulty of unified authentication due to the differences in the security standards and authentication mechanisms of different trust domains, which affect the sustainable development of telemedicine. To address the above issues, this paper presents an identity management scheme based on multi-factor authentication and dynamic trust evaluation for telemedicine. Its authentication combines iris recognition for secure biometric verification, smart cards for encrypted credential storage, and static passwords for supplementary verification, addressing scenarios like facial coverage in medical settings. The scheme dynamically adjusts authentication based on attack rates, login anomalies, and service durations. By integrating ShangMi cryptographic algorithms and blockchain, it optimizes performance, achieving 35% lower communication overhead than previous protocols. A security analysis shows it resists impersonation, man-in-the-middle, and password modification attacks while preserving user anonymity. System evaluation meets authoritative standards, validating its practicality. This scheme balances security and efficiency, providing a strong basis for telemedicine’s long-term viability. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

23 pages, 1060 KiB  
Review
Smart Card-Based Vehicle Ignition Systems: Security, Regulatory Compliance, Drug and Impairment Detection, Through Advanced Materials and Authentication Technologies
by Vincenzo Vitiello, Alessandro Benazzi and Paolo Trucillo
Processes 2025, 13(3), 911; https://doi.org/10.3390/pr13030911 - 19 Mar 2025
Viewed by 965
Abstract
This study investigates the integration of smart card readers into vehicle ignition systems as a multifaceted solution to enhance security, regulatory compliance, and road safety. By implementing real-time driver verification, encryption protocols (AES-256, RSA), and multifactor authentication, the system significantly reduces unauthorized vehicle [...] Read more.
This study investigates the integration of smart card readers into vehicle ignition systems as a multifaceted solution to enhance security, regulatory compliance, and road safety. By implementing real-time driver verification, encryption protocols (AES-256, RSA), and multifactor authentication, the system significantly reduces unauthorized vehicle use and improves accident prevention. A critical advancement of this research is the incorporation of automated drug and impairment detection to prevent driving under the influence of substances, including illicit drugs and prescription medications. Risk models estimate that drug-related accidents could be reduced by 7.65% through the integration of these technologies into vehicle ignition systems, assuming high compliance rates. The study evaluates drug applications leveraging the same sensor-based monitoring technologies as used for impairment detection. These systems can facilitate the real-time tracking of medication intake and physiological responses, offering new possibilities for safety applications in medical transportation and assisted driving technologies. High-performance polymers such as polyetheretherketone (PEEK) enhance the durability and thermal stability of smart card readers, while blockchain-based verification strengthens data security and regulatory compliance. Despite challenges related to cost (USD 100–300 per unit) and adherence to ISO standards, these innovations position smart card-based ignition systems as a comprehensive, technology-driven approach to vehicle security, impairment prevention, and medical monitoring. Full article
(This article belongs to the Special Issue 2nd Edition of Innovation in Chemical Plant Design)
Show Figures

Figure 1

8 pages, 2885 KiB  
Proceeding Paper
Resilient Time Dissemination Fusion Framework for UAVs for Smart Cities
by Sorin Andrei Negru, Triyan Pal Arora, Ivan Petrunin, Weisi Guo, Antonios Tsourdos, David Sweet and George Dunlop
Eng. Proc. 2025, 88(1), 5; https://doi.org/10.3390/engproc2025088005 - 17 Mar 2025
Viewed by 435
Abstract
Future smart cities will consist of a heterogeneous environment, including UGVs (Unmanned Ground Vehicles) and UAVs (Unmanned Aerial Vehicles), used for different applications such as last mile delivery. Considering the vulnerabilities of GNSS (Global Navigation System Satellite) in urban environments, a resilient PNT [...] Read more.
Future smart cities will consist of a heterogeneous environment, including UGVs (Unmanned Ground Vehicles) and UAVs (Unmanned Aerial Vehicles), used for different applications such as last mile delivery. Considering the vulnerabilities of GNSS (Global Navigation System Satellite) in urban environments, a resilient PNT (Position, Navigation, Timing) solution is needed. A key research question within the PNT community is the capability to deliver a robust and resilient time solution to multiple devices simultaneously. The paper is proposing an innovative time dissemination framework, based on IQuila’s SDN (Software Defined Network) and quantum random key encryption from Quantum Dice to multiple users. The time signal is disseminated using a wireless IEEE 802.11ax, through a wireless AP (Access point) which is received by each user, where a KF (Kalman Filter) is used to enhance the timing resilience of each client into the framework. Each user is equipped with a Jetson Nano board as CC (Companion Computer), a GNSS receiver, an IEEE 802.11ax wireless card, an embedded RTC (Real Time clock) system, and a Pixhawk 2.1 as FCU (Flight Control Unit). The paper is presenting the performance of the fusion framework using the MUEAVI (Multi-user Environment for Autonomous Vehicle Innovation) Cranfield’s University facility. Results showed that an alternative timing source can securely be delivered fulfilling last mile delivery requirements for aerial platforms achieving sub millisecond offset. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

33 pages, 866 KiB  
Article
Secure Electric Vehicle Charging Infrastructure in Smart Cities: A Blockchain-Based Smart Contract Approach
by Abdullahi Chowdhury, Sakib Shahriar Shafin, Saleh Masum, Joarder Kamruzzaman and Shi Dong
Smart Cities 2025, 8(1), 33; https://doi.org/10.3390/smartcities8010033 - 15 Feb 2025
Cited by 4 | Viewed by 1476
Abstract
Increasing adoption of electric vehicles (EVs) and the expansion of EV charging infrastructure present opportunities for enhancing sustainable transportation within smart cities. However, the interconnected nature of EV charging stations (EVCSs) exposes this infrastructure to various cyber threats, including false data injection, man-in-the-middle [...] Read more.
Increasing adoption of electric vehicles (EVs) and the expansion of EV charging infrastructure present opportunities for enhancing sustainable transportation within smart cities. However, the interconnected nature of EV charging stations (EVCSs) exposes this infrastructure to various cyber threats, including false data injection, man-in-the-middle attacks, malware intrusions, and denial of service attacks. Financial attacks, such as false billing and theft of credit card information, also pose significant risks to EV users. In this work, we propose a Hyperledger Fabric-based blockchain network for EVCSs to mitigate these risks. The proposed blockchain network utilizes smart contracts to manage key processes such as authentication, charging session management, and payment verification in a secure and decentralized manner. By detecting and mitigating malicious data tampering or unauthorized access, the blockchain system enhances the resilience of EVCS networks. A comparative analysis of pre- and post-implementation of the proposed blockchain network demonstrates how it thwarts current cyberattacks in the EVCS infrastructure. Our analyses include performance metrics using the benchmark Hyperledger Caliper test, which shows the proposed solution’s low latency for real-time operations and scalability to accommodate the growth of EV infrastructure. Deployment of this blockchain-enhanced security mechanism will increase user trust and reliability in EVCS systems. Full article
Show Figures

Figure 1

25 pages, 30957 KiB  
Article
The Nonlinear Effect of the Built Environment on Bike–Metro Transfer in Different Times and Transfer Flows Considering Spatial Dependence
by Yuan Zhang, Yining Meng, Xiao-Jian Chen, Huiming Liu and Yongxi Gong
Sustainability 2025, 17(1), 251; https://doi.org/10.3390/su17010251 - 1 Jan 2025
Cited by 2 | Viewed by 1200
Abstract
Dockless bike-sharing (DBS) plays a crucial role in solving the “last-mile” problem for metro trips. However, bike–metro transfer usage varies by time and transfer flows. This study explores the nonlinear relationship between the built environment and bike–metro transfer in Shenzhen, considering different times [...] Read more.
Dockless bike-sharing (DBS) plays a crucial role in solving the “last-mile” problem for metro trips. However, bike–metro transfer usage varies by time and transfer flows. This study explores the nonlinear relationship between the built environment and bike–metro transfer in Shenzhen, considering different times and transfer flows while incorporating spatial dependence to improve model accuracy. We integrated smart card records and DBS data to identify transfer trips and categorized them into four types: morning access, morning egress, evening access, and evening egress. Using random forest and gradient boosting decision tree models, we found that (1) introducing spatial lag terms significantly improved model accuracy, indicating the importance of spatial dependence in bike–metro transfer; (2) the built environment’s impact on bike–metro transfer exhibited distinct nonlinear patterns, particularly for bus stop density, house prices, commercial points of interest (POI), and cultural POI, varying by time and transfer flow; (3) SHAP value analysis further revealed the influence of urban spatial structure on bike–metro transfer, with residential and employment areas displaying different transfer patterns by time and transfer flow. Our findings underscore the importance of considering both built environment factors and spatial dependence in urban transportation planning to achieve sustainable and efficient transportation systems. Full article
Show Figures

Figure 1

23 pages, 2454 KiB  
Article
CO-TSM: A Flexible Model for Secure Embedded Device Ownership and Management
by Konstantinos Markantonakis, Ghada Arfaoui, Sarah Abu Ghazalah, Carlton Shepherd, Raja Naeem Akram and Damien Sauveron
Smart Cities 2024, 7(5), 2887-2909; https://doi.org/10.3390/smartcities7050112 - 8 Oct 2024
Viewed by 1966
Abstract
The Consumer-Oriented Trusted Service Manager (CO-TSM) model has been recognised as a significant advancement in managing applications on Near Field Communication (NFC)-enabled mobile devices and multi-application smart cards. Traditional Trusted Service Manager (TSM) models, while useful, often result in market fragmentation and limit [...] Read more.
The Consumer-Oriented Trusted Service Manager (CO-TSM) model has been recognised as a significant advancement in managing applications on Near Field Communication (NFC)-enabled mobile devices and multi-application smart cards. Traditional Trusted Service Manager (TSM) models, while useful, often result in market fragmentation and limit widespread adoption due to their centralised control mechanisms. The CO-TSM model addresses these issues by decentralising management and offering greater flexibility and scalability, making it more adaptable to the evolving needs of embedded systems, particularly in the context of the Internet of Things (IoT) and Radio Frequency Identification (RFID) technologies. This paper provides a comprehensive analysis of the CO-TSM model, highlighting its application in various technological domains such as smart cards, HCE-based NFC mobile phones, TEE-enabled smart home IoT devices, and RFID-based smart supply chains. By evaluating the CO-TSM model’s architecture, implementation challenges, and practical deployment scenarios, this paper demonstrates how CO-TSM can overcome the limitations of traditional TSM approaches. The case studies presented offer practical insights into the model’s adaptability and effectiveness in real-world scenarios. Through this examination, the paper aims to underscore the CO-TSM model’s role in enhancing scalability, flexibility, and user autonomy in secure embedded device management, while also identifying areas for future research and development. Full article
Show Figures

Figure 1

37 pages, 8342 KiB  
Article
Evaluation of the Impacts of On-Demand Bus Services Using Traffic Simulation
by Sohani Liyanage, Hussein Dia, Gordon Duncan and Rusul Abduljabbar
Sustainability 2024, 16(19), 8477; https://doi.org/10.3390/su16198477 - 29 Sep 2024
Cited by 5 | Viewed by 3185
Abstract
This paper uses smart card data from Melbourne’s public transport network to model and evaluate the impacts of a flexible on-demand transport system. On-demand transport is an emerging mode of urban passenger transport that relies on meeting passenger demand for travel using dynamic [...] Read more.
This paper uses smart card data from Melbourne’s public transport network to model and evaluate the impacts of a flexible on-demand transport system. On-demand transport is an emerging mode of urban passenger transport that relies on meeting passenger demand for travel using dynamic and flexible scheduling using shared vehicles. Initially, a simulation model was developed to replicate existing fixed-schedule bus performance and was then extended to incorporate on-demand transport services within the same network. The simulation results were used to undertake a comparative analysis which included reliability, service quality, operational efficiency, network-wide effectiveness, and environmental impacts. The results showed that on-demand buses reduced average passenger trip time by 30%, increased vehicle occupancy rates from 8% to over 50%, and reduced emissions per passenger by over 70% on an average weekday compared to fixed-schedule buses. This study also offers insights for successful on-demand transport implementation, promoting urban sustainability. It also outlines future research directions, particularly the need for accurate short-term passenger demand prediction to improve service provision and passenger experience. Full article
Show Figures

Figure 1

18 pages, 5532 KiB  
Article
Enhancing Solar Power Efficiency: Smart Metering and ANN-Based Production Forecasting
by Younes Ledmaoui, Asmaa El Fahli, Adila El Maghraoui, Abderahmane Hamdouchi, Mohamed El Aroussi, Rachid Saadane and Ahmed Chebak
Computers 2024, 13(9), 235; https://doi.org/10.3390/computers13090235 - 17 Sep 2024
Cited by 6 | Viewed by 2346
Abstract
This paper presents a comprehensive and comparative study of solar energy forecasting in Morocco, utilizing four machine learning algorithms: Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), recurrent neural networks (RNNs), and artificial neural networks (ANNs). The study is conducted using a smart [...] Read more.
This paper presents a comprehensive and comparative study of solar energy forecasting in Morocco, utilizing four machine learning algorithms: Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), recurrent neural networks (RNNs), and artificial neural networks (ANNs). The study is conducted using a smart metering device designed for a photovoltaic system at an industrial site in Benguerir, Morocco. The smart metering device collects energy usage data from a submeter and transmits it to the cloud via an ESP-32 card, enhancing monitoring, efficiency, and energy utilization. Our methodology includes an analysis of solar resources, considering factors such as location, temperature, and irradiance levels, with PVSYST simulation software version 7.2, employed to evaluate system performance under varying conditions. Additionally, a data logger is developed to monitor solar panel energy production, securely storing data in the cloud while accurately measuring key parameters and transmitting them using reliable communication protocols. An intuitive web interface is also created for data visualization and analysis. The research demonstrates a holistic approach to smart metering devices for photovoltaic systems, contributing to sustainable energy utilization, smart grid development, and environmental conservation in Morocco. The performance analysis indicates that ANNs are the most effective predictive model for solar energy forecasting in similar scenarios, demonstrating the lowest RMSE and MAE values, along with the highest R2 value. Full article
Show Figures

Figure 1

23 pages, 3813 KiB  
Article
Smart Internet of Things Power Meter for Industrial and Domestic Applications
by Alexandru-Viorel Pălăcean, Dumitru-Cristian Trancă, Răzvan-Victor Rughiniș and Daniel Rosner
Appl. Sci. 2024, 14(17), 7621; https://doi.org/10.3390/app14177621 - 28 Aug 2024
Cited by 3 | Viewed by 2273
Abstract
Considering the widespread presence of switching devices on the power grid (including renewable energy system inverters), network distortion is more prominent. To maximize network efficiency, our goal is to minimize these distortions. Measuring the voltage and current total harmonic distortion (THD) using power [...] Read more.
Considering the widespread presence of switching devices on the power grid (including renewable energy system inverters), network distortion is more prominent. To maximize network efficiency, our goal is to minimize these distortions. Measuring the voltage and current total harmonic distortion (THD) using power meters and other specific equipment, and assessing power factor and peak currents, represents a crucial step in creating an efficient and stable smart grid. In this paper, we propose a power meter capable for measuring both standard electrical parameters and power quality parameters such as the voltage and current total harmonic distortion factors. The resulting device is compact and DIN-rail-mountable, occupying only three modules in an electrical cabinet. It integrates both wired and wireless communication interfaces and multiple communication protocols, such as Modbus RTU/TCP and MQTT. A microSD card can be used to store the device configuration parameters and to record the measured values in case of network fault events, the device’s continuous operation being ensured by the integrated backup battery in this situations. The device was calibrated and tested against three industrial power meters: Siemens SENTRON PAC4200, Janitza UMG-96RM, and Phoenix Contact EEM-MA400, obtaining an overall average measurement error of only 1.22%. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 1904 KiB  
Article
Lightweight Certificate-Less Anonymous Authentication Key Negotiation Scheme in the 5G Internet of Vehicles
by Guoheng Wei, Yanlin Qin, Guangyue Kou and Zhihong Sun
Electronics 2024, 13(16), 3288; https://doi.org/10.3390/electronics13163288 - 19 Aug 2024
Cited by 1 | Viewed by 1173
Abstract
In the current 5G vehicle network system, there are security issues such as wireless intrusion, privacy leakage, and remote control. To address these challenges, an improved lightweight anonymous authentication key negotiation scheme based on certificate-less aggregate signatures is proposed and its security and [...] Read more.
In the current 5G vehicle network system, there are security issues such as wireless intrusion, privacy leakage, and remote control. To address these challenges, an improved lightweight anonymous authentication key negotiation scheme based on certificate-less aggregate signatures is proposed and its security and efficiency are analyzed. The result shows that the scheme can offer security attributes including anonymity, traceability, and revocability, as well as effective identity authentication, and it can resist forgery attacks, man-in-the-middle attacks, tampering attacks, and smart card loss attacks. Moreover, compared with similar schemes, it possesses superior security and more efficient computational efficiency and less communication overhead, thereby being more appropriate for high-speed, large-capacity, low-latency, and resource-constrained 5G vehicle network application scenarios. Full article
(This article belongs to the Special Issue Emerging Distributed/Parallel Computing Systems)
Show Figures

Figure 1

15 pages, 4148 KiB  
Article
Development and Investigation of a Smart Impact Detector for Monitoring the Shipment Transport Process
by Žydrūnas Kavaliauskas, Igor Šajev, Giedrius Blažiūnas, Giedrius Gecevičius and Saulius Kazlauskas
Appl. Sci. 2024, 14(16), 7102; https://doi.org/10.3390/app14167102 - 13 Aug 2024
Cited by 4 | Viewed by 1532
Abstract
This study introduces an innovative smart impact detection system designed for real-time monitoring of shipment status and path integrity. Leveraging the advanced capabilities of the ESPRESSIF ESP32-S3-MINI-1U-N8 microcontroller, which integrates Wi-Fi, a display, a memory card slot, and accelerometers, this detector represents a [...] Read more.
This study introduces an innovative smart impact detection system designed for real-time monitoring of shipment status and path integrity. Leveraging the advanced capabilities of the ESPRESSIF ESP32-S3-MINI-1U-N8 microcontroller, which integrates Wi-Fi, a display, a memory card slot, and accelerometers, this detector represents a significant advancement in shipment tracking technology. The device is engineered to continuously measure impact magnitudes in terms of g-force, and records data when predefined impact thresholds are exceeded. These data are then wirelessly transmitted to a remote server, providing users with the ability to track shipment status and path via a dedicated application. The performance testing revealed impact measurements ranging from −0.5 to 2 g, with occasional peaks reaching approximately 4.5 g, demonstrating the system’s sensitivity and reliability in diverse conditions. This smart impact detector not only facilitates continuous monitoring, but also enhances the ability to respond swiftly to potential shipment violations, thus providing a novel solution for ensuring shipment integrity. This research contributes to the field by presenting a comprehensive real-time impact detection system that integrates modern microcontroller technology with effective monitoring capabilities, setting a new benchmark for shipment tracking systems. Full article
(This article belongs to the Special Issue Applied Electronics and Functional Materials)
Show Figures

Figure 1

Back to TopTop