Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = small unmanned aerial vehicles (SUAVs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16016 KiB  
Article
Optimization-Assisted Filter for Flow Angle Estimation of SUAV Without Adequate Measurement
by Ziyi Wang, Jie Li, Chang Liu, Yu Yang, Juan Li, Xueyong Wu, Yachao Yang and Bobo Ye
Drones 2024, 8(12), 758; https://doi.org/10.3390/drones8120758 - 15 Dec 2024
Cited by 2 | Viewed by 1039
Abstract
The accurate estimation of flow angles is crucial for enhancing flight performance and aircraft safety. Flow angles of fixed-wing small unmanned aerial vehicles (SUAVs) are more vulnerable due to their low airspeed. Current flow angle measurement devices have not been widely implemented in [...] Read more.
The accurate estimation of flow angles is crucial for enhancing flight performance and aircraft safety. Flow angles of fixed-wing small unmanned aerial vehicles (SUAVs) are more vulnerable due to their low airspeed. Current flow angle measurement devices have not been widely implemented in SUAVs due to their substantial cost and size constraints. Moreover, there are no general estimation methods suitable for SUAVs based on their rudimentary sensor suite. This study presents a generalized optimization-assisted filter estimation (OAFE) method for estimating the relative velocity and flow angles of fixed-wing SUAVs based on a standard sensor suite. This OAFE method mainly consists of a cubature Kalman filter and an optimizer. The filter serves as the main loop with which to generate flow angles in real time by fusing the acceleration, angular rate, attitude, and airspeed. Without flow angle measurements, the optimizer generates approximate aerodynamic derivatives, which serve as pseudo-measurements with which to refine the performance of the filter. The results demonstrate that the estimated angle of attack and side slip angle displayed root mean square errors of around 0.11° and 0.24° in the simulation. The feasibility was also verified in field tests. The OAFE method does not require flow angle measurements, the prior acquisition of aerodynamic parameters, or model training, making it suitable for quick deployment on different SUAVs. Full article
Show Figures

Figure 1

33 pages, 11948 KiB  
Article
Deep Learning for Indoor Pedestal Fan Blade Inspection: Utilizing Low-Cost Autonomous Drones in an Educational Setting
by Angel A. Rodriguez, Mason Davis, Joshua Zander, Edwin Nazario Dejesus, Mohammad Shekaramiz, Majid Memari and Mohammad A. S. Masoum
Drones 2024, 8(7), 298; https://doi.org/10.3390/drones8070298 - 5 Jul 2024
Cited by 3 | Viewed by 1680
Abstract
This paper introduces a drone-based surrogate project aimed at serving as a preliminary educational platform for undergraduate students in the Electrical and Computer Engineering (ECE) fields. Utilizing small Unmanned Aerial Vehicles (sUAVs), this project serves as a surrogate for the inspection of wind [...] Read more.
This paper introduces a drone-based surrogate project aimed at serving as a preliminary educational platform for undergraduate students in the Electrical and Computer Engineering (ECE) fields. Utilizing small Unmanned Aerial Vehicles (sUAVs), this project serves as a surrogate for the inspection of wind turbines using scaled-down pedestal fans to replace actual turbines. This approach significantly reduces the costs, risks, and logistical complexities, enabling feasible and safe on-campus experiments. Through this project, students engage in hands-on applications of Python programming, computer vision, and machine learning algorithms to detect and classify simulated defects in pedestal fan blade (PFB) images. The primary educational objectives are to equip students with foundational skills in autonomous systems and data analysis, critical for their progression to larger scale projects involving professional drones and actual wind turbines in wind farm settings. This surrogate setup not only provides practical experience in a controlled learning environment, but also prepares students for real-world challenges in renewable energy technologies, emphasizing the transition from theoretical knowledge to practical skills. Full article
Show Figures

Figure 1

21 pages, 8751 KiB  
Article
Experimental Investigation on Hover Performance of a Ducted Coaxial-Rotor UAV
by Hai Li, Zaibin Chen and Hongguang Jia
Sensors 2023, 23(14), 6413; https://doi.org/10.3390/s23146413 - 14 Jul 2023
Cited by 3 | Viewed by 3232
Abstract
This paper presents experimental investigations on aerodynamic performance of a ducted coaxial-rotor system to evaluate its potential application as a small unmanned aerial vehicle (SUAV). Aimed at determining the influence of design parameters (rotor spacing, tip clearance and rotor position within the duct) [...] Read more.
This paper presents experimental investigations on aerodynamic performance of a ducted coaxial-rotor system to evaluate its potential application as a small unmanned aerial vehicle (SUAV). Aimed at determining the influence of design parameters (rotor spacing, tip clearance and rotor position within the duct) on hover performance, a variety of systematic measurements for several correlative configurations (single/coaxial rotor with or without a duct) in terms of thrust and torque, as well as power, were conducted in an attempt to identify a better aerodynamic configuration. The experimental results for the coaxial-rotor system indicated that varying rotor spacing affected the thrust-sharing proportion between the two rotors, but this had no significant effect on the propulsive efficiency. The optimal H/R ratio was identified as being 0.40, due to a larger thrust and stronger stability in the case of identical rotation speeds. As for the ducted single-rotor configuration, the tip clearance played a dominant role in improving its thrust performance, especially for smaller gaps (δ0.015R), while the rotor position made subordinate contributions. The maximum performance was obtained with the rotor located at the P5 position (0.31Cd from the duct lip), which resulted in an enhancement of approximately 20% in power loading over the isolated single rotor. When the coaxial rotors were surrounded within the duct, the system thrust for a given power degraded with the increasing rotor spacing, which was mainly attributed to the upper rotor suffering from heavier leakage losses. And hence, the ducted coaxial-rotor system with S1 spacing had the best propulsion efficiency and hover performance with a figure of merit of 0.61. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 7173 KiB  
Article
Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment
by Wen Jin, Hao Wang, Guotao Zhang, Dingzhu Liu and Jiao Wang
Remote Sens. 2022, 14(23), 6060; https://doi.org/10.3390/rs14236060 - 29 Nov 2022
Cited by 3 | Viewed by 2042
Abstract
Earthquakes–induced landslides generally provide abundant loose materials at hillslopes, possibly triggering morphological reshaping processes at river channels and riverbeds during the large flash flood hydrograph and bringing huge risk downstream. Therefore, in a Wenchuan earthquake-affected catchment, the collected hydro-meteorological data and high-precision small [...] Read more.
Earthquakes–induced landslides generally provide abundant loose materials at hillslopes, possibly triggering morphological reshaping processes at river channels and riverbeds during the large flash flood hydrograph and bringing huge risk downstream. Therefore, in a Wenchuan earthquake-affected catchment, the collected hydro-meteorological data and high-precision small Unmanned Aerial Vehicle (sUAV) data were used to quantitatively analyze channel evolution by a large flash flood event on 25 and 26 June 2018. It was found that the stable riverbed structure formed by the armour layer appeared in the tenth year after the Wenchuan earthquake. In a confined channel, the layer can protect the channel and resist the drastic change after the flash flood event with only a small bed elevation from 0.2 m to 2 m. Without the protection of the armour, the change could reach 6 m in the unconfined channel. Meanwhile, more materials with a deposition volume of about 7450 m3 from tributaries were generally taken to the main channel, and more intense erosion with a volume of 105 m3 mostly occurred downstream of tributaries. It was noted that, in the cross-section, the increased channel width could lead to a significant change with the large volume of 35 m3. Additionally, a conceptual diagram of the generalized channel response to large flash floods was provided during multi-stage periods after the Wenchuan earthquake. It determined the rebalance processes of channel evolution in the tenth year after the earthquake. This study will contribute to understanding the post-earthquake long-term channel evolutions and could provide decision-makers of assessing the mitigation strategies for higher-magnitude flood disasters triggered by channel change in earthquake-affected watersheds. Full article
Show Figures

Figure 1

15 pages, 1106 KiB  
Review
Review of Biomimetic Approaches for Drones
by Saori Tanaka, Abner Asignacion, Toshiyuki Nakata, Satoshi Suzuki and Hao Liu
Drones 2022, 6(11), 320; https://doi.org/10.3390/drones6110320 - 26 Oct 2022
Cited by 23 | Viewed by 11298
Abstract
The utilization of small unmanned aerial vehicles (SUAVs), commonly known as drones, has increased drastically in various industries in the past decade. Commercial drones face challenges in terms of safety, durability, flight performance, and environmental effects such as the risk of collision and [...] Read more.
The utilization of small unmanned aerial vehicles (SUAVs), commonly known as drones, has increased drastically in various industries in the past decade. Commercial drones face challenges in terms of safety, durability, flight performance, and environmental effects such as the risk of collision and damage. Biomimetics, which is inspired by the sophisticated flying mechanisms in aerial animals, characterized by robustness and intelligence in aerodynamic performance, flight stability, and low environmental impact, may provide feasible solutions and innovativeness to drone design. In this paper, we review the recent advances in biomimetic approaches for drone development. The studies were extracted from several databases and we categorized the challenges by their purposes—namely, flight stability, flight efficiency, collision avoidance, damage mitigation, and grasping during flight. Furthermore, for each category, we summarized the achievements of current biomimetic systems and then identified their limitations. We also discuss future tasks on the research and development associated with biomimetic drones in terms of innovative design, flight control technologies, and biodiversity conservation. This paper can be used to explore new possibilities for developing biomimetic drones in industry and as a reference for necessary policy making. Full article
Show Figures

Figure 1

12 pages, 20895 KiB  
Article
Wind Speed Measurement by an Inexpensive and Lightweight Thermal Anemometer on a Small UAV
by Jun Inoue and Kazutoshi Sato
Drones 2022, 6(10), 289; https://doi.org/10.3390/drones6100289 - 3 Oct 2022
Cited by 16 | Viewed by 8432
Abstract
Profiling wind information when using a small unmanned aerial vehicle (sUAV) is vital for atmospheric profiling and monitoring attitude during flight. Wind speed on an sUAV can be measured directly using ultrasonic anemometers or by calculating its attitude control information. The former method [...] Read more.
Profiling wind information when using a small unmanned aerial vehicle (sUAV) is vital for atmospheric profiling and monitoring attitude during flight. Wind speed on an sUAV can be measured directly using ultrasonic anemometers or by calculating its attitude control information. The former method requires a relatively large payload for an onboard ultrasonic anemometer, while the latter requires real-time flight log data access, which depends on the UAV manufacturers. This study proposes the feasibility of a small thermal anemometer to measure wind speeds inexpensively using a small commercial quadcopter (DJI Mavic2: M2). A laboratory experiment demonstrated that the horizontal wind speed bias increased linearly with ascending sUAV speed. A smoke experiment during hovering revealed the downward wind bias (1.2 m s1) at a 12-cm height above the M2 body. Field experiments in the ice-covered ocean demonstrated that the corrected wind speed agreed closely with the shipboard wind data observed by a calibrated ultrasonic anemometer. A dual-mount system comprising thermal anemometers was proposed to measure wind speed and direction. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles in Atmospheric Research)
Show Figures

Figure 1

18 pages, 6145 KiB  
Article
Fast Airfoil Selection Methodology for Small Unmanned Aerial Vehicles
by Ioannis K. Kapoulas, J. C. Statharas, Antonios Hatziefremidis and A. K. Baldoukas
Appl. Sci. 2022, 12(18), 9328; https://doi.org/10.3390/app12189328 - 17 Sep 2022
Cited by 12 | Viewed by 8325
Abstract
The purpose of this study is to fill the gap that exists when applying the airfoil selection methodology according to the textbooks that appear in the above featured application section, in the low Reynolds number segment, by providing useful data. Data acquisition software [...] Read more.
The purpose of this study is to fill the gap that exists when applying the airfoil selection methodology according to the textbooks that appear in the above featured application section, in the low Reynolds number segment, by providing useful data. Data acquisition software was XFLR5. The major result is the construction of a prototype maximum lift coefficient versus ideal lift coefficient diagram, or (ClmaxCli) diagram, composed exclusively of low Reynolds number airfoils. In addition, the necessary supplementary airfoil characteristics’ tables are provided, for conducting fast airfoil selection for Small Unmanned Aerial Vehicles (SUAVs). As a conclusion by implementing the proposed methodology, the SUAV designer is disengaged from the time-consuming process of the construction of similar ClmaxCli diagrams and supplementary characteristic tables and the airfoil selection-processing time can be greatly shortened, because the main work of the process is reflected by the current findings. To express the time gain in a percentage manner, authors estimate that 85% of engineering time will be economized in the overall airfoil selection procedure if the current findings are used, due to the fact that no new airfoil simulations are required. Finally, candidate SUAV designers are encouraged to expand the airfoil database, according to the proposed methodology. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

25 pages, 3141 KiB  
Article
Neuroevolutionary Control for Autonomous Soaring
by Eric J. Kim and Ruben E. Perez
Aerospace 2021, 8(9), 267; https://doi.org/10.3390/aerospace8090267 - 17 Sep 2021
Cited by 13 | Viewed by 3426
Abstract
The energy efficiency and flight endurance of small unmanned aerial vehicles (SUAVs) can be improved through the implementation of autonomous soaring strategies. Biologically inspired flight techniques such as dynamic and thermal soaring offer significant energy savings through the exploitation of naturally occurring wind [...] Read more.
The energy efficiency and flight endurance of small unmanned aerial vehicles (SUAVs) can be improved through the implementation of autonomous soaring strategies. Biologically inspired flight techniques such as dynamic and thermal soaring offer significant energy savings through the exploitation of naturally occurring wind phenomena for thrustless flight. Recent interest in the application of artificial intelligence algorithms for autonomous soaring has been motivated by the pursuit of instilling generalized behavior in control systems, centered around the use of neural networks. However, the topology of such networks is usually predetermined, restricting the search space of potential solutions, while often resulting in complex neural networks that can pose implementation challenges for the limited hardware onboard small-scale autonomous vehicles. In exploring a novel method of generating neurocontrollers, this paper presents a neural network-based soaring strategy to extend flight times and advance the potential operational capability of SUAVs. In this study, the Neuroevolution of Augmenting Topologies (NEAT) algorithm is used to train efficient and effective neurocontrollers that can control a simulated aircraft along sustained dynamic and thermal soaring trajectories. The proposed approach evolves interpretable neural networks in a way that preserves simplicity while maximizing performance without requiring extensive training datasets. As a result, the combined trajectory planning and aircraft control strategy is suitable for real-time implementation on SUAV platforms. Full article
(This article belongs to the Special Issue Energy Efficiency of Small-Scale UAVs)
Show Figures

Figure 1

15 pages, 1142 KiB  
Article
Deploying an NFV-Based Experimentation Scenario for 5G Solutions in Underserved Areas
by Victor Sanchez-Aguero, Ivan Vidal, Francisco Valera, Borja Nogales, Luciano Leonel Mendes, Wheberth Damascena Dias and Alexandre Carvalho Ferreira
Sensors 2021, 21(5), 1897; https://doi.org/10.3390/s21051897 - 8 Mar 2021
Cited by 9 | Viewed by 3937
Abstract
Presently, a significant part of the world population does not have Internet access. The fifth-generation cellular network technology evolution (5G) is focused on reducing latency, increasing the available bandwidth, and enhancing network performance. However, researchers and companies have not invested enough effort into [...] Read more.
Presently, a significant part of the world population does not have Internet access. The fifth-generation cellular network technology evolution (5G) is focused on reducing latency, increasing the available bandwidth, and enhancing network performance. However, researchers and companies have not invested enough effort into the deployment of the Internet in remote/rural/undeveloped areas for different techno-economic reasons. This article presents the result of a collaboration between Brazil and the European Union, introducing the steps designed to create a fully operational experimentation scenario with the main purpose of integrating the different achievements of the H2020 5G-RANGE project so that they can be trialed together into a 5G networking use case. The scenario encompasses (i) a novel radio access network that targets a bandwidth of 100 Mb/s in a cell radius of 50 km, and (ii) a network of Small Unmanned Aerial Vehicles (SUAV). This set of SUAVs is NFV-enabled, on top of which Virtual Network Functions (VNF) can be automatically deployed to support occasional network communications beyond the boundaries of the 5G-RANGE radio cells. The whole deployment implies the use of a virtual private overlay network enabling the preliminary validation of the scenario components from their respective remote locations, and simplifying their subsequent integration into a single local demonstrator, the configuration of the required GRE/IPSec tunnels, the integration of the new 5G-RANGE physical, MAC and network layer components and the overall validation with voice and data services. Full article
Show Figures

Figure 1

21 pages, 803 KiB  
Article
Stochastic Drift Counteraction Optimal Control of a Fuel Cell-Powered Small Unmanned Aerial Vehicle
by Jiadi Zhang, Ilya Kolmanovsky and Mohammad Reza Amini
Energies 2021, 14(5), 1304; https://doi.org/10.3390/en14051304 - 27 Feb 2021
Cited by 1 | Viewed by 2211
Abstract
This paper investigates optimal power management of a fuel cell hybrid small unmanned aerial vehicle (sUAV) from the perspective of endurance (time of flight) maximization in a stochastic environment. Stochastic drift counteraction optimal control is exploited to obtain an optimal policy for power [...] Read more.
This paper investigates optimal power management of a fuel cell hybrid small unmanned aerial vehicle (sUAV) from the perspective of endurance (time of flight) maximization in a stochastic environment. Stochastic drift counteraction optimal control is exploited to obtain an optimal policy for power management that coordinates the operation of the fuel cell and battery to maximize the expected flight time while accounting for the limits on the rate of change of fuel cell power output and the orientation dependence of fuel cell efficiency. The proposed power management strategy accounts for known statistics in transitions of propeller power and climb angle during the mission, but does not require the exact preview of their time histories. The optimal control policy is generated offline using value iterations implemented in Cython, demonstrating an order of magnitude speedup as compared to MATLAB. It is also shown that the value iterations can be further sped up using a discount factor, but at the cost of decreased performance. Simulation results for a 1.5 kg sUAV are reported that illustrate the optimal coordination between the fuel cell and the battery during aircraft maneuvers, including a turnpike in the battery state of charge (SOC) trajectory. As the fuel cell is not able to support fast changes in power output, the optimal policy is shown to charge the battery to the turnpike value if starting from a low initial SOC value. If starting from a high SOC value, the battery energy is used till a turnpike value of the SOC is reached with further discharge delayed to later in the flight. For the specific scenarios and simulated sUAV parameters considered, the results indicate the capability of up to 2.7 h of flight time. Full article
Show Figures

Figure 1

26 pages, 2916 KiB  
Article
Using Aerial and Vehicular NFV Infrastructures to Agilely Create Vertical Services
by Borja Nogales, Miguel Silva, Ivan Vidal, Miguel Luís, Francisco Valera, Susana Sargento and Arturo Azcorra
Sensors 2021, 21(4), 1342; https://doi.org/10.3390/s21041342 - 13 Feb 2021
Cited by 3 | Viewed by 3558
Abstract
5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of [...] Read more.
5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of dynamically supplying network resources according to its needs. Nevertheless, the integration and performance of heterogeneous network environments, each one supported by a different provider, and with specific characteristics and requirements, in a single NFV framework is not straightforward. In this work we propose an NFV-based framework capable of supporting the flexible, cost-effective deployment of vertical services, through the integration of two distinguished mobile environments and their networks: small sized unmanned aerial vehicles (SUAVs), supporting a flying ad hoc network (FANET) and vehicles, promoting a vehicular ad hoc network (VANET). In this context, a use case involving the public safety vertical will be used as an illustrative example to showcase the potential of this framework. This work also includes the technical implementation details of the framework proposed, allowing to analyse and discuss the delays on the network services deployment process. The results show that the deployment times can be significantly reduced through a distributed VNF configuration function based on the publish–subscribe model. Full article
Show Figures

Figure 1

30 pages, 13480 KiB  
Article
Extending Multi-Beam Sonar with Structure from Motion Data of Shorelines for Complete Pool Bathymetry of Reservoirs
by Izaak Cooper, Rollin H. Hotchkiss and Gustavious Paul Williams
Remote Sens. 2021, 13(1), 35; https://doi.org/10.3390/rs13010035 - 24 Dec 2020
Cited by 10 | Viewed by 3915
Abstract
Bathymetric mapping is an important tool for reservoir management, typically completed before reservoir construction. Historically, bathymetric maps were produced by interpolating between points measured at a relatively large spacing throughout a reservoir, typically on the order of a few, up to 10, meters [...] Read more.
Bathymetric mapping is an important tool for reservoir management, typically completed before reservoir construction. Historically, bathymetric maps were produced by interpolating between points measured at a relatively large spacing throughout a reservoir, typically on the order of a few, up to 10, meters or more depending on the size of the reservoir. These measurements were made using traditional survey methods before the reservoir was filled, or using sonar surveys after filling. Post-construction issues such as sedimentation and erosion can change a reservoir, but generating updated bathymetric maps is difficult as the areas of interest are typically in the sediment deltas and other difficult-to-access areas that are often above water or exposed for part of the year. We present a method to create complete reservoir bathymetric maps, including areas above the water line, using small unmanned aerial vehicle (sUAV) photogrammetry combined with multi-beam sonar data—both established methods for producing topographic models. This is a unique problem because the shoreline topographic models generated by the photogrammetry are long and thin, not an optimal geometry for model creation, and most images contain water, which causes issues with image-matching algorithms. This paper presents methods to create accurate above-water shoreline models using images from sUAVs, processed using a commercial software package and a method to accurately knit sonar and Structure from Motion (SfM) data sets by matching slopes. The models generated by both approaches are point clouds, which consist of points representing the ground surface in three-dimensional space. Generating models from sUAV-captured images requires ground control points (GCPs), i.e., points with a known location, to anchor model creation. For this study, we explored issues with ground control spacing, masking water regions (or omitting water regions) in the images, using no GCPs, and incorrectly tagging a GCP. To quantify the effect these issues had on model accuracy, we computed the difference between generated clouds and a reference point cloud to determine the point cloud error. We found that the time required to place GCPs was significantly more than the time required to capture images, so optimizing GCP density is important. To generate long, thin shoreline models, we found that GCPs with a ~1.5-km (~1-mile) spacing along a shoreline are sufficient to generate useful data. This spacing resulted in an average error of 5.5 cm compared to a reference cloud that was generated using ~0.5-km (~1/4-mile) GCP spacing. We found that we needed to mask water and areas related to distant regions and sky in images used for model creation. This is because water, objects in the far oblique distance, and sky confuse the algorithms that match points among images. If we did not mask the images, the resulting models had errors of more than 20 m. Our sonar point clouds, while self-consistent, were not accurately georeferenced, which is typical for most reservoir surveys. We demonstrate a method using cross-sections of the transition between the above-water clouds and sonar clouds to geo-locate the sonar data and accurately knit the two data sets. Shore line topography models (long and thin) and integration of sonar and drone data is a niche area that leverages current advances in data collection and processing. Our work will help researchers and practitioners use these advances to generate accurate post-construction reservoir bathometry maps to assist with reservoir management. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Limnology)
Show Figures

Graphical abstract

12 pages, 8014 KiB  
Article
Aerodynamic Performance of an Octorotor SUAV with Different Rotor Spacing in Hover
by Yao Lei, Yuhui Huang and Hengda Wang
Processes 2020, 8(11), 1364; https://doi.org/10.3390/pr8111364 - 28 Oct 2020
Cited by 8 | Viewed by 2918
Abstract
To study the aerodynamic performance of hovering octorotor small unmanned aerial vehicles (SUAV) with different rotor spacing, the computational fluid dynamics (CFD) method is applied to analyze the flow field of an octorotor SUAV in detail. In addition, an experimental platform is built [...] Read more.
To study the aerodynamic performance of hovering octorotor small unmanned aerial vehicles (SUAV) with different rotor spacing, the computational fluid dynamics (CFD) method is applied to analyze the flow field of an octorotor SUAV in detail. In addition, an experimental platform is built to measure the thrust and power of the rotors with rotor spacing ratios L/D of 1.0, 1.2, 1.4, 1.6, and 1.8, sequentially. According to the theory of momentum, rotor aerodynamic performance is obtained with qualitative analysis. Further analysis with numerical simulation is presented with the flow field of the octorotor SUAV, the vorticity distribution, velocity distribution, pressure distribution, and streamline. The results show that the aerodynamic performance varies with the rotor spacing. Specifically, the aerodynamic performance is poor at L/D = 1.0, which is accompanied with strong interaction of wake and tip vortexes and interaction with each other. However, the aerodynamic efficiency is much improved with a larger rotor spacing, especially achieving the highest at L/D = 1.8, which is considered to be the best rotor spacing ratio for this kind of octorotor SUAV. Full article
Show Figures

Figure 1

18 pages, 8959 KiB  
Article
Accuracy Assessment of Small Unmanned Aerial Vehicle for Traffic Accident Photogrammetry in the Extreme Operating Conditions of Kuwait
by Abdullah M. Almeshal, Mohammad R. Alenezi and Abdullah K. Alshatti
Information 2020, 11(9), 442; https://doi.org/10.3390/info11090442 - 14 Sep 2020
Cited by 13 | Viewed by 4292
Abstract
This study presents the first accuracy assessment of a low cost small unmanned aerial vehicle (sUAV) in reconstructing three dimensional (3D) models of traffic accidents at extreme operating environments. To date, previous studies have focused on the feasibility of adopting sUAVs in traffic [...] Read more.
This study presents the first accuracy assessment of a low cost small unmanned aerial vehicle (sUAV) in reconstructing three dimensional (3D) models of traffic accidents at extreme operating environments. To date, previous studies have focused on the feasibility of adopting sUAVs in traffic accidents photogrammetry applications as well as the accuracy at normal operating conditions. In this study, 3D models of simulated accident scenes were reconstructed using a low-cost sUAV and cloud-based photogrammetry platform. Several experiments were carried out to evaluate the measurements accuracy at different flight altitudes during high temperature, low light, scattered rain and dusty high wind environments. Quantitative analyses are presented to highlight the precision range of the reconstructed traffic accident 3D model. Reported results range from highly accurate to fairly accurate represented by the root mean squared error (RMSE) range between 0.97 and 4.66 and a mean percentage absolute error (MAPE) between 1.03% and 20.2% at normal and extreme operating conditions, respectively. The findings offer an insight into the robustness and generalizability of UAV-based photogrammetry method for traffic accidents at extreme environments. Full article
(This article belongs to the Special Issue UAVs for Smart Cities: Protocols, Applications, and Challenges)
Show Figures

Figure 1

26 pages, 881 KiB  
Article
Transport-Layer Limitations for NFV Orchestration in Resource-Constrained Aerial Networks
by Luis F. Gonzalez, Ivan Vidal, Francisco Valera, Borja Nogales, Victor Sanchez-Aguero and Diego R. Lopez
Sensors 2019, 19(23), 5220; https://doi.org/10.3390/s19235220 - 28 Nov 2019
Cited by 9 | Viewed by 3302
Abstract
In this paper, we identify the main challenges and problems related with the management and orchestration of Virtualized Network Functions (VNFs) over aerial networks built with Small Unmanned Aerial Vehicles (SUAVs). Our analysis starts from a reference scenario, where several SUAVs are deployed [...] Read more.
In this paper, we identify the main challenges and problems related with the management and orchestration of Virtualized Network Functions (VNFs) over aerial networks built with Small Unmanned Aerial Vehicles (SUAVs). Our analysis starts from a reference scenario, where several SUAVs are deployed over a delimited geographic area, and provide a mobile cloud environment that supports the deployment of functions and services using Network Functions Virtualization (NFV) technologies. After analyzing the main challenges to NFV orchestration in this reference scenario from a theoretical perspective, we undertake the study of one specific but relevant aspect following a practical perspective, i.e., the limitations of existing transport-layer solutions to support the dissemination of NFV management and orchestration information in the considered scenario. While in traditional cloud computing environments this traffic is delivered using TCP, our simulation results suggest that using this protocol over an aerial network of SUAVs presents certain limitations. Finally, based on the lessons learned from our practical analysis, the paper outlines different alternatives that could be followed to address these challenges. Full article
(This article belongs to the Special Issue UAV-Based Applications in the Internet of Things (IoT))
Show Figures

Figure 1

Back to TopTop