Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Classification of Channel Based on the Hydrodynamic Analysis
2.3. High-Resolution DSM Acquiring and Processing
2.4. Determination of Morphological Channel Response
2.5. Hydro-Meteorological Analysis
3. Results
3.1. Rainstorm Characterization and Flood Response Analysis
3.2. Classification of Channels
3.3. Morphological Response of the Channel to the Flash Flood
4. Discussion
4.1. Effects of the Armour Layer on the Channel Response
4.2. Effect of the Tributary and Channel width on the Channel Response
4.3. Geomorphological Evolutions Triggered by the Flash Flood in the Strong Earthquake-Affected Catchment
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Parameters Description
Parameters | Meaning |
---|---|
Shear stress | |
Specific gravity for water | |
Specific gravity for water and solid material | |
H | Hydraulic radius |
S | Stream gradient or slope |
v | Mean velocity in the cross-section |
n | Manning roughness coefficient |
D90 | Grain size such that 90% is finer |
Q | Discharge from the upstream |
W | Width of the channel |
Dc | Critical size of the movement |
c | Critical Shields shear stress |
Dimensionless shear stress | |
A | Upstream drainage area |
ksn | Steepness index |
Concavity index | |
DoDs | Difference of DSMs |
Change of the elevation | |
Epre | Elevation before the flash flood occurs |
Epost | Elevation after the flash flood occurs |
E | Total change of the dods |
N | The pixels combined the cross section or reach section |
Error of dods | |
RMS error of the pre-flash flood DSM | |
RMS error of the post-flash flood DSM |
References
- Marc, O.; Hovius, N.; Meunier, P. The mass balance of earthquakes and earthquake sequences. Geophys. Res. Lett. 2016, 43, 3708–3716. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Chen, X.-Q.; Zhu, Y.-Y.; Su, F.-H.; Wei, F.-Q.; Han, Y.-S.; Liu, H.-J.; Zhuang, J.-Q. The Wenchuan Earthquake (12 May 2008), Sichuan Province, China, and resulting geohazards. Nat. Hazards 2011, 56, 19–36. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Lin, J.-C.; Hsu, M.-L.; Lin, C.-W.; Horng, M.-J.; Chen, T.-C.; Milliman, J.; et al. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 2004, 32, 733–736. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Lacasse, S.; Nadim, F. Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years. Sci. Rep. 2016, 6, 36154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, C.; Cui, Y.; Fu, X.; Parker, G. Gravel-bed river evolution in earthquake-prone regions subject to cycled hydrographs and repeated sediment pulses. Earth Surf. Processes Landf. 2017, 42, 2426–2438. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, P.; Jin, W.; Zhang, Z.; Wang, H.; Bazai, N.A.; Li, Y.; Liu, D.; Pasuto, A. Changes in hydrological behaviours triggered by earthquake disturbance in a mountainous watershed. Sci. Total Environ. 2021, 760, 143349. [Google Scholar] [CrossRef]
- Hapuarachchi, H.A.P.; Wang, Q.J.; Pagano, T.C. A review of advances in flash flood forecasting. Hydrol. Processes 2011, 25, 2771–2784. [Google Scholar] [CrossRef]
- Francis, O.; Fan, X.; Hales, T.; Hobley, D.; Xu, Q.; Huang, R. The Fate of Sediment After a Large Earthquake. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006352. [Google Scholar] [CrossRef]
- Bazai, N.A.; Cui, P.; Carling, P.A.; Wang, H.; Hassan, J.; Liu, D.; Zhang, G.; Jin, W. Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram. Earth-Sci. Rev. 2021, 212, 103432. [Google Scholar] [CrossRef]
- Liu, D.; Cui, Y.; Wang, H.; Jin, W.; Wu, C.; Bazai, N.A.; Zhang, G.; Carling, P.A.; Chen, H. Assessment of local outburst flood risk from successive landslides: Case study of Baige landslide-dammed lake, upper Jinsha river, eastern Tibet. J. Hydrol. 2021, 599, 126294. [Google Scholar] [CrossRef]
- Hooke, J.M. Variations in flood magnitude–effect relations and the implications for flood risk assessment and river management. Geomorphology 2015, 251, 91–107. [Google Scholar] [CrossRef]
- Stoffel, M.; Wyżga, B.; Marston, R.A. Floods in mountain environments: A synthesis. Geomorphology 2016, 272, 1–9. [Google Scholar] [CrossRef]
- Krapesch, G.; Hauer, C.; Habersack, H. Scale orientated analysis of river width changes due to extreme flood hazards. Nat. Hazards Earth Syst. Sci. 2011, 11, 2137–2147. [Google Scholar] [CrossRef] [Green Version]
- Lucía, A.; Schwientek, M.; Eberle, J.; Zarfl, C. Planform changes and large wood dynamics in two torrents during a severe flash flood in Braunsbach, Germany 2016. Sci. Total Environ. 2018, 640–641, 315–326. [Google Scholar] [CrossRef]
- Belletti, B.; Dufour, S.; Piégay, H. Regional assessment of the multi-decadal changes in braided riverscapes following large floods (Example of 12 reaches in South East of France). Adv. Geosci. 2014, 37, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Hauer, C.; Habersack, H. Morphodynamics of a 1000-year flood in the Kamp River, Austria, and impacts on floodplain morphology. Earth Surf. Processes Landf. 2009, 34, 654–682. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, P.; Yin, Y.; Liu, D.; Jin, W.; Wang, H.; Yan, Y.; Ahmed, B.N.; Wang, J. Real-time monitoring and estimation of the discharge of flash floods in a steep mountain catchment. Hydrol. Processes 2019, 33, 3195–3212. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramaji, K.P. Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. Int. J. Digit. Earth 2010, 3, 135–156. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar]
- Lucía, A.; Comiti, F.; Borga, M.; Cavalli, M.; Marchi, L. Dynamics of large wood during a flash flood in two mountain catchments. Nat. Hazards Earth Syst. Sci. 2015, 15, 1741–1755. [Google Scholar] [CrossRef] [Green Version]
- Entwistle, N.; Heritage, G.; Milan, D. Recent remote sensing applications for hydro and morphodynamic monitoring and modelling. Earth Surf. Processes Landf. 2018, 43, 2283–2291. [Google Scholar] [CrossRef]
- Alfonso-Torreno, A.; Gomez-Gutierrez, A.; Schnabel, S.; Lavado Contador, J.F.; de Sanjose Blasco, J.J.; Sanchez Fernandez, M. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci. Total Environ. 2019, 678, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Lewis, Q.W.; Edmonds, D.A.; Yanites, B.J. Integrated UAS and LiDAR reveals the importance of land cover and flood magnitude on the formation of incipient chute holes and chute cutoff development. Earth Surf. Processes Landf. 2020, 45, 1441–1455. [Google Scholar] [CrossRef]
- Woodget, A.S.; Carbonneau, P.E.; Visser, F.; Maddock, I.P. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf. Processes Landf. 2015, 40, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Leopold, L.; Maddock, T. The Hydraulic Geometry of Stream Channels and Some Physiographic Implication; US Government Printing Office: Washington, DC, USA, 1953; pp. 1–57.
- Lane, E. The importance of fluvial morphology in hydraulic engineering. Am. Soc. Civ. Eng. 1955, 81, 1–17. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Buffington, J.M. Channel Classification, Prediction of Channel Response, and Assessment of Channel Condition; SHAMW Committee of the Washington State Timber/Fish/Wildlife Agreement: Washington, DC, USA, 1993. [Google Scholar]
- Brardinoni, F.; Hassan, M.A. Glacial erosion, evolution of river long profiles, and the organization of process domains in mountain drainage basins of coastal British Columbia. J. Geophys. Res. 2006, 111, 1–12. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Foufoula-Georgiou, E. Channel Network Source Representation Using Digital Elevation Models. Water Resour. Res. 1993, 29, 3925–3934. [Google Scholar] [CrossRef]
- Nagel, D.E.; Buffington, J.M.; Parkes, S.L.; Wenger, S.; Goode, J.R. A Landscape Scale Valley Confinement Algorithm: Delineating Unconfined Valley Bottoms for Geomorphic, Aquatic, and Riparian Applications; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2014.
- Thompson, C.; Croke, J. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia. Geomorphology 2013, 197, 156–169. [Google Scholar] [CrossRef]
- Scorpio, V.; Crema, S.; Marra, F.; Righini, M.; Ciccarese, G.; Borga, M.; Cavalli, M.; Corsini, A.; Marchi, L.; Surian, N.; et al. Basin-scale analysis of the geomorphic effectiveness of flash floods: A study in the northern Apennines (Italy). Sci. Total Environ. 2018, 640–641, 337–351. [Google Scholar] [CrossRef]
- Harvey, A.M. Coupling between hillslopes and channels in upland fluvial systems: Implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. CATENA 2001, 42, 225–250. [Google Scholar] [CrossRef]
- He, C.-R.; Zhang, R.; Chen, Q.; Han, S.-L. Earthquake characteristics and building damage in high-intensity areas of Wenchuan earthquake I: Yingxiu town. Nat. Hazards 2010, 57, 435–451. [Google Scholar] [CrossRef]
- Li, J.; Yu, B.; Zhu, Y.; Chu, S.; Wu, Y. Topographical factors in the formation of gully-type debris flows in Longxi River catchment, Sichuan, China. Environ. Earth Sci. 2014, 73, 4385–4398. [Google Scholar] [CrossRef]
- Biyun, G.; Xudong, F.; Zhengfeng, Z. The Longitudinal Change and Gully Bed Fractality of Longxi River Valley After the Earthquake. J. Basic Sci. Eng. 2014, 22, 118–128. (In Chinese) [Google Scholar]
- Xu, Q.; Zhang, S.; Li, W.L.; van Asch, T.W.J. The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China. Nat. Hazards Earth Syst. Sci. 2012, 12, 201–216. [Google Scholar] [CrossRef]
- Meyer-Peter, E.; Müller, R. Formulas for Bed-Load Transport; IAHR: Stockholm, Sweden, 1994; pp. 39–64. [Google Scholar]
- Lamb, M.P.; Dietrich, W.E.; Venditti, J.G. Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? J. Geophys. Res. 2008, 113, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Knighton, A.D. Downstream variation in stream power. Geomorphology 1999, 29, 293–306. [Google Scholar] [CrossRef]
- Joyce, H.M.; Warburton, J.; Hardy, R.J. A catchment scale assessment of patterns and controls of historic 2D river planform adjustment. Geomorphology 2020, 354, 107046. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Buffington, J.M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 1997, 109, 596–611. [Google Scholar] [CrossRef]
- Buffington, J.M.; Montgomery, D.R. 9.36 Geomorphic Classification of Rivers. In Treatise on Geomorphology; Fluvial Geomorphology; Academic Press: San Diego, CA, USA, 2013; pp. 730–767. [Google Scholar]
- Brierley, G.; Fryirs, K. Geomorphology and River Management: Applications of the River Styles Framework; Wiley-Blackwell: Hoboken, NJ, USA, 2005. [Google Scholar]
- Whipple, K.X. Bedrock Rivers and the Geomorphology of Active Orogens. Annu. Rev. Earth Planet. Sci. 2004, 32, 151–185. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.D.; Kerby, G. Channel changes in badlands. Geol Soc Am Bull 1983, 94, 739–752. [Google Scholar] [CrossRef]
- Howard, A.D. A detachment-limited model of drainage basin evolution. Water Resour. Res. 1994, 30, 2261–2285. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.; Whipple, K.X.; Tang, W.; Chen, Z. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. J. Geophys. Res. Solid Earth 2003, 108, 16. [Google Scholar] [CrossRef]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Schwanghart, W.; Kuhn, N.J. TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Model. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Schwanghart, W.; Scherler, D. Short Communication: TopoToolbox 2—MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Entwistle, N.; Heritage, G. An evaluation DEM accuracy acquired using a small Unmanned Aerial Vehicle across a riverine environment. Int. J. New Technol. Res. 2017, 3, 43–48. [Google Scholar]
- Entwistle, N.S.; Heritage, G.L. Small unmanned aerial model accuracy for photogrammetrical fluvial bathymetric survey. J. Appl. Remote Sens. 2019, 13, 014523. [Google Scholar] [CrossRef]
- Tonkin, T.N.; Midgley, N.G. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry. Remote Sens. 2016, 8, 786. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Scaramuzza, D.; Martinelli, A.; Siegwart, R. A Flexible Technique for Accurate Omnidirectional Camera Calibration and Structure from Motion. In Proceedings of the 2006 IEEE International Conference on Computer Vision Systems, New York, NY, USA, 5–7 January 2006. [Google Scholar]
- James, L.A.; Hodgson, M.E.; Ghoshal, S.; Latiolais, M.M. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology 2012, 137, 181–198. [Google Scholar] [CrossRef]
- Rumsby, B.T.; Brasington, J.; Langham, J.A.; McLelland, S.J.; Middleton, R.; Rollinson, G. Monitoring and modelling particle and reach-scale morphological change in gravel-bed rivers: Applications and challenges. Geomorphology 2008, 93, 40–54. [Google Scholar] [CrossRef]
- Hooke, J.M.; Yorke, L. Channel bar dynamics on multi-decadal timescales in an active meandering river. Earth Surf. Processes Landf. 2011, 36, 1910–1928. [Google Scholar] [CrossRef]
- Surian, N. Channel changes due to river regulation: The case of the Piave River, Italy. Earth Surf. Processes Landf. 1999, 24, 1135–1151. [Google Scholar] [CrossRef]
- Heritage, G.; Entwistle, N. Drone Based Quantification of Channel Response to an Extreme Flood for a Piedmont Stream. Remote Sens. 2019, 11, 2031. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, M.; Amponsah, W.; Benvenuti, M.; Borga, M.; Comiti, F.; Lucía, A.; Marchi, L.; Nardi, L.; Righini, M.; Surian, N. An integrated approach for investigating geomorphic response to extreme events: Methodological framework and application to the October 2011 flood in the Magra River catchment, Italy. Earth Surf. Processes Landf. 2016, 41, 835–846. [Google Scholar] [CrossRef]
- Wilcock, P.R. Persistence of armor layers in gravel-bed streams. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Parker, G.; Klingeman, P.C. On why gravel bed streams are paved. Water Resour. Res. 1982, 18, 1409–1423. [Google Scholar] [CrossRef] [Green Version]
- Parker, G.; Sutherland, A.J. Fluvial armor. J. Hydraul. Res. 1990, 28, 529–544. [Google Scholar] [CrossRef]
- Domènech, G.; Fan, X.; Scaringi, G.; van Asch, T.W.J.; Xu, Q.; Huang, R.; Hales, T.C. Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake. Eng. Geol. 2019, 250, 34–44. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Liu, K. A decadal evolution of landslides and debris flows after the Wenchuan earthquake. Geomorphology 2018, 323, 1–12. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.M.; Glade, T. Characteristics of earthquake- and rain-induced landslides near the epicenter of Wenchuan earthquake. Eng. Geol. 2014, 175, 58–73. [Google Scholar] [CrossRef]
- Church, M.; Kellerhals, R. On the statistics of grain size variation along a gravel river. Can. J. Earth Sci. 1978, 15, 1151–1160. [Google Scholar] [CrossRef]
- Ferguson, R.I.; Wathen, S.J. Tracer-pebble movement along a concave river profile: Virtual velocity in relation to grain size and shear stress. Water Resour. Res. 1998, 34, 2031–2038. [Google Scholar] [CrossRef]
- Rice, S.; Church, M. Grain size along two gravel-bed rivers: Statistical variation, spatial pattern and sedimentary links. Earth Surf. Processes Landf. 1998, 23, 345–363. [Google Scholar] [CrossRef]
- Cook, K.L.; Turowski, J.M.; Hovius, N. Width control on event-scale deposition and evacuation of sediment in bedrock-confined channels. Earth Surf. Processes Landf. 2020, 45, 3702–3713. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.M. Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area. Geomorphology 2017, 276, 86–103. [Google Scholar] [CrossRef]
- Jin, W.; Cui, P.; Zhang, G.; Wang, J.; Zhang, Y.; Zhang, P. Evaluating the post-earthquake landslides sediment supply capacity for debris flows. Catena 2023, 220, 106649. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Domènech, G.; Yang, F.; Guo, X.; Dai, L.; He, C.; Xu, Q.; Huang, R. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth Syst. Sci. Data 2019, 11, 35–55. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, A.C.; Wohl, E.E.; Comiti, F.; Mao, L. Hydraulics, morphology, and energy dissipation in an alpine step-pool channel. Water Resour. Res. 2011, 47, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, A.; Church, M. Channel morphology, gradient profiles and bed stresses during flood in a step–pool channel. Geomorphology 2001, 40, 311–327. [Google Scholar] [CrossRef]
- Zimmermann, A.; Church, M.; Hassan, M.A. Step-pool stability: Testing the jammed state hypothesis. J. Geophys. Res. Earth Surf. 2010, 115, 1–16. [Google Scholar] [CrossRef]
- Bangen, S.; Hensleigh, J.; McHugh, P.; Wheaton, J. Error modeling of DEMs from topographic surveys of rivers using fuzzy inference systems. Water Resour. Res. 2016, 52, 1176–1193. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Processes Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Milan, D.J.; Heritage, G.L.; Large, A.R.G.; Fuller, I.C. Filtering spatial error from DEMs: Implications for morphological change estimation. Geomorphology 2011, 125, 160–171. [Google Scholar] [CrossRef]
- Heritage, G.L.; Milan, D.J.; Large, A.R.G.; Fuller, I.C. Influence of survey strategy and interpolation model on DEM quality. Geomorphology 2009, 112, 334–344. [Google Scholar] [CrossRef]
Type | Structure of Riverbed | Mean Gradient of the Valley | Range of Width (m) | ||
---|---|---|---|---|---|
1 April 2018 (‰) | 4 July 2018 (‰) | ||||
L1 | Confined | Step-pool | 94.05 | 93.22 | 4.56–28.55 |
L2 | Unconfined | Step-pool and cascade | 102.13 | 92.07 | 7.73–44.98 |
L3 | Unconfined | Step-pool and plane bed | 77.95 | 79.12 | 27.61–52.13 |
L4 | Unconfined | Step-pool and plane bed | 64.22 | 70.73 | 17.39–62.78 |
L5 | Unconfined | Plane bed | 50.39 | 39.71 | 59.14–79.78 |
L6 | Unconfined | Plane bed | 62.64 | 51.83 | 18.85–53.96 |
Volumetric Change (m3) | Average Height Change of Materials in Part (m) | Cause of Change | |
---|---|---|---|
L1 | 1300 | 0.0133 | Inflow of tributaries and basal erosion |
L2 | −26,523 | −0.3770 | Basal erosion |
L3 | 7450 | 0.1013 | Deposition by the inflow of tributaries |
L4 | −109,314 | −0.3688 | Lateral erosion |
L5 | −107,035 | −0.5664 | Lateral erosion by the inflow of tributaries |
L6 | −45,742 | −0.4227 | Basal erosion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Wang, H.; Zhang, G.; Liu, D.; Wang, J. Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment. Remote Sens. 2022, 14, 6060. https://doi.org/10.3390/rs14236060
Jin W, Wang H, Zhang G, Liu D, Wang J. Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment. Remote Sensing. 2022; 14(23):6060. https://doi.org/10.3390/rs14236060
Chicago/Turabian StyleJin, Wen, Hao Wang, Guotao Zhang, Dingzhu Liu, and Jiao Wang. 2022. "Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment" Remote Sensing 14, no. 23: 6060. https://doi.org/10.3390/rs14236060
APA StyleJin, W., Wang, H., Zhang, G., Liu, D., & Wang, J. (2022). Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment. Remote Sensing, 14(23), 6060. https://doi.org/10.3390/rs14236060