Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = slow electrical waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4629 KB  
Review
Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress
by Lingzhi Zhao and Aiwu Peng
Energies 2025, 18(17), 4615; https://doi.org/10.3390/en18174615 - 30 Aug 2025
Viewed by 980
Abstract
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end [...] Read more.
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end our dependency on fossil fuels. Many ingenious wave energy conversion methods have been put forward, and a large number of wave energy converters (WECs) have been developed. However, to date, wave energy conversion technology is still in the demonstration application stage. Key issues such as survivability, reliability, and efficient conversion still need to be solved. The major hurdle is the fact that ocean waves provide a slow-moving, high-magnitude force, whereas most electric generators operate at high rotary speed and low torque. Coupling the slow-moving, high-magnitude force of ocean waves normally requires conversion to a high-speed, low-magnitude force as an intermediate step before a rotary generator is applied. This, in general, tends to severely limit the overall efficiency and reliability of the converter and drives the capital cost of the converter well above an acceptable commercial target. Magnetohydrodynamic (MHD) wave energy conversion makes use of MHD generators in which a conducting fluid passes through a very strong magnetic field to produce an electric current. In contrast to alternatives, the relatively slow speed at which the fluid traverses the magnetic field makes it possible to directly couple to ocean waves with a high-magnitude, slowly moving force. The MHD generator provides an excellent match to the mechanical impedance of an ocean wave, and therefore, an MHD WEC has no rotating mechanical parts with high speeds, no complex control process, and has good response to low sea states and high efficiency under all working conditions. This review introduces the system composition, working process, and technical features of WECs based on MHD generators first. Then, the research development, key points, and issues of wave energy conversion technology based on MHD generators are presented in detail. Finally, the problems to be solved and the future research directions of wave energy conversion based on MHD generators are pointed out. Full article
(This article belongs to the Special Issue Advances in Ocean Energy Technologies and Applications)
Show Figures

Figure 1

8 pages, 4226 KB  
Proceeding Paper
Global Ionospheric Corrections: Enhancing High-Accuracy Positioning
by Nuria Pérez, Jorge Durán, Enrique Carbonell, Ana González, David Calle and Irma Rodríguez
Eng. Proc. 2025, 88(1), 65; https://doi.org/10.3390/engproc2025088065 - 17 Jun 2025
Viewed by 495
Abstract
Electrically charged particles present in this layer of the Earth’s atmosphere can alter radio waves, such as those from GPS, Galileo, or BeiDou, resulting in non-estimated errors with respect to the available navigation models for the end user. For most positioning algorithms based [...] Read more.
Electrically charged particles present in this layer of the Earth’s atmosphere can alter radio waves, such as those from GPS, Galileo, or BeiDou, resulting in non-estimated errors with respect to the available navigation models for the end user. For most positioning algorithms based in sequential filters, this effect is translated into a slow convergence towards a solution around the decimeter error level. If we consider that the ionosphere’s effect varies based on the user’s location and solar activity due to the atmosphere particle composition, it becomes clear that a global accurate model, valid across wide areas accounting for different seasons and timespans, is, at the very least, quite challenging. The focus of this paper is the demonstration of a global ionosphere model designed to improve the positioning accuracy of the end user through the estimation of ionospheric corrections to the broadcasted navigation message. Mathematically, this method is based on a spherical harmonic expansion model. This approach has the advantage of reducing the dependency from a highly densified station network where the ionosphere delay must be constantly estimated in dozens of locations, in favor of a simplified model that barely needs to be adjusted with a limited set of real-time data (around 40 stations). In this case, GMV’s global station network was used, which comprises geodetic-grade receivers tracking the signal in open-sky locations around the globe. The global ionospheric model is configured to process signals from GPS and Galileo constellations. To evaluate the performances of this model on the final user position estimation, several precise point positioning (PPP) solutions were computed at different locations. The results were compared with PPP solutions calculated without ionospheric corrections at the same stations. The goal of this paper is to show the significant performance improvement observed with the implementation of the global model. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

18 pages, 3034 KB  
Review
The Astroglia Syncytial Theory of Consciousness
by James M. Robertson
Int. J. Mol. Sci. 2025, 26(12), 5785; https://doi.org/10.3390/ijms26125785 - 17 Jun 2025
Cited by 1 | Viewed by 1086
Abstract
The neurological basis of consciousness remains unknown despite innumerable theories proposed for over a century. The major obstacle is that empirical studies demonstrate that all sensory information is subdivided and parcellated as it is processed within the brain. A central region where such [...] Read more.
The neurological basis of consciousness remains unknown despite innumerable theories proposed for over a century. The major obstacle is that empirical studies demonstrate that all sensory information is subdivided and parcellated as it is processed within the brain. A central region where such diverse information combines to form conscious expression has not been identified. A novel hypothesis was introduced over two decades ago that proposed astrocytes, with their ability to interconnect to form a global syncytium within the neocortex, are the locus of consciousness based on their ability to integrate synaptic signals. However, it was criticized because intercellular calcium waves, which are initiated by synaptic activity, are too slow to contribute to consciousness but ideal for memory formation. Although astrocytes are known to exhibit rapid electrical responses in active sensory pathways (e.g., vision), it was technically impossible to determine electrical activity within the astroglia syncytium because of the challenge of separating syncytial electrical responses from simultaneous neuronal electrical activity. Therefore, research on astroglia syncytial electrical activity lagged for over sixty years, until recently, when an ingenuous technique was developed to eliminate neuronal electrical interference. These technical advances have demonstrated that the astroglia syncytium, although massive and occupying the entire neocortex, is isoelectric with minimal impedance. Most importantly, the speed of electrical conductance within the syncytium is as rapid as that of neural networks. Therefore, the astroglia syncytium is theoretically capable of transmitting integrated local synaptic signaling globally throughout the entire neocortex to bind all functional areas of the brain in a timeframe required for consciousness. Full article
(This article belongs to the Special Issue The Function of Glial Cells in the Nervous System: 2nd Edition)
Show Figures

Figure 1

35 pages, 11695 KB  
Article
Polymorphism in Glu-Phe-Asp Proteinoids
by Panagiotis Mougkogiannis and Andrew Adamatzky
Biomimetics 2025, 10(6), 360; https://doi.org/10.3390/biomimetics10060360 - 3 Jun 2025
Cited by 1 | Viewed by 732
Abstract
Glu-Phe-Asp (GFD) proteinoids represent a class of synthetic polypeptides capable of self-assembling into microspheres, fibres, or combinations thereof, with morphology dramatically influencing their electrical properties. Extended recordings and detailed waveforms demonstrate that microspheres generate rapid, nerve-like spikes, while fibres exhibit consistent and gradual [...] Read more.
Glu-Phe-Asp (GFD) proteinoids represent a class of synthetic polypeptides capable of self-assembling into microspheres, fibres, or combinations thereof, with morphology dramatically influencing their electrical properties. Extended recordings and detailed waveforms demonstrate that microspheres generate rapid, nerve-like spikes, while fibres exhibit consistent and gradual variations in voltage. Mixed networks integrate multiple components to achieve a balanced output. Electrochemical measurements show clear differences. Microspheres have a low capacitance of 1.926±5.735μF. They show high impedance at 6646.282±178.664 Ohm. Their resistance is low, measuring 15,830.739 ± 652.514 mΩ. This structure allows for quick ionic transport, leading to spiking behaviour. Fibres show high capacitance (9.912±0.171μF) and low impedance (209.400±0.286 Ohm). They also have high resistance (163,067.613 ± 9253.064 mΩ). This combination helps with charge storage and slow potential changes. The 50:50 mixture shows middle values for all parameters. This confirms that hybrid electrical properties have emerged. The differences come from basic structural changes. Microspheres trap ions in small, round spaces. This allows for quick release. In contrast, fibers spread ions along their length. This leads to slower wave propagation. In mixed systems, diverse voltage zones emerge, suggesting cooperative dynamics between morphologies. This electrical polymorphism in simple proteinoid systems may explain complexity in biological systems. This study shows that structural polymorphism in GFD proteinoids affects their electrical properties. This finding is significant for biomimetic computing and sheds light on prebiotic information-processing systems. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

19 pages, 2991 KB  
Article
The Diagnostic Value of EEG Wave Trains for Distinguishing Immature Absence Seizures and Sleep Spindles: Evidence from the WAG/Rij Rat Model
by Olga S. Sushkova, Alexei A. Morozov, Alexandra V. Gabova and Karine Yu. Sarkisova
Diagnostics 2025, 15(8), 983; https://doi.org/10.3390/diagnostics15080983 - 12 Apr 2025
Cited by 1 | Viewed by 1209
Abstract
Background: Absence epilepsy is a non-convulsive form of genetic generalized epilepsy characterized by spontaneous bilateral spike-and-wave discharges (SWDs) in EEG. In contrast to grand-mal epilepsy, absence epilepsy without greatly expressed motor and interictal EEG abnormalities is difficult to detect, especially at the early [...] Read more.
Background: Absence epilepsy is a non-convulsive form of genetic generalized epilepsy characterized by spontaneous bilateral spike-and-wave discharges (SWDs) in EEG. In contrast to grand-mal epilepsy, absence epilepsy without greatly expressed motor and interictal EEG abnormalities is difficult to detect, especially at the early stages. The WAG/Rij rat strain is a well-validated animal model of childhood absence epilepsy. At the early, preclinical stage, precursors or immature SWDs appear. Then, with age, immature discharges gradually turn into mature ones and mature SWDs prevail at the clinical stage. Mature SWDs, with an amplitude several times higher than the background EEG, can be easily distinguished visually. However, the amplitude of immature discharges is significantly lower than that of mature SWDs and is comparable to the amplitude of sleep spindles. Therefore, it is quite a difficult problem to distinguish immature discharges from sleep spindles. The task is further complicated by the fact that absence seizures mainly appear in a state of drowsiness and slow-wave (non-REM) sleep, when a lot of sleep spindles occur. The purpose of the present study was to develop a diagnostic method that allows us to precisely distinguish immature forms of epileptic seizures from background EEG and sleep spindles. Methods: The idea of analyzing wave-train electrical activity is to investigate the wavelet spectrum, find local peculiarities in this spectrum, and estimate generalized time-frequency peculiarities of the signal in terms of the found local peculiarities. Results: The criteria for diagnosis of the immature form of epileptic discharges and sleep spindles have been developed based on the analysis of wave-train activity with the construction of AUC diagrams (area under the curve diagrams). Conclusions: The method of wave-train analysis with the construction of AUC diagrams can be used for extracting the diagnostic features necessary for the diagnosis of absence epilepsy at the early stages of the disease in people with a genetic predisposition. Full article
(This article belongs to the Special Issue Diagnostic Imaging in Neurological Diseases)
Show Figures

Figure 1

14 pages, 6310 KB  
Article
Tunable Dual Plasmon-Induced Transparency Based on Homogeneous Graphene-Metal Metasurfaces at Terahertz Frequency
by Guanqi Wang and Hao Meng
Crystals 2025, 15(4), 328; https://doi.org/10.3390/cryst15040328 - 29 Mar 2025
Cited by 1 | Viewed by 626
Abstract
In recent years, the active control of terahertz waves using artificial microstructures has attracted increasing attention, especially toward the ones that have multiple plasmon-induced transparency (PIT) responses. Here, a homogeneous graphene-metal metasurface, exhibiting tunable dual-PIT in its terahertz (THz) spectral response, is investigated [...] Read more.
In recent years, the active control of terahertz waves using artificial microstructures has attracted increasing attention, especially toward the ones that have multiple plasmon-induced transparency (PIT) responses. Here, a homogeneous graphene-metal metasurface, exhibiting tunable dual-PIT in its terahertz (THz) spectral response, is investigated numerically and theoretically. Individual and simultaneous control of the two PIT transmission windows and the two slow-light effects are achieved by reconstructing the Fermi energies of the graphene strips. The modulation behavior can be expounded by the classical coupled three-particle model, which is confirmed by the simulation results. Moreover, the electric field distribution is introduced to analyze the dual-PIT active modulation mechanism. This work provides theoretical guidance for versatile applications in multi-function terahertz switches and slow-light devices. Full article
Show Figures

Figure 1

22 pages, 4401 KB  
Article
A New and Improved Sliding Mode Control Design Based on a Grey Linear Regression Model and Its Application in Pure Sine Wave Inverters for Photovoltaic Energy Conversion Systems
by En-Chih Chang, Yeong-Jeu Sun and Chun-An Cheng
Micromachines 2025, 16(4), 377; https://doi.org/10.3390/mi16040377 - 26 Mar 2025
Cited by 2 | Viewed by 563
Abstract
A new and improved sliding mode control (NISMC) with a grey linear regression model (GLRM) facilitates the development of high-quality pure sine wave inverters in photovoltaic (PV) energy conversion systems. SMCs are resistant to variations in internal parameters and external load disturbances, resulting [...] Read more.
A new and improved sliding mode control (NISMC) with a grey linear regression model (GLRM) facilitates the development of high-quality pure sine wave inverters in photovoltaic (PV) energy conversion systems. SMCs are resistant to variations in internal parameters and external load disturbances, resulting in their popularity in PV power generation. However, SMCs experience a slow convergence time for system states, and they may cause chattering. These limitations can result in subpar transient and steady-state performance of the PV system. Furthermore, partial shading frequently yields a multi-peaked power-voltage curve for solar panels that diminishes power generation. A traditional maximum power point tracking (MPPT) algorithm in such a case misclassifies and fail to locate the global extremes. This paper suggests a GLRM-based NISMC for performing MPPT and generating a high-quality sine wave to overcome the above issues. The NISMC ensures a faster finite system state convergence along with reduced chattering and steady-state errors. The GLRM represents an enhancement of the standard grey model, enabling greater accuracy in predicting global state points. Simulations and experiments validate that the proposed strategy gives better tracking performance of the inverter output voltage during both steady state and transient tests. Under abrupt load changing, the proposed inverter voltage sag is constrained to 10% to 90% of the nominal value and the voltage swell is limited within 10% of the nominal value, complying with the IEEE (Institute of Electrical and Electronics Engineers) 1159-2019 standard. Under rectified loading, the proposed inverter satisfies the IEEE 519-2014 standard to limit the voltage total harmonic distortion (THD) to below 8%. Full article
(This article belongs to the Special Issue Power MEMS for Energy Harvesting)
Show Figures

Figure 1

9 pages, 2050 KB  
Article
A Fixed-Frequency Beam-Scanning Leaky-Wave Antenna with Circular Polarization for mmWave Application
by Xingying Huo, Yuchen Ma, Jiayi Liu and Qinghuai Zhou
Photonics 2025, 12(3), 274; https://doi.org/10.3390/photonics12030274 - 17 Mar 2025
Viewed by 994
Abstract
A period-reconfigurable leaky-wave antenna (LWA) with circular polarization (CP) and fixed-frequency beam scanning (FFBS) is developed in this article. Operating in the Ka-band, this antenna consists of a low-loss groove gap waveguide (GGW) as the slow-wave transmission structure, a circular split-ring patch [...] Read more.
A period-reconfigurable leaky-wave antenna (LWA) with circular polarization (CP) and fixed-frequency beam scanning (FFBS) is developed in this article. Operating in the Ka-band, this antenna consists of a low-loss groove gap waveguide (GGW) as the slow-wave transmission structure, a circular split-ring patch array on the top layer for radiation, and a slotted ground between them for energy coupling. Each slot is independently and electrically controlled by a pair of PIN diodes under the coupling slot. Thus, the period length of the patches can be manipulated and an LWA with CP and FFBS is achieved with −1th spatial harmonics radiated. The simulation results show that the bean-scanning range from 61° to 63° can be realized during the observation frequency band, with good circular polarization and a peak gain of 17.1 dBi, which is verified by the measurement. Full article
Show Figures

Figure 1

10 pages, 1251 KB  
Communication
Engineering Terahertz Light–Matter Interaction with Quantum Electronic Metamaterials
by Igor I. Smolyaninov and Vera N. Smolyaninova
Electronics 2025, 14(4), 679; https://doi.org/10.3390/electronics14040679 - 10 Feb 2025
Viewed by 958
Abstract
While electromagnetic metamaterials completely revolutionized optics and radio frequency engineering, recent progress in the development of conceptually related electronic metamaterials was more slow. Similar to electromagnetic metamaterials, which engineer material response to the electromagnetic field of a photon, the purpose of electronic metamaterials [...] Read more.
While electromagnetic metamaterials completely revolutionized optics and radio frequency engineering, recent progress in the development of conceptually related electronic metamaterials was more slow. Similar to electromagnetic metamaterials, which engineer material response to the electromagnetic field of a photon, the purpose of electronic metamaterials is to affect electron propagation and its wave function by changing material response to its electric field. This makes electronic metamaterials an ideal tool for engineering light–matter interaction in semiconductors and superconductors. Here, we propose the use of Fermi’s quantum refraction, which was previously observed in the terahertz spectroscopy of Rydberg atoms and two-dimensional surface electronic states, as a novel tool in quantum electronic metamaterial design. In particular, we demonstrate several potential applications of this concept in two-dimensional metamaterial superconductors and “universal quantum dots” designed for operation in the terahertz frequency range. Full article
(This article belongs to the Special Issue Terahertz Optics and Spectroscopy)
Show Figures

Figure 1

11 pages, 450 KB  
Protocol
Wearable Neurotechnology for the Treatment of Insomnia: The Study Protocol of a Prospective, Placebo-Controlled, Double-Blind, Crossover Clinical Trial of a Transcranial Electrical Stimulation Device
by Keenan Caswell, Grace Roe, Emamoke Odafe, Subodh Arora, Caddie Motoni and John Kent Werner
Clocks & Sleep 2025, 7(1), 3; https://doi.org/10.3390/clockssleep7010003 - 26 Jan 2025
Viewed by 3476
Abstract
Sleep disruption and deprivation are epidemic problems in the United States, even among those without a clinically diagnosed sleep disorder. Military service members demonstrate an increased risk of insomnia, which doubles after deployment. This study will investigate the ability of a translational device, [...] Read more.
Sleep disruption and deprivation are epidemic problems in the United States, even among those without a clinically diagnosed sleep disorder. Military service members demonstrate an increased risk of insomnia, which doubles after deployment. This study will investigate the ability of a translational device, Teledyne PeakSleep™ (Teledyne Scientific & Imaging, Durham, NC, USA), to reduce sleep onset latency and the time spent awake after sleep onset, with improvement in the subjective benefits of sleep for patients with insomnia by enhancing the brain rhythms within the frontal lobe implicated in slow wave generation. During this crossover trial, patients will use the wearable neurotechnology prototype headband, which delivers < 14 min of frontal short duration repetitive–transcranial electrical stimulation over a 30 min period immediately before trying to fall asleep. Using active stimulation versus a sham paradigm, we will compare actigraphy data, physiological data, and subjective sleep measures against a pre-treatment baseline in the same patient over the course of the 8-week study. If successful, PeakSleep™ could address the final common pathway in insomnia, namely the onset and maintenance of slow-wave sleep (SWS), and accordingly has the potential to enhance sleep onset in a wide range of individuals, most importantly warfighters in whom efficient sleep onset may be critical for operational success. Full article
(This article belongs to the Section Disorders)
Show Figures

Figure 1

16 pages, 2963 KB  
Article
A Mechanism for Slow Electrostatic Solitary Waves in the Earth’s Plasma Sheet
by Gurbax Singh Lakhina and Satyavir Singh
Plasma 2024, 7(4), 904-919; https://doi.org/10.3390/plasma7040050 - 27 Nov 2024
Cited by 3 | Viewed by 1880
Abstract
An analysis of the Magnetospheric Multiscale (MMS) spacecraft data shows the presence of slow electrostatic solitary waves (SESWs) in the Earth’s plasma sheet, which have been interpreted as slow electron holes (SEHs). An alternative mechanism based on slow ion-acoustic solitons is proposed for [...] Read more.
An analysis of the Magnetospheric Multiscale (MMS) spacecraft data shows the presence of slow electrostatic solitary waves (SESWs) in the Earth’s plasma sheet, which have been interpreted as slow electron holes (SEHs). An alternative mechanism based on slow ion-acoustic solitons is proposed for these SESWs. The SESWs are observed in the region where double humped ion distributions and hot electrons co-exist. Our theoretical model considers the plasma in the SESW region to consist of hot electrons with a vortex distribution, core Maxwellian protons drifting parallel to the magnetic field, B and beam protons drifting anti-parallel to B. Parallel propagating nonlinear ion-acoustic waves are studied using the Sagdeev pseudopotential technique. The analysis yields four types of modes, namely, two slow ion-acoustic (SIA1 and SIA2) solitons and two fast ion-acoustic (FIA1 and FIA2) solitons. All solitons have positive potentials. Except the FIA1 solitons which propagate parallel to B; the other three types propagate anti-parallel to B. Good agreement is found between the amplitudes of electrostatic potential, the electric field, the widths and speed of SIA1 and SIA2 solitons, and the observed properties of SESWs by the MMS spacecraft. Full article
Show Figures

Graphical abstract

15 pages, 2833 KB  
Article
A Workflow for Creating Gastric Computational Models from SPARC Scaffolds
by Recep Avci, Omkar N. Athavale, Mehrdad Sangi, Madeleine R. Di Natale, John B. Furness, Zhongming Liu, Peng Du and Leo K. Cheng
Appl. Sci. 2024, 14(22), 10393; https://doi.org/10.3390/app142210393 - 12 Nov 2024
Viewed by 1311
Abstract
In-silico studies are an ideal medium to model and improve our understanding of the mechanisms underlying gastric motility in health and disease. In this study, a workflow to create computational models of the stomach was developed using SPARC scaffolds. Three anatomically based finite [...] Read more.
In-silico studies are an ideal medium to model and improve our understanding of the mechanisms underlying gastric motility in health and disease. In this study, a workflow to create computational models of the stomach was developed using SPARC scaffolds. Three anatomically based finite element method (FEM) models of the rat stomach incorporating experimental measurements of muscle layer thickness and fiber orientations across the stomach were developed: (i) 2D (surface) FEM model with no thickness, (ii) 3D (volume) FEM model with a fixed thickness across the longitudinal and circular muscle layers, and (iii) 3D (volume) FEM model with varying thickness across the longitudinal and circular muscle layers. The three FEM models were subsequently used in whole-organ slow wave simulations and the impact of anatomical details on the simulation outcomes was investigated. The 3D FEM model with varying thickness was the most computationally expensive, while the 2D FEM model provided the fastest solution (a 200 s simulation took 8 min vs. 38 h to solve). The spatiotemporal profiles of the slow wave activation and propagation in the three FEM models were in good agreement. The largest temporal difference of 1 s in cellular activation was observed between the 2D FEM model and the varying thickness 3D FEM model in the most distal-stomach regions. These FEM models and developed workflow will be used in in-silico studies to improve our understanding of the structure-function relationship in the stomach and identify the optimal parameters of electrical therapies, an alternative treatment for the motility disorders in the stomach. In addition, the developed workflow can be readily used to generate computational models of other organs using SPARC scaffolds. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

19 pages, 3522 KB  
Article
Assessing the Potential of Marine Renewable Energy in Mexico: Socioeconomic Needs, Energy Potential, Environmental Concerns, and Social Perception
by M. Luisa Martínez, Valeria Chávez, Rodolfo Silva, Gisela Heckel, Erika Paola Garduño-Ruiz, Astrid Wojtarowski, Gabriela Vázquez, Octavio Pérez-Maqueo, Carmelo Maximiliano-Cordova, Karla Salgado, Rosario Landgrave, Efraín Mateos and Erik Tapia
Sustainability 2024, 16(16), 7059; https://doi.org/10.3390/su16167059 - 17 Aug 2024
Cited by 1 | Viewed by 2908
Abstract
Although the literature on Sustainable Development Goals (SDGs) is vast worldwide, studies in Mexico focusing on Marine Renewable Energy (MRE) and SDGs are only beginning to emerge. Despite this academic gap, Mexico has signed up for the United Nations SDGs, which include producing [...] Read more.
Although the literature on Sustainable Development Goals (SDGs) is vast worldwide, studies in Mexico focusing on Marine Renewable Energy (MRE) and SDGs are only beginning to emerge. Despite this academic gap, Mexico has signed up for the United Nations SDGs, which include producing clean and affordable energy and reducing CO2 emissions to slow global warming. The country is, therefore, committed to implementing measures to help achieve these goals. This study is the first multidisciplinary analysis performed at a national level in Mexico, aimed at identifying sites for efficient Marine Renewable Energy (MRE) production while considering socioeconomic needs, environmental risks, and societal acceptance of the new technologies. We first calculated the energy potential from nearshore winds, waves, marine currents, and offshore thermal gradients. The results show that electricity needs are greater in the 11 states where levels of marginalization are highest. The production of MRE is feasible in three of these regions. However, because Mexico is home to significant natural coastal ecosystems and protected species, care is necessary to produce electricity while protecting Mexico’s megadiversity. Social perception of the use of MRE is variable: the inhabitants of some locations are willing to accept the new technologies, whereas those in others are not. MRE production in Mexico is feasible but will face environmental and social issues that must be addressed before deploying new devices in the oceans. Full article
(This article belongs to the Special Issue Advances in Energy Systems for Sustainable Development Goals (SDGs))
Show Figures

Graphical abstract

13 pages, 1796 KB  
Article
Efficacy and Safety of Pulse Intravenous Methylprednisolone in Pediatric Epileptic Encephalopathies: Timing and Networks Consideration
by Angelo Russo, Serena Mazzone, Laura Landolina, Roberta Colucci, Flavia Baccari, Anna Fetta, Antonella Boni and Duccio Maria Cordelli
J. Clin. Med. 2024, 13(9), 2497; https://doi.org/10.3390/jcm13092497 - 24 Apr 2024
Cited by 2 | Viewed by 2819
Abstract
Background: Epileptic encephalopathies (EE) are characterized by severe drug-resistant seizures, early onset, and unfavorable developmental outcomes. This article discusses the use of intravenous methylprednisolone (IVMP) pulse therapy in pediatric patients with EE to evaluate its efficacy and tolerability. Methods: This is a retrospective [...] Read more.
Background: Epileptic encephalopathies (EE) are characterized by severe drug-resistant seizures, early onset, and unfavorable developmental outcomes. This article discusses the use of intravenous methylprednisolone (IVMP) pulse therapy in pediatric patients with EE to evaluate its efficacy and tolerability. Methods: This is a retrospective study from 2020 to 2023. Inclusion criteria were ≤18 years at the time of IVMP pulse therapy and at least 6 months of follow-up. Efficacy and outcome, defined as seizure reduction > 50% (responder rate), were evaluated at 6 and 9 months of therapy, and 6 months after therapy suspension; quality of life (QoL) was also assessed. Variables predicting positive post-IVMP outcomes were identified using statistical analysis. Results: The study included 21 patients, with a responder rate of 85.7% at 6 and 9 months of therapy, and 80.9% at 6 months after therapy suspension. Variables significantly predicting favorable outcome were etiology (p = 0.0475) and epilepsy type (p = 0.0475), with the best outcome achieved in patients with genetic epilepsy and those with encephalopathy related to electrical status epilepticus during slow-wave sleep (ESES). All patients evidenced improvements in QoL at the last follow-up, with no relevant adverse events reported. Conclusions: Our study confirmed the efficacy and high tolerability of IVMP pulse therapy in pediatric patients with EE. Genetic epilepsy and ESES were positive predictors of a favorable clinical outcome. QOL, EEG tracing, and postural–motor development showed an improving trend as well. IVMP pulse therapy should be considered earlier in patients with EE. Full article
Show Figures

Figure 1

22 pages, 62148 KB  
Article
Real-Time Embedded Simulation Platform for Hippocampal Traveling Waves of Electric Field Conduction
by Xile Wei, Zeyu Ren, Meili Lu and Siyuan Chang
Electronics 2024, 13(6), 1130; https://doi.org/10.3390/electronics13061130 - 20 Mar 2024
Viewed by 1199
Abstract
The investigation of hippocampal traveling waves has gained significant importance in comprehending and treating neural disorders such as epilepsy, as well as unraveling the neural mechanisms underlying memory and cognition. Recently, it has been discovered through both in vivo and in vitro experiments [...] Read more.
The investigation of hippocampal traveling waves has gained significant importance in comprehending and treating neural disorders such as epilepsy, as well as unraveling the neural mechanisms underlying memory and cognition. Recently, it has been discovered through both in vivo and in vitro experiments that hippocampal traveling waves are typically characterized by the coexistence of fast and slow waves. However, electrophysiological experiments face limitations in terms of cost, reproducibility, and ethical considerations, which hinder the exploration of the mechanisms behind these traveling waves. Model-based real-time virtual simulations can serve as a reliable alternative to pre-experiments on hippocampal preparations. In this paper, we propose a real-time simulation method for traveling waves of electric field conduction on a 2D plane by implementing a hippocampal network model on a multi-core parallel embedded computing platform (MPEP). A numerical model, reproducing both NMDA-dependent fast waves and Ca-dependent slow waves, is optimized for deployment on this platform. A multi-core parallel scheduling policy is employed to address the conflict between model complexity and limited physical resources. With the support of a graphical user interface (GUI), users can rapidly construct large-scale models and monitor the progress of real simulations. Experimental results using MPEP with four computing boards and one routing board demonstrate that a hippocampal network with a 200 × 16 pyramidal neuron array can execute real-time generation of both fast and slow traveling waves with total power consumption below 500 mW. This study presents a real-time virtual simulation strategy as an efficient alternative to electrophysiological experiments for future research on hippocampal traveling waves. Full article
Show Figures

Figure 1

Back to TopTop