Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = slip rings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3898 KiB  
Article
Wireless Temperature Monitoring of a Shaft Based on Piezoelectric Energy Harvesting
by Piotr Micek and Dariusz Grzybek
Energies 2025, 18(14), 3620; https://doi.org/10.3390/en18143620 - 9 Jul 2025
Viewed by 243
Abstract
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the [...] Read more.
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the longitudinal axis of the shaft and installing a slip ring assembly at the end of the shaft. Such changes to the shaft structure are not always possible. This paper proposes the use of piezoelectric energy harvesting from a rotating shaft to power wireless temperature monitoring of the shaft surface. The main components of presented wireless temperature monitoring are three piezoelectric composite patches, three thermal fuses, a system for storing and distributing the harvested energy, and a radio transmitter. This article contains the results of experimental research of such wireless monitoring on a dedicated laboratory stand. This research included four connections of piezoelectric composite patches: delta, star, parallel, and series for different capacities of a storage capacitor. Based on experimental results, three parameters that influence the frequency of sending data packets by the presented wireless temperature monitoring are identified: amplitude of stress in the rotating shaft, rotation speed of the shaft, and the capacity of a storage capacitor. Full article
(This article belongs to the Special Issue Innovations and Applications in Piezoelectric Energy Harvesting)
Show Figures

Figure 1

16 pages, 6146 KiB  
Article
Current-Carrying Wear Behavior of Cu–TiC Coatings Obtained Through High-Speed Laser Cladding on Conductive Slip Rings of 7075 Aluminum Alloy
by Shiya Cheng, Yuankai Zhou and Xue Zuo
Metals 2025, 15(7), 688; https://doi.org/10.3390/met15070688 - 20 Jun 2025
Viewed by 204
Abstract
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated [...] Read more.
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated using a scanning electron microscope, an X-ray diffractometer, a hardness tester, and a wear tester, respectively. The results show that the increase in scanning speed accelerates the coating’s solidification rate. Among the samples, the coating comprised of equiaxed crystals prepared at 149.7 mm/s presents the best quality, but solidification speeds that are too rapid lead to elemental segregation. The hardness of the coating also decreases with the increase in scanning speed. The coating prepared at 149.7 mm/s exhibits the best wear resistance and electrical conductivity. The wear rate of the coating prepared at 149.7 mm/s at 25 A was 4 × 10−3 mg·m−1, respectively. During the current-carrying friction process, the presence of thermal effects and arc erosion cause the worn track to be prone to oxidation, adhesion, and plastic deformation, so the current-carrying wear mechanisms of coatings at 25 A include adhesive wear, oxidation wear, and electrical damage. Full article
Show Figures

Figure 1

21 pages, 8169 KiB  
Article
In Situ Investigation of the Mechanical Property Anisotropy of TC11 Forgings Through Electron Backscatter Diffraction
by Qineng Li, Ke Li and Wuhua Yuan
Materials 2025, 18(10), 2384; https://doi.org/10.3390/ma18102384 - 20 May 2025
Viewed by 435
Abstract
Electron backscatter diffraction and scanning electron microscopy were performed herein to in situ investigate the influence of texture on the anisotropic deformation mechanism of TC11 forged components. The in situ tensile specimen was cut from the TC11 ring forging, and the tensile force–displacement [...] Read more.
Electron backscatter diffraction and scanning electron microscopy were performed herein to in situ investigate the influence of texture on the anisotropic deformation mechanism of TC11 forged components. The in situ tensile specimen was cut from the TC11 ring forging, and the tensile force–displacement curve was recorded while the slip lines in the specimen surface detected was traced during the in situ tensile test. The tensile results show that the yield and ultimate tensile strengths decreased in the order of transverse-direction (TD) > rolling-direction (RD) > normal-direction (ND) samples. The anisotropy of the tensile strength was related to the differences in the activated slip systems of the ND, TD, and RD samples. The slip lines results show that in the yielding stage, the ND, TD, and RD samples were dominated by Prismatic <a>, Pyramidal <c + a>, and Pyramidal <a> slips, respectively. In order to further analyze the relationship between the slip system and the yield strength, an anisotropy coefficient was determined to evaluate the differences in resistances for different activated slip systems, providing a good explanation of the variations in the tensile strength anisotropy. The ratios of the critical resolved shear stress (CRSS) of the basal, Prismatic <a>, primary Pyramidal <c + a>, and secondary Pyramidal <c + a> slip systems in the α phase were estimated to be 0.93:1:1.18:1.05 based on the type, number, orientation of slip activations, and Schmid factor. Moreover, the Prismatic <a> slips primarily occurred in the axial and radial (ND and RD) samples with [0001] and [1-21-2] textures, whereas the Pyramidal <c + a> slip system was dominant in the TD samples with [112-2] and [101-2] textures. Overall, this research demonstrates that the activation of the α-phase slip depends on the grain orientation, SF, and the CRSS, promoting strong strength anisotropy. Full article
Show Figures

Figure 1

34 pages, 16960 KiB  
Article
Hollow-Type Integrated Assembly Design and Performance Validation of Conductive Slip Rings via Simulation-Driven Optimization
by Zhiyuan Qian, Chao Han, Nianhuan Li, Gongqiang Tian, Junye Li and Haihong Wu
Machines 2025, 13(5), 415; https://doi.org/10.3390/machines13050415 - 15 May 2025
Viewed by 589
Abstract
Conductive slip rings (CSRs) are precision components critical to industrial equipment, yet they face challenges such as unstable signal transmission, limited functionality, and difficulties in operational monitoring due to assembly-induced inaccuracies. This study proposes a hollow-type integrated assembly solution, incorporating optimized transmission, clamping, [...] Read more.
Conductive slip rings (CSRs) are precision components critical to industrial equipment, yet they face challenges such as unstable signal transmission, limited functionality, and difficulties in operational monitoring due to assembly-induced inaccuracies. This study proposes a hollow-type integrated assembly solution, incorporating optimized transmission, clamping, and protection modules through structural design and modular analysis. Static and dynamic simulations identify the optimal assembly angle and connector configuration (hollow-type outperforming flange-type), ensuring reliability and stability. A high-precision universal assembly platform is designed, and an R-axis rotary table-based testing method is developed to evaluate transmission and fixation modes. Results demonstrate the superiority of sleeve couplings and hollow connectors, with the assembled system achieving contact resistance fluctuations below 10 mΩ, angular repeatability under 500″, and accuracy within 720″, meeting all design specifications. The proposed framework combines simulation-driven design with experimental validation, offering a robust approach to enhance the performance of CSRs in industrial applications. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

26 pages, 46466 KiB  
Article
Experimental Investigation of Mechanical Properties and Pore Characteristics of Hipparion Laterite Under Freeze–Thaw Cycles
by Tengfei Pan, Zhou Zhao, Jianquan Ma and Fei Liu
Appl. Sci. 2025, 15(9), 5202; https://doi.org/10.3390/app15095202 - 7 May 2025
Viewed by 501
Abstract
The Loess Plateau region of China has an anomalous climate and frequent geological disasters. Hipparion laterite in seasonally frozen regions exhibits heightened susceptibility to freeze–thaw (F-T) cycling, which induces progressive structural weakening and significantly elevates the risk of slope instability through mechanisms including [...] Read more.
The Loess Plateau region of China has an anomalous climate and frequent geological disasters. Hipparion laterite in seasonally frozen regions exhibits heightened susceptibility to freeze–thaw (F-T) cycling, which induces progressive structural weakening and significantly elevates the risk of slope instability through mechanisms including pore water phase transitions, aggregate disintegration, and shear strength degradation. This study focuses on the slip zone Hipparion laterite from the Nao panliang landslide in Fugu County, Shaanxi Province. We innovatively integrated F-T cycling tests with ring-shear experiments to establish a hydro-thermal–mechanical coupled multi-scale evaluation framework for assessing F-T damage in the slip zone material. The microstructural evolution of soil architecture and pore characteristics was systematically analyzed through scanning electron microscopy (SEM) tests. Quantitative characterization of mechanical degradation mechanisms was achieved using advanced microstructural parameters including orientation frequency, probabilistic entropy, and fractal dimensions, revealing the intrinsic relationship between pore network anisotropy and macroscopic strength deterioration. The experimental results demonstrate that Hipparion laterite specimens undergo progressive deterioration with increasing F-T cycles and initial moisture content, predominantly exhibiting brittle deformation patterns. The soil exhibited substantial strength degradation, with total reduction rates of 51.54% and 43.67% for peak and residual strengths, respectively. The shear stress–displacement curves transitioned from strain-softening to strain-hardening behavior, indicating plastic deformation-dominated shear damage. Moisture content critically regulates pore microstructure evolution, reducing micropore proportion to 23.57–28.62% while promoting transformation to mesopores and macropores. At 24% moisture content, the areal porosity, probabilistic entropy, and fractal dimension increased by 0.2263, 0.0401, and 0.0589, respectively. Temperature-induced pore water phase transitions significantly amplified mechanical strength variability through cyclic damage accumulation. These findings advance the theoretical understanding of Hipparion laterite’s engineering geological behavior while providing critical insights for slope stability assessment and landslide risk mitigation strategies in loess plateau regions. Full article
Show Figures

Figure 1

21 pages, 2339 KiB  
Article
Control of High-Power Slip Ring Induction Generator Wind Turbines at Variable Wind Speeds in Optimal and Reliable Modes
by Mircea-Bogdan Radac, Valentin-Dan Muller and Samuel Ciucuriță
Algorithms 2025, 18(3), 162; https://doi.org/10.3390/a18030162 - 11 Mar 2025
Cited by 1 | Viewed by 992
Abstract
This work analyzes high-power wind turbines (WTs) from the Oravita region, Romania. These WTs are based on slip ring induction generator with wound rotor and we propose a modified architecture with two power converters on both the stator and on the rotor, functioning [...] Read more.
This work analyzes high-power wind turbines (WTs) from the Oravita region, Romania. These WTs are based on slip ring induction generator with wound rotor and we propose a modified architecture with two power converters on both the stator and on the rotor, functioning at variable wind speeds spanning a large interval. Investigations developed around a realistic WT model with doubly fed induction generator show how WT control enables variable wind speed operations at optimal mechanical angular speed (MAS), guaranteeing maximal power point (MPP), but only up to a critical wind speed value, after which the electrical power must saturate for reliable operation. In this reliable operating region, blade pitch angle control must be enforced. Variable wind speed acts as a time-varying parameter disturbance but also imposes the MPP operation setpoint in one of the two analyzed regions. To achieve null tracking errors, a double integrator must appear within the MAS controller when the wind speed disturbance is realistically modeled as a ramp-like input; however, inspecting the linearized model reveals several difficulties as described in the paper, together with the proposed solution tradeoff. The study developed around the Fuhrlander-FL-MD-70 1.5[MW] WT model shows that several competitive controllers are designed and tested in the identified operating regions of interest, as they validate the reliable and performant functioning specifications. Full article
(This article belongs to the Special Issue 2024 and 2025 Selected Papers from Algorithms Editorial Board Members)
Show Figures

Graphical abstract

20 pages, 16139 KiB  
Article
An Investigation of the Effect of the Fault Degree on the Dynamic Characteristics and Crack Propagation of Rolling Bearings
by Long Zhang, Zhibin Xiang, Hao Zhang, Wenze Liu, Cong Huang, Tongshuai Qian, Chaobing Wang and Jiayang Liu
Appl. Sci. 2025, 15(3), 1198; https://doi.org/10.3390/app15031198 - 24 Jan 2025
Viewed by 605
Abstract
The incipient faults of rolling bearings are dynamically propagating in the service status. However, the bearing material and the size of the fault will affect its expansion trend and direction. Furthermore, bearings manufactured from different materials behave differently when they fail. Therefore, the [...] Read more.
The incipient faults of rolling bearings are dynamically propagating in the service status. However, the bearing material and the size of the fault will affect its expansion trend and direction. Furthermore, bearings manufactured from different materials behave differently when they fail. Therefore, the influence of the fault degree on the dynamic characteristics and crack propagation of rolling bearings is investigated in this paper. First, a dynamic model of the bearing, both under fault-free conditions and with varying fault sizes on the outer ring, is established by considering the actual working conditions of rolling bearings. Then, the reliability of the dynamic model is verified theoretically and experimentally. Finally, the study examined the slip behavior of rolling elements, the variation trends in the maximum shear stress and principal stresses on the outer ring, and the direction of crack propagation under different fault severities. The results indicate that (1) the severity of roller slip becomes more pronounced with the expansion of the fault size; (2) material differences will affect the timing of macro-slip during faults; (3) crack propagation tends to initiate at the edge of the fault exit, with the propagation rate increasing as fault severity escalates; and (4) tensile stress was observed in the first principal stress, which accelerates crack bifurcation at the faulted edge, while both the second principal stress and third principal stress exhibit compressive stress, playing a suppressive role in crack bifurcation at the faulted edge. These findings provide a theoretical basis for further research on the evolution of faults in rolling bearings. Full article
Show Figures

Figure 1

20 pages, 8125 KiB  
Article
Running-In Behavior and Failure Mechanism Between AgCuNi Alloy and Au-Electroplated Layer
by Hongjian Wu, Ya’nan Zhang, Qingjian Jia, Hui Cao, Han Li and Ming Ma
Sensors 2025, 25(1), 107; https://doi.org/10.3390/s25010107 - 27 Dec 2024
Viewed by 614
Abstract
To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the [...] Read more.
To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process. With the accumulation of wear debris composed of Ag on the disc, the contact material of the friction pair changed from Au and Au to Au, Ag and Au, so the surface roughness of wear tracks increased. Finally, the transfer film broke, which made the layer fail. This paper reveals the key element failure mechanism that causes transfer film failure in the running-in contact area, which is used to reveal the friction behavior and failure mechanism of slip ring friction pair materials, and provides a basis for the selection of running-in parameters during the running-in process of slip rings before power-on operation. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

25 pages, 10949 KiB  
Review
Research Progress on Current-Carrying Friction with High Stability and Excellent Tribological Behavior
by Peng Wei, Xueqiang Wang, Guiru Jing, Fei Li, Pengpeng Bai and Yu Tian
Lubricants 2024, 12(10), 349; https://doi.org/10.3390/lubricants12100349 - 13 Oct 2024
Cited by 7 | Viewed by 2736
Abstract
Current-carrying friction affects electrical contact systems like switches, motors, and slip rings, which determines their performance and lifespan. Researchers have found that current-carrying friction is influenced by various factors, including material type, contact form, and operating environment. This article first reviews commonly used [...] Read more.
Current-carrying friction affects electrical contact systems like switches, motors, and slip rings, which determines their performance and lifespan. Researchers have found that current-carrying friction is influenced by various factors, including material type, contact form, and operating environment. This article first reviews commonly used materials, such as graphite, copper, silver, gold, and their composites. Then different contact forms like reciprocating, rotational, sliding, rolling, vibration, and their composite contact form are also summarized. Finally, their environmental conditions are also analyzed, such as air, vacuum, and humidity, on frictional force and contact resistance. Additionally, through experimental testing and theoretical analysis, it is found that factors such as arcing, thermal effects, material properties, contact pressure, and lubrication significantly influence current-carrying friction. The key mechanisms of current-carrying friction are revealed under different current conditions, including no current, low current, and high current, thereby highlighting the roles of frictional force, material migration, and electroerosion. The findings suggest that material selection, surface treatment, and lubrication techniques are effective in enhancing current-carrying friction performance. Future research should focus on developing new materials, intelligent lubrication systems, stronger adaptability in extreme environments, and low friction at the microscale. Moreover, exploring stability and durability in extreme environments and further refining theoretical models are essential to providing a scientific basis for designing efficient and long-lasting current-carrying friction systems. Full article
Show Figures

Figure 1

15 pages, 5899 KiB  
Article
A Bidirectional Simultaneous Wireless Power and Data Transfer System with Non-Contact Slip Ring
by Yuanshuang Fan, Qiurui Chen, Sihan Wu, Jing Xiao and Zhihui Wang
Electronics 2024, 13(20), 3974; https://doi.org/10.3390/electronics13203974 - 10 Oct 2024
Cited by 1 | Viewed by 1500
Abstract
A non-contact slip ring is proposed in this paper. The bidirectional simultaneous wireless power and data transfer (BD-SWPDT) technology is utilized to transfer power and data bidirectionally. A bidirectional constant-voltage LC hybrid compensation topology is proposed, which utilizes the LC series parallel structure [...] Read more.
A non-contact slip ring is proposed in this paper. The bidirectional simultaneous wireless power and data transfer (BD-SWPDT) technology is utilized to transfer power and data bidirectionally. A bidirectional constant-voltage LC hybrid compensation topology is proposed, which utilizes the LC series parallel structure to have different equivalent models at different frequencies. By using different operating frequencies for forward and reverse power transfer, the system’s forward and reverse transfer can be equivalent to different constant-voltage output compensation topologies. The resonant parameters of the system are designed to achieve consistent voltage gain for forward and reverse power transfer. And based on this topology, a data carrier injection method is designed to achieve high Signal Noise Ratio (SNR) simultaneous data transfer. To improve the flexibility of non-contact slip ring installation, a caliper-type coupling structure is proposed. Finally, the feasibility of the proposed method is verified through experiments, achieving a forward and reverse output power of 200 W and half duplex communication with a data rate of 19.2 kbps. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

24 pages, 19003 KiB  
Article
Three-Phase Single-Stage AC-DC Converter Using Series–Series Compensation Circuit in Inductive-Power-Transfer-Based Small Wind Power Generation System
by Yu-jin Moon, Beom-su Park, Sang-kyu Kim, Eun-soo Kim, Jong-seob Won, Sung-soo Kang and Jun-young Kim
Appl. Sci. 2024, 14(17), 7769; https://doi.org/10.3390/app14177769 - 3 Sep 2024
Cited by 1 | Viewed by 1817
Abstract
In this paper, a three-phase single-stage AC-DC converter for an IPT-based small wind power generation system (WPGS) with an S-S compensation circuit is proposed. It applies a three-phase single-stage AC-DC converter to improve the input power factor (PF), efficiency, and reliability in small [...] Read more.
In this paper, a three-phase single-stage AC-DC converter for an IPT-based small wind power generation system (WPGS) with an S-S compensation circuit is proposed. It applies a three-phase single-stage AC-DC converter to improve the input power factor (PF), efficiency, and reliability in small WPGSs. Also, inductive power transfer (IPT) was applied to compensate for brush wear in the nacelle of small and medium-sized wind turbines while ensuring electrical safety. In conditions of the three-phase Permanent Magnet Synchronous Generator (PMSG) voltage (80~260 Vrms) for the wind turbine and the load (150~1000 W), it was verified that the desired output voltage below 3% can be controlled through the fixed link voltage (VLink) control without wireless communication. A 1 kW prototype was built and tested to demonstrate its applicability to the rotation of small and medium-sized wind turbine nacelles instead of brushes and slip rings. Full article
(This article belongs to the Special Issue Wireless Power Transfer Systems)
Show Figures

Figure 1

23 pages, 13541 KiB  
Article
Influence of Stator/Rotor Torque Ratio on Torque Performance in External-Rotor Dual-Armature Flux-Switching PM Machines
by Zijie Zuo, Yidong Du and Lei Yu
Machines 2024, 12(9), 588; https://doi.org/10.3390/machines12090588 - 23 Aug 2024
Cited by 1 | Viewed by 1008
Abstract
External-rotor dual-armature flux-switching PM (ER-DA-FSPM) machines have high torque density and decent fault tolerance, making them promising candidates for in-wheel machine applications in electric vehicles. The torque output and optimal design parameters of ER-DA-FSPM machines are affected by the stator/rotor torque ratio, which [...] Read more.
External-rotor dual-armature flux-switching PM (ER-DA-FSPM) machines have high torque density and decent fault tolerance, making them promising candidates for in-wheel machine applications in electric vehicles. The torque output and optimal design parameters of ER-DA-FSPM machines are affected by the stator/rotor torque ratio, which is the focus of this paper. Firstly, this paper analyzes airgap flux density harmonics of ER-DA-FSPM to provide a clear insight into the torque-generation mechanism. Then, this paper investigates the influence of torque ratio on average torque under the same copper loss. It is found that the average torque decreases with torque ratio increasing due to the reduction of the positive torque component generated by the sixth airgap field harmonics and the rise in the negative torque component from the eighth harmonics. Moreover, this paper also provides the optimal parameter recommendation to guide the machine design. The split ratio should increase, and the arc of PMs should decrease for a larger torque ratio, whilst the other parameters are hardly influenced. Next, this paper makes a comparison among the ER-DA-FSPM machine, external rotor flux-switching PM (ER-FSPM) machine, and surface-mounted PM (ER-SPM) machines. It shows that the ER-DA-FSPM machine, with the torque ratio being 2, can lead to a much larger total torque. In addition, in the event of rotor winding failure, which is more possible due to the existence of slip rings than stator winding failure, the stator can still provide an average torque larger than that of ER-SPM machine and 92.0% that of the ER-FSPM machine, respectively. Finally, the theoretical analysis is verified by the experiments. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

8 pages, 1015 KiB  
Communication
Complex Formation of Ag+ and Li+ with Host Molecules Modeled on Intercalation of Graphite
by Yuriko Uetake and Hiroyuki Takemura
Molecules 2024, 29(17), 3987; https://doi.org/10.3390/molecules29173987 - 23 Aug 2024
Viewed by 955
Abstract
Pi-stacked and box-shaped host molecules with xanthene as the basis and pyrene as the π-plane were synthesized to verify cation–π interactions between graphene and metal cations. Since crystal structure analysis was not available, DFT calculations were performed to determine the optimized structure, and [...] Read more.
Pi-stacked and box-shaped host molecules with xanthene as the basis and pyrene as the π-plane were synthesized to verify cation–π interactions between graphene and metal cations. Since crystal structure analysis was not available, DFT calculations were performed to determine the optimized structure, and the π-planes were found to have a slipped parallel structure, with average distances of 456.2–581.0 pm for the stacked compound and 463.4–471.4 pm for the box-shaped compound. Li+ and Ag+ were chosen as acceptors for complexation with metal ions, and their interactions with the π-plane were clarified by NMR titration. Clearly, the interaction with metal ions increased when pyrene π-planes were stacked rather than the pyrene itself. In the stacked compound, the association constants of Ag+ and Li+ were similar; however, in the box-shaped host molecule, only Ag+ had moderate coordination ability, but the interaction with Li+ was very weak, comparable to the interaction with pyrene. As a result, intercalation is more likely to occur in stacked host compound 1, which has some degree of freedom in the pyrene rings, than in the box-shaped compound. Full article
(This article belongs to the Special Issue Two-Dimensional Materials: From Synthesis to Applications)
Show Figures

Graphical abstract

18 pages, 8880 KiB  
Article
Behavior of PIP Slip Joint in the Offshore Wind Monopile under Combined Load Considering Local Buckling
by Md Ariful Islam, Sajid Ali, Hongbae Park and Daeyong Lee
J. Mar. Sci. Eng. 2024, 12(8), 1423; https://doi.org/10.3390/jmse12081423 - 17 Aug 2024
Cited by 4 | Viewed by 1561
Abstract
Considering the practical conditions, it has been observed that the support structures of wind turbines inevitably experience bending and axial compression, both during the installation phase and throughout their operational lifespan. The monopile is the most commonly utilized support structure for offshore applications [...] Read more.
Considering the practical conditions, it has been observed that the support structures of wind turbines inevitably experience bending and axial compression, both during the installation phase and throughout their operational lifespan. The monopile is the most commonly utilized support structure for offshore applications and a reliable method for creating a detachable section within these structures is using a Pile-in-Pile (PIP) slip joint. Consequently, the behavior of PIP slip joints, under combined axial compression and bending, has been meticulously investigated. To facilitate a thorough analysis, overlapping lengths proportional to the pile diameters have been used, encompassing three distinct variations. This approach allows for a comprehensive understanding of structural integrity and performance under varying stress conditions, which are comprehensively understood and accounted for in design considerations. The current study builds upon assessing the pure bending characteristics of slip joints in cylindrical hollow section (CHS) structures. Additionally, two ring stoppers have been strategically employed inside the piles to withstand the axial load. Furthermore, the complexity of the pressure acting in the overlapping length, attributed to the frictional coefficient in that region, has been carefully addressed. The current research also encompasses a comprehensive overview of the P-M envelopes for the existing arrangements, with a particular focus on non-linear buckling, which is known to significantly influence the performance of tubular structures. Finally, a design equation was introduced to concisely describe the behavior of the components and compare it with other design equations provided by an established code. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

15 pages, 3616 KiB  
Article
Experimental Investigation and Analysis of Bond–Slip Behavior between Geopolymer Concrete and Steel Tube with Varying Structural Measures
by Dandan Li, Cuilian Wu, Hang Song, Linchang Li, Guanru Lv and Fei Yang
Buildings 2024, 14(8), 2516; https://doi.org/10.3390/buildings14082516 - 15 Aug 2024
Cited by 2 | Viewed by 1009
Abstract
In this study, push-out tests were conducted on 20 specimens to explore the bond–slip performance of geopolymer concrete-filled steel tubes. The investigation focused on the effects of various design parameters such as length–diameter ratio, diameter–thickness ratio, concrete strength, and internal structural measures of [...] Read more.
In this study, push-out tests were conducted on 20 specimens to explore the bond–slip performance of geopolymer concrete-filled steel tubes. The investigation focused on the effects of various design parameters such as length–diameter ratio, diameter–thickness ratio, concrete strength, and internal structural measures of the steel tube on the bond–slip performance. Analysis of the test phenomena, load–slip curves, and strain distribution curves of each specimen revealed insights into the shear strength calculation methods for welded stud structure and ring rib structure specimens. The results indicated a slight buckling deformation at the loading end of the steel tube in the structural specimen, while no significant deformation was observed in the non-structural specimen. The strain distribution along the height direction of the steel tube exhibited a triangular pattern, with the strain increasing gradually. Improvements in the interfacial bonding performance were noted with reductions in length–diameter ratio and diameter–thickness ratio of the steel tube, as well as increases in concrete strength. When the steel tube wall thickness t increases from 3.5 mm to 4.5 mm, the peak load of GC30-1 increases from 382.13 kN to 419.59 kN, an increase of 9.81%. After improving the concrete strength of GC30-1 and GC30-3 specimens, the peak load increases from 382.13 kN and 274.54 kN to 436.46 kN and 306.12 kN, respectively, an increase of 14.2% and 11.5%. Furthermore, the welding structure of the steel tube significantly enhanced the shear bearing capacity of the interface. The ratio of load calculation value to test value fell within the range of 0.917 to 1.098, indicating good agreement between the calculated and experimental values. These research results can provide reference for engineering applications of geopolymer concrete. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop