Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = skin penetration and retention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7428 KiB  
Article
Sialic Acid-Loaded Nanoliposomes with Enhanced Stability and Transdermal Delivery for Synergistic Anti-Aging, Skin Brightening, and Barrier Repair
by Fan Yang, Hua Wang, Dan Luo, Jun Deng, Yawen Hu, Zhi Liu and Wei Liu
Pharmaceutics 2025, 17(8), 956; https://doi.org/10.3390/pharmaceutics17080956 - 24 Jul 2025
Viewed by 302
Abstract
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: [...] Read more.
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome these challenges, SA was encapsulated within nanoliposomes (NLPs) by the high-pressure homogenization technique to develop an advanced and efficient transdermal drug delivery system. The skincare capabilities of this novel system were comprehensively evaluated across multiple experimental platforms, including in vitro cell assays, 3D skin models, in vivo zebrafish studies, and clinical human trials. Results: The SA-loaded NLPs (SA-NLPs) substantially improved the transdermal penetration and retention of SA, facilitating enhanced cellular uptake and cell proliferation. Compared to free SA, SA-NLPs demonstrated a 246.98% increase in skin retention and 1.8-fold greater cellular uptake in HDF cells. Moreover, SA-NLPs protected cells from oxidative stress-induced damage, stimulated collagen synthesis, and effectively suppressed the secretion of matrix metalloproteinases, tyrosinase activity, and melanin production. Additionally, zebrafish-based assays provided in vivo evidence of the skincare efficacy of SA-NLPs. Notably, clinical evaluations demonstrated that a 56-day application of the SA-NLPs-containing cream resulted in a 4.20% increase in L*, 7.87% decrease in b*, 8.45% decrease in TEWL, and 4.01% reduction in wrinkle length, indicating its superior brightening, barrier-repair, and anti-aging effects. Conclusions: This multi-level, systematic investigation strongly suggests that SA-NLPs represent a highly promising transdermal delivery strategy, capable of significantly enhancing the anti-aging, barrier-repair, and skin-brightening properties of SA, thus opening new avenues for its application in the fields of dermatology and cosmeceuticals. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

11 pages, 1018 KiB  
Article
The Influence of Moisturizer Co-Application Protocols on In Vitro Penetration of Betamethasone in Porcine Skin
by Daiane L. Rost, Geisa N. Barbalho, Jayanaraian F. M. Andrade, Marcilio Cunha-Filho, Guilherme M. Gelfuso and Tais Gratieri
Pharmaceutics 2025, 17(7), 874; https://doi.org/10.3390/pharmaceutics17070874 - 3 Jul 2025
Viewed by 414
Abstract
Background/Objectives: The treatment of atopic dermatitis frequently involves using a topical corticosteroid and a moisturizer. While the sequential application of these products is a common dermatological practice, their influence on drug penetration remains poorly understood. There is no clear evidence on how hydration, [...] Read more.
Background/Objectives: The treatment of atopic dermatitis frequently involves using a topical corticosteroid and a moisturizer. While the sequential application of these products is a common dermatological practice, their influence on drug penetration remains poorly understood. There is no clear evidence on how hydration, application sequence, and massage affect cutaneous drug delivery. Hence, this study aimed to evaluate the effects of formulation type, moisturizer composition, application sequence, and mechanical stimulation on betamethasone dipropionate (BET) cutaneous penetration. Methods: Two commercial formulations (cream and ointment) of BET were evaluated in different experimental conditions, including drug application combined with moisturizers (Cetaphil®, as an emollient; Nivea®, as an occlusive) pre- or post-application, with or without a 30 s massage. In vitro skin penetration assays were conducted for 12 h using porcine skin mounted in modified Franz diffusion cells. BET levels were extracted from the skin layers and quantified by HPLC. Results: The cutaneous BET penetration was strongly influenced by the application sequence, type of moisturizer, and mechanical stimuli. Pre-application of an occlusive or emollient moisturizer, followed by 30 s physical stimuli, significantly enhanced drug retention in the stratum corneum. For the cream, pre-application of moisturizers followed by massage notably increased BET levels in both the stratum corneum and viable skin. Conversely, post-application of moisturizers hindered BET absorption. The ointment showed limited penetration across all conditions, with no drug detected in the viable skin. Conclusions: The results showed pre-hydrating the skin, combined with a 30 s massage, was the best strategy for BET diffusion into the skin following cream administration. The formulation type and the order of application directly influence the effectiveness of drug therapy and the topical absorption of BET. Full article
(This article belongs to the Special Issue Skin Care Products for Healthy and Diseased Skin)
Show Figures

Graphical abstract

19 pages, 8480 KiB  
Article
(W/O/W) Double Emulsions-Filled Chitosan Hydrogel Beads for Topical Application
by Rui Sun, Yufeng Sun, Xiaoyan Tang and Juling Ji
Gels 2025, 11(7), 504; https://doi.org/10.3390/gels11070504 - 27 Jun 2025
Viewed by 393
Abstract
The aim of this study was to develop double emulsions-filled chitosan hydrogel beads for topical application and to elucidate their skin penetration behavior. Double emulsions were prepared by a two-step emulsification method, and double emulsions-filled chitosan hydrogel beads were prepared by the extrusion [...] Read more.
The aim of this study was to develop double emulsions-filled chitosan hydrogel beads for topical application and to elucidate their skin penetration behavior. Double emulsions were prepared by a two-step emulsification method, and double emulsions-filled chitosan hydrogel beads were prepared by the extrusion method. The structure, stability, and skin penetration behavior were investigated. The results of yield efficiency (above 80%) and microstructure observation confirmed the feasibility of the preparation method. After loading the hydrophilic active ingredients (vitamin C) into this system, the retention ratio after storage for 6 weeks increased by 77.6%. Furthermore, hydrogel beads could promote the permeation of hydrophilic active ingredients loaded in double emulsions. When the concentration of chitosan was 3% (w/v), the permeation coefficient of vitamin C from hydrogel beads exhibited an increase (1.7-fold) compared with double emulsions. This system could affect the orderliness of lipid structures in the stratum corneum. In addition, the results indicated that this system could be used for the topical delivery of hydrophobic active ingredients (quercetin) as well. This is the first report of chitosan bead stabilization of W/O/W emulsions, yielding a 2.6-fold increase in skin uptake of hydrophilic actives. Full article
(This article belongs to the Special Issue Recent Advances in Gels for Pharmaceutical Application)
Show Figures

Figure 1

21 pages, 3324 KiB  
Article
Tripeptide-Loaded Liposomes as Multifunctional Components in Topical Formulations
by Michał Dymek, Maria José García-Celma, Elvira Escribano-Ferrer, Dawid Warszycki, Sławomir Kaźmierski, Łukasz Skoczylas, Małgorzata Tabaszewska and Elżbieta Sikora
Int. J. Mol. Sci. 2025, 26(11), 5321; https://doi.org/10.3390/ijms26115321 - 1 Jun 2025
Viewed by 841
Abstract
Modern dermocosmetics combine the effectiveness of active substances with the benefits of percutaneous penetration enhancers to address skin issues such as hyperpigmentation. In this study, three bioactive tripeptides (with amino acid sequences CSF, CVL, and CSN) with previously confirmed tyrosinase inhibition activity were [...] Read more.
Modern dermocosmetics combine the effectiveness of active substances with the benefits of percutaneous penetration enhancers to address skin issues such as hyperpigmentation. In this study, three bioactive tripeptides (with amino acid sequences CSF, CVL, and CSN) with previously confirmed tyrosinase inhibition activity were synthesized using the solid-phase synthesis method. The structures of the obtained peptides were determined. In addition, elastase in silico and in vitro inhibition assays were carried out. The tripeptides were subsequently encapsulated into liposomes, for which key physicochemical parameters were determined, including size, zeta potential, and encapsulation efficiency. The average diameter of the prepared liposomes was approximately 100 nm across all samples. The prepared carriers were found to be stable and exhibited no cytotoxicity toward reconstructed human epidermis cells. The peptides achieved an encapsulation efficiency of approximately 20–30%, with no significant differences observed between the cationic and anionic vesicles. Liposomes containing the CSF tripeptide, which showed the strongest tyrosinase-inhibiting effect, did not transport the peptide through the human skin in an ex vivo assay to permit quantification in the receptor solution, but facilitated penetration and retention of the tripeptide within the epidermis (4.65 ± 1.81 μg/cm2). These findings suggest that the prepared liposomes may serve as valuable carriers of bioactive tripeptides in anti-aging cosmetics. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 4624 KiB  
Article
Antifungal Efficacy of Luliconazole-Loaded Nanostructured Lipid-Carrier Gel in an Animal Model of Dermatophytosis
by Robab Ebrahimi Barogh, Seyyed Mobin Rahimnia, Mohsen Nosratabadi, Abolfazl Maleki, Fatemeh Khosravi Ebrahimi, Zahra Yahyazade, Iman Haghani, Pedram Ebrahimnejad, Majid Saeedi, Darius Armstrong-James, Mahdi Abastabar and Hamid Badali
J. Fungi 2025, 11(4), 324; https://doi.org/10.3390/jof11040324 - 19 Apr 2025
Viewed by 647
Abstract
Background: Trichophyton indotineae terbinafine-resistant infections are emerging in healthy individuals. Luliconazole, an imidazole antifungal that is effective against skin infections, faces challenges due to low water solubility and poor skin penetration. This study aimed to formulate a luliconazole-loaded nanostructured lipid-carrier (NLC) gel [...] Read more.
Background: Trichophyton indotineae terbinafine-resistant infections are emerging in healthy individuals. Luliconazole, an imidazole antifungal that is effective against skin infections, faces challenges due to low water solubility and poor skin penetration. This study aimed to formulate a luliconazole-loaded nanostructured lipid-carrier (NLC) gel in a Carbopol-based system to enhance drug absorption and efficacy in a guinea pig model of dermatophytosis. Methods: Luliconazole-loaded nanostructured lipid carriers (NLCs) were prepared using a solvent evaporation method and gel formulation. Skin absorption and retention were assessed via Franz diffusion cells. The antifungal efficacy was tested against T. indotineae in thirty guinea pigs with induced tinea corporis, divided into five treatment groups. Mycological, clinical, and histopathological evaluations were conducted, along with skin irritation studies for safety. Results: LCZ-NLC demonstrated significantly better skin penetration than simple luliconazole gel, with cumulative drug penetration of 71.8 ± 3.7 μg/cm2 versus 50.9 ± 4.2 μg/cm2 after 24 h. Both formulations achieved complete infection resolution after 21 and 28 days, with reduced inflammation and no local irritations. On day 21, the LCZ-NLC 1% gel significantly reduced lesion scores and mycological evidence of infection compared to the terbinafine-treated groups, untreated controls, and NLC-gel-treated group (p < 0.05). Histopathological analysis indicated a reduction in both epidermal thickening and fungal burden in the models that received treatment with the LCZ-NLC 1% gel. Conclusions: Luliconazole-loaded lipid carriers enhance drug absorption and efficacy, suggesting shorter treatment durations and improved patient outcomes for resistant fungal infections. However, further studies are warranted to correlate these findings with clinical outcomes. Full article
(This article belongs to the Special Issue Design and Mechanism of Action of Genomic-Based Antifungals)
Show Figures

Figure 1

19 pages, 4151 KiB  
Article
Evaluation of Olive Oil-Based Formulations Loaded with Baricitinib for Topical Treatment of Alopecia Areata
by Negar Beirampour, Mireia Mallandrich, Paola Bustos-Salgado, Valeri Domínguez-Villegas, Núria Garrós, Roya Mohammadi-Meyabadi, Beatriz Clares-Naveros, Maria Nuria Romero-Olid, Francisco J. Pérez-Cano, Marina Girbal, Maria José Rodríguez-Lagunas, Joaquim Suñer-Carbó and Ana Cristina Calpena
Pharmaceutics 2025, 17(4), 475; https://doi.org/10.3390/pharmaceutics17040475 - 5 Apr 2025
Viewed by 1631
Abstract
Background: Alopecia areata is an autoimmune disorder that causes hair loss in clumps about the size and shape of a quarter. The estimated prevalence of the disorder is approximately 1 in 1000 people, with a lifetime risk of approximately 2 percent. One of [...] Read more.
Background: Alopecia areata is an autoimmune disorder that causes hair loss in clumps about the size and shape of a quarter. The estimated prevalence of the disorder is approximately 1 in 1000 people, with a lifetime risk of approximately 2 percent. One of the systemic therapies for alopecia areata consists of the use of glucocorticoids or immunosuppressants. Methods: Baricitinib (BCT) is a Janus kinase (JAK) 1 and 2 selective inhibitor used as an immunosuppressant drug. In this study, three olive oil BCT formulations (Oil A, Oil B, and Oil C, which differ in their content in squalene, tocopherol, tyrosol, and hydroxytyrosol) have been developed for topical delivery. The formulations were physicochemically characterized and the in vitro drug release and ex vivo permeation through human skin tissues were assessed. Results: The results showed nearly identical viscosity across all three formulations, exhibiting Newtonian behavior. The mathematical modeling used to describe the drug release profiles was the one-site binding hyperbola for all formulations. Oil-based formulations showed a slow BCT penetration into human skin. Skin integrity remained intact during the experiments, with no signs of irritation or alterations observed. In addition, all the formulations proved their efficacy in vivo. Conclusions: Among the formulations, Oil A demonstrated the highest ability retention capacity (Qr = 1875 ± 124.32 ng/cm2) in the skin, making it an excellent candidate for further investigation in the treatment of alopecia areata. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

17 pages, 3317 KiB  
Article
Exploration of Ultrasound-Enhanced Transdermal Delivery Efficiency and Anti-Inflammatory Effect of Rutin
by Qing Yue, Bingbing He, Zhenyu Guo, Ningtao Zhang, Mei Zhang and Yufeng Zhang
Pharmaceuticals 2025, 18(4), 464; https://doi.org/10.3390/ph18040464 - 26 Mar 2025
Viewed by 1115
Abstract
Background: Rutin is a natural flavonoid extracted primarily from plants with anti-inflammatory and antioxidant properties, and it is highly valuable in the cosmetics industry. However, the poor transdermal permeability of rutin limits its application via transdermal administration. Previous studies have predominantly focused [...] Read more.
Background: Rutin is a natural flavonoid extracted primarily from plants with anti-inflammatory and antioxidant properties, and it is highly valuable in the cosmetics industry. However, the poor transdermal permeability of rutin limits its application via transdermal administration. Previous studies have predominantly focused on chemical methods for enhancing penetration. This study investigated the potential of ultrasound as a physical method by which to augment the transdermal absorption and anti-inflammatory effects of rutin. Method: Through in vitro diffusion experiments, we analyzed the effects of the ultrasonic frequency and intensity on percutaneous absorption. The optimal ultrasound parameters were determined based on the intradermal retention rate, which is defined as the proportion of intradermal retention to the total penetration. Parameters with higher retention rates were considered optimal. To validate the anti-inflammatory efficacy of rutin delivered using the ultrasound-assisted method, we employed a tape-stripping technique to induce inflammation in BALB/c nude mice. Eight mice were assigned to each treatment group: (A) self-repair (control group), (B) regular rutin treatment, and (C) ultrasound-assisted treatment. Results: The research findings indicate that ultrasound frequency and intensity of 1 MHz and 0.2 W/cm2, as well as 3 MHz and 0.2 W/cm2, result in the maximum proportion of rutin intradermal retention, exhibiting values 1.8 times (using porcine skin) and 2.63 times (using nude mouse skin) higher than those achieved without ultrasound, respectively. Group C showed the shortest recovery time and displayed complete skin barrier function restoration by the fourth day (p<0.05), whereas group A exhibited the slowest recovery. Conclusions: This study offers an innovative approach for the transdermal delivery of rutin to facilitate skin barrier function repair. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

39 pages, 3751 KiB  
Review
Multifunctional Hydrogel Microneedles (HMNs) in Drug Delivery and Diagnostics
by Hossein Omidian and Sumana Dey Chowdhury
Gels 2025, 11(3), 206; https://doi.org/10.3390/gels11030206 - 15 Mar 2025
Cited by 5 | Viewed by 3422
Abstract
Hydrogel microneedles (HMNs) have emerged as a transformative platform for minimally invasive drug delivery and biosensing, offering enhanced bioavailability, controlled drug release, and real-time biomarker detection. By leveraging swelling hydrogels, nanomaterial integration, and stimuli-responsive properties, HMNs provide precision medicine capabilities across diverse therapeutic [...] Read more.
Hydrogel microneedles (HMNs) have emerged as a transformative platform for minimally invasive drug delivery and biosensing, offering enhanced bioavailability, controlled drug release, and real-time biomarker detection. By leveraging swelling hydrogels, nanomaterial integration, and stimuli-responsive properties, HMNs provide precision medicine capabilities across diverse therapeutic and diagnostic applications. However, challenges remain in mechanical stability, as hydrogel-based MNs must balance flexibility with sufficient strength for skin penetration. Drug retention and controlled release require optimization to prevent premature diffusion and ensure sustained therapeutic effects. Additionally, biosensing accuracy is influenced by variability in interstitial fluid extraction and signal transduction. Clinical translation is hindered by regulatory hurdles, scalability concerns, and the need for extensive safety validation in human trials. This review critically examines the key materials, fabrication techniques, functional properties, and testing frameworks of HMNs while addressing these limitations. Furthermore, we explore future research directions in smart wearable MNs, AI-assisted biosensing, and hybrid drug–device platforms to optimize transdermal medicine. Overcoming these barriers will drive the clinical adoption of HMNs, paving the way for next-generation patient-centered therapeutics and diagnostics. Full article
(This article belongs to the Special Issue Polymeric Hydrogels for Biomedical Application)
Show Figures

Figure 1

25 pages, 2765 KiB  
Article
Development and Evaluation of Anti-Pollution Film-Forming Facial Spray Containing Coffee Cherry Pulp Extract
by Weeraya Preedalikit, Chuda Chittasupho, Pimporn Leelapornpisid, Sheng Qi and Kanokwan Kiattisin
Pharmaceutics 2025, 17(3), 360; https://doi.org/10.3390/pharmaceutics17030360 - 12 Mar 2025
Cited by 2 | Viewed by 984
Abstract
Background/Objectives: This study aimed to develop and evaluate an anti-pollution film-forming spray (FFS) containing coffee cherry pulp extract (FFS-CCS). The formulation was designed to create a protective skin barrier, improving skin health while defending against environmental pollutants. Its physical properties, dust resistance, [...] Read more.
Background/Objectives: This study aimed to develop and evaluate an anti-pollution film-forming spray (FFS) containing coffee cherry pulp extract (FFS-CCS). The formulation was designed to create a protective skin barrier, improving skin health while defending against environmental pollutants. Its physical properties, dust resistance, stability, skin penetration, and clinical effectiveness were assessed to ensure optimal performance and safety. Methods: Various polymers and a ternary solvent system were used to enhance the stability and solubility of bioactive compounds from the coffee cherry pulp extract. The formulations were characterized based on appearance, film formation, viscosity, pH, spray uniformity, spray pattern, angle, film thickness, and particle adhesion. Stability testing was conducted under different storage conditions. Skin penetration was assessed using Franz diffusion cells with Strat-M® membranes to simulate human skin. A single-blind, placebo-controlled trial with 42 participants was conducted over 60 days to evaluate the effects of FFS-CCS on skin hydration, tone, and wrinkle reduction. Clinical assessments were performed using a Corneometer, Mexameter, and Skin Visioscan. Results: The FFS1-CCS formulation, incorporating PVP K90 and a ternary solvent system, significantly improved the solubility, stability, and bioavailability of key bioactive compounds (chlorogenic acid, caffeine, and theophylline). Physical characterization confirmed uniform, transparent films with optimal viscosity and sprayability. Stability testing showed minimal degradation. Skin penetration and retention studies revealed enhanced retention of bioactive compounds with minimal systemic absorption. PVP K90, along with ethanol and propylene glycol, extended the compounds’ residence time on the skin, ensuring localized delivery. Clinically, FFS1-CCS significantly improved skin hydration, reduced roughness, lightened skin tone, and decreased erythema. Conclusions: The FFS1-CCS formulation utilizing PVP K90 significantly enhanced the stability, bioavailability, and skin retention of coffee cherry pulp extract, resulting in improved skin hydration, wrinkle reduction, and skin tone enhancement. These findings highlight the potential of coffee cherry pulp extract as a multifunctional, sustainable cosmeceutical ingredient, offering both anti-aging and environmental protection benefits, making it a promising solution for skincare applications. Full article
(This article belongs to the Special Issue Natural Products and Extracts Important for Skin Health and Diseases)
Show Figures

Figure 1

19 pages, 3915 KiB  
Article
Nanostructured Strategies for Melanoma Treatment—Part II: Targeted Topical Delivery of Curcumin via Poloxamer-Based Thermosensitive Hydrogels
by Valentina Paganini, Daniela Monti, Patrizia Chetoni, Susi Burgalassi, Andrea Cesari, Fabio Bellina and Silvia Tampucci
Pharmaceuticals 2025, 18(3), 337; https://doi.org/10.3390/ph18030337 - 27 Feb 2025
Viewed by 744
Abstract
Background/Objectives: Curcumin (CUR) is a natural compound with notable antitumor properties but faces limitations in topical applications due to poor aqueous solubility, instability, and insufficient skin penetration. To overcome these challenges, a nanomicellar formulation (TPGS30ELP15) was developed to enhance CUR solubility, stability, [...] Read more.
Background/Objectives: Curcumin (CUR) is a natural compound with notable antitumor properties but faces limitations in topical applications due to poor aqueous solubility, instability, and insufficient skin penetration. To overcome these challenges, a nanomicellar formulation (TPGS30ELP15) was developed to enhance CUR solubility, stability, and skin penetration. This study aimed at evaluating the skin permeation and retention of CUR when delivered through nanomicelles alone or combined with a thermosensitive hydrogel for potential melanoma therapy. Methods: A CUR-loaded nanomicellar formulation containing CUR 5 mM was developed, characterized by particle sizes of 12–25 nm. Skin permeation studies utilized pig ear skin to assess CUR localization using both HPLC quantitative analysis and confocal microscopy. To improve patient comfort and application efficiency, the nanomicellar dispersion was incorporated into a thermosensitive hydrogel based on 16% Kolliphor® P407 and was able to undergo a sol–gel transition at skin temperature (32–36 °C). Formulations were evaluated for physicochemical properties, stability, and CUR distribution within skin layers using in vitro permeation assays. Results: CUR-loaded nanomicelles demonstrated selective localization in the viable epidermis (100–150 µm depth), bypassing the stratum corneum. The addition of the thermosensitive hydrogel enhanced CUR retention and distribution, prolonging contact at the application site and providing a gradual release profile. The hydrogel’s sol–gel transition properties can facilitate ease of use and patient compliance. The combined system effectively delivered CUR to the basal epidermis, a target site for melanoma treatment, achieving therapeutically relevant drug concentrations. Conclusions: The incorporation of CUR-loaded nanomicelles into a thermosensitive hydrogel enhanced the solubility, stability, and targeted delivery of CUR to skin layers. This dual system represents a promising strategy for improving topical drug delivery for melanoma therapy, addressing limitations associated with CUR’s physicochemical properties while ensuring patient-friendly application and gradual drug release. Full article
(This article belongs to the Special Issue Self-Assembling Nanostructures for Cancer Therapy)
Show Figures

Figure 1

28 pages, 1342 KiB  
Review
Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems
by Sivakumar S. Moni, Jobran M. Moshi, Sabine Matou-Nasri, Shmoukh Alotaibi, Yousef M. Hawsawi, Mohamed Eltaib Elmobark, Ahlam Mohammed S. Hakami, Mohammed A. Jeraiby, Ahmed A. Sulayli and Hassan N. Moafa
Pharmaceutics 2025, 17(3), 296; https://doi.org/10.3390/pharmaceutics17030296 - 24 Feb 2025
Cited by 6 | Viewed by 1673
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, [...] Read more.
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, dendrimers, polymeric nanoparticles, and metallic nanoparticles as transformative solutions for precision melanoma therapy. This review summarizes findings from Web of Science, PubMed, EMBASE, Scopus, and Google Scholar and highlights the role of nanotechnology in overcoming melanoma treatment barriers. Nanoparticles facilitate passive and active targeting through mechanisms such as the enhanced permeability and retention (EPR) effect and functionalization with tumor-specific ligands, thereby improving the accuracy of drug delivery and reducing systemic toxicity. Stimuli-responsive systems and multi-stage targeting further improve therapeutic precision and overcome challenges such as poor tumor penetration and drug resistance. Emerging therapeutic platforms combine diagnostic imaging with therapeutic delivery, paving the way for personalized medicine. However, there are still issues with scalability, biocompatibility, and regulatory compliance. This comprehensive review highlights the potential of integrating nanotechnology with advances in genetics and proteomics, scalable, and patient-specific therapies. These interdisciplinary innovations promise to redefine the treatment of melanoma and provide safer, more effective, and more accessible treatments. Continued research is essential to bridge the gap between evidence-based scientific advances and clinical applications. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

15 pages, 1212 KiB  
Article
Implementation of Plum Skin as a Structuring Agent in Plum Spread
by Aleksandra Bajić, Biljana Cvetković, Jasna Mastilović, Miroslav Hadnađev, Marijana Djordjević, Miljana Djordjević and Bojana Filipčev
Foods 2025, 14(4), 697; https://doi.org/10.3390/foods14040697 - 18 Feb 2025
Viewed by 841
Abstract
Plum skin, a by-product of industrial plum juice production, is rich in phenolic bioactives, functional compounds, and dietary fibers. These compounds support health, while the fibers may also act as structuring agents in food processing. This study investigated the structuring properties of lyophilized [...] Read more.
Plum skin, a by-product of industrial plum juice production, is rich in phenolic bioactives, functional compounds, and dietary fibers. These compounds support health, while the fibers may also act as structuring agents in food processing. This study investigated the structuring properties of lyophilized plum skin (LPS) in functional plum spreads produced in laboratory (F-LS) and semi-industrial (F-IS) environments, compared to a control spread (CS). Textural and rheological properties were analyzed through penetration, spreadability, flow, and dynamic oscillatory tests. Total, soluble, and insoluble dietary fibers (TDF, SDF, and IDF) in LPS and plum purée (PP) were measured using the enzymatic gravimetric method, and pectic substances contents were quantified using the colorimetric carbazole method. Fourier transform infrared spectroscopy confirmed the presence of polysaccharides and pectins in LPS. LPS had higher TDF, SDF, and IDF compared to PP, with TDF in LPS at 38.98 ± 0.52 g/100 g d.m. and IDF as the predominant fraction. The pectin content in LPS was 0.73 ± 0.03 g/100 g d.m., and water retention capacity ranged from 3.63 to 3.86 g/g depending on temperature (room, 50, and 82 °C). Incorporating LPS into the F-IS spread significantly increased all textural and rheological parameters, with TDF three times higher (6.69 g/100 g) compared to CS. All samples exhibited viscoelastic gel-like behavior, and LPS was a statistically significant structuring agent in both functional spreads compared to CS. Full article
Show Figures

Graphical abstract

22 pages, 1489 KiB  
Review
Bioadhesive Nanoparticles in Topical Drug Delivery: Advances, Applications, and Potential for Skin Disorder Treatments
by Rashed M. Almuqbil and Bandar Aldhubiab
Pharmaceutics 2025, 17(2), 229; https://doi.org/10.3390/pharmaceutics17020229 - 10 Feb 2025
Cited by 4 | Viewed by 1731
Abstract
Skin disorders are the fourth most common cause of all diseases, which affect nearly one-third of the world’s population. Topical drug delivery can be effective in treating a range of skin disorders, including microbial infections, skin cancer, dermatitis, burn injury, wounds, and psoriasis. [...] Read more.
Skin disorders are the fourth most common cause of all diseases, which affect nearly one-third of the world’s population. Topical drug delivery can be effective in treating a range of skin disorders, including microbial infections, skin cancer, dermatitis, burn injury, wounds, and psoriasis. Bioadhesive nanoparticles (BNPs) can serve as an efficient topical drug delivery system as they can serve dual purposes as bioadhesives and nanocarriers, which can mediate targeted drug delivery, prolong retention time, and deepen drug penetration through skin layers. There is an increasing demand for BNP-based applications in medicine because of their various advantages, including biodegradability, flexibility, biocompatibility, and enhanced adhesive strength. A number of BNPs have already been developed and evaluated as potential topical drug delivery systems. In addition, a range of studies have already been carried out to evaluate the potential of BNPs in the treatment of various skin disorders, including atopic dermatitis, irritant contact dermatitis, skin cancer, psoriasis, microbial infections, wounds, and severe burn injuries. This review article is timely and unique, because it provides an extensive and unique summary of the recent advances of BNPs in the treatment of wide-ranging skin disorders. Moreover, this review also provides a useful discussion on the bioadhesion mechanism and various biopolymers that can be used to prepare BNPs. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems for the Treatment of Skin Disorders)
Show Figures

Graphical abstract

16 pages, 3222 KiB  
Article
High-Throughput Microfluidic Production of Ultrasmall Lecithin Nanoliposomes for High-Efficacy Transdermal Delivery and Skin-Aging Treatment
by Xiao Liang, Chan Lu, Fangqiao Zheng, Zhengyi Lan, Haoji Wang, Muhammad Shafiq, Xinxin Pan, Hangrong Chen and Ming Ma
Biomedicines 2025, 13(2), 322; https://doi.org/10.3390/biomedicines13020322 - 30 Jan 2025
Viewed by 1521
Abstract
Background: Liposome particles with smaller sizes could increase transdermal drug delivery efficacy for enhanced skin penetration. While microfluidic methods have enabled controlled liposome synthesis, achieving efficient production of ultrasmall nanoliposomes (NLPUS) with a size smaller than 40 nm yet remains an [...] Read more.
Background: Liposome particles with smaller sizes could increase transdermal drug delivery efficacy for enhanced skin penetration. While microfluidic methods have enabled controlled liposome synthesis, achieving efficient production of ultrasmall nanoliposomes (NLPUS) with a size smaller than 40 nm yet remains an unmet challenge. Methods: In this study, we employed a helical-blade-strengthened co-flow focusing (HBSCF) device to efficiently synthesize NLPUS, which demonstrated superior skin permeation and retention. Results: Liposome formulation primarily contains unsaturated lecithin, which endows an unprecedented capacity to NLPUS to scavenge reactive oxygen species (ROS). Moreover, NLPUS can effectively encapsulate a broad spectrum of anti-aging agents, including coenzyme Q10 (CoQ10), while preserving its physical properties. In a photoaged skin model, topical application of CoQ10-loaded NLPUS (CoQ10@NLPUS) inhibited ultraviolet B (UVB)-induced matrix metalloproteinase-1 (MMP-1) production, and promoted collagen type I (Col-I) synthesis in skin cells, thereby effectively rejuvenating the photoaged skin. Conclusions: This study presents a straightforward and efficient method for the production of NLPUS, thereby offering a promising platform for transdermal delivery of diverse therapeutic agents. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

33 pages, 2952 KiB  
Review
Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research
by Yujie Gao, Tianqi Xu, Yu Wang, Yanjinhui Hu, Shaoping Yin, Zhiguo Qin and Hua Yu
Pharmaceutics 2025, 17(1), 56; https://doi.org/10.3390/pharmaceutics17010056 - 3 Jan 2025
Cited by 10 | Viewed by 4852
Abstract
Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the [...] Read more.
Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the future of psoriasis diagnostics may involve genetic and immunological profiling to pinpoint biomarkers, enabling more accurate and timely interventions. The administration of psoriasis medications, whether oral, injectable, or topical, is associated with a range of side effects and compliance issues. Topical medications, despite their advantages in patient compliance and reduced systemic side effects, are hindered by the altered skin barrier in psoriasis, which impedes effective drug penetration and retention. In recent years, the development of novel transdermal drug delivery systems represents a promising frontier in psoriasis management. Nanotechnology-, microneedle- and dressing-based systems have demonstrated the potential for improved skin penetration, enhanced bioavailability, or extended retention time. Here, we will focus on the latest insights into the etiology, diagnostic methodologies, and therapeutic approaches for psoriasis, with a particular emphasis on the evolution and challenges of novel transdermal drug delivery systems. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

Back to TopTop