Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,666)

Search Parameters:
Keywords = size-fractioned particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6409 KiB  
Article
MICP-Treated Coral Aggregate and Its Application in Marine Concrete
by Rui Xu, Baiyu Li, Xiaokang Liu, Ben Peng, Guanghua Lu, Changsheng Yue and Lei Zhang
Materials 2025, 18(15), 3619; https://doi.org/10.3390/ma18153619 - 1 Aug 2025
Viewed by 205
Abstract
In marine engineering applications, substituting conventional crushed stone coarse aggregates with coral aggregates offers dual advantages: reduced terrestrial quarrying operations and minimized construction material transportation costs. However, the inherent characteristics of coral aggregates—low bulk density, high porosity, and elevated water absorption capacity—adversely influence [...] Read more.
In marine engineering applications, substituting conventional crushed stone coarse aggregates with coral aggregates offers dual advantages: reduced terrestrial quarrying operations and minimized construction material transportation costs. However, the inherent characteristics of coral aggregates—low bulk density, high porosity, and elevated water absorption capacity—adversely influence concrete workability and mechanical performance. To address these limitations, this investigation employed microbial-induced carbonate precipitation (MICP) for aggregate modification. The experimental design systematically evaluated the impacts of substrate concentration (1 mol/L) and mineralization period (14 days) on three critical parameters, mass gain percentage, water absorption reduction, and apparent density enhancement, across distinct particle size fractions (4.75–9.5 mm, 9.5–20 mm) and density classifications. Subsequent application trials assessed the performance of MICP-treated aggregates in marine concrete formulations. Results indicated that under a substrate concentration of 1 mol/L and mineralization period of 14 days, lightweight coral aggregates and coral aggregates within the 4.75–9.5 mm size fraction exhibited favorable modification effects. Specifically, their mass gain rates reached 11.75% and 11.22%, respectively, while their water absorption rates decreased by 32.22% and 34.75%, respectively. Apparent density increased from initial values of 1764 kg/m3 and 1930 kg/m3 to 2050 kg/m3 and 2207 kg/m3. Concrete mixtures incorporating modified aggregates exhibited enhanced workability and strength improvement at all curing ages. The 28-day compressive strengths reached 62.1 MPa (11.69% increment), 46.2 MPa (6.94% increment), and 60.1 MPa (14.91% increment) for the 4.75–9.5 mm, 9.5–20 mm, and continuous grading groups, respectively, compared to untreated counterparts. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

27 pages, 4302 KiB  
Article
Human Health Risk and Bioaccessibility of Arsenic in Wadis and Marine Sediments in a Coastal Lagoon (Mar Menor, Spain)
by Salvadora Martínez López, Carmen Pérez Sirvent, María José Martínez Sánchez and María Ángeles Esteban Abad
Toxics 2025, 13(8), 647; https://doi.org/10.3390/toxics13080647 - 30 Jul 2025
Viewed by 176
Abstract
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics [...] Read more.
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics and the main stream originating in the adjacent mining area, with water and sediment samples taken. The study area is representative of other areas in the vicinity of the Mar Menor Lagoon, which is one of the largest and most biodiverse coastal lagoons in the Mediterranean Sea. The general characteristics of the soil and water were determined for this study, as was the concentration of As in the soil and water samples. A granulometric separation was carried out into four different fractions (<2 mm, <250 µm, <100 µm, and <65 µm). The mineralogical composition, total As content, and bioaccessible As content are analysed in each of these fractions. This provides data with which to calculate the danger of arsenic (As) to human health by ingestion and to contribute to As bioaccessibility studies and the role played by the mineralogical composition and particle size of soil ingestion. The conclusions rule out residential use of this environment, although they allow for eventual tourist use and traditional agricultural use of the surrounding soils. Full article
Show Figures

Figure 1

26 pages, 2467 KiB  
Article
Antioxidant and Nutrient Profile of Tomato Processing Waste from the Mixture of Indigenous Croatian Varieties: Influence of Drying and Milling
by Tea Petković, Emerik Galić, Kristina Radić, Nikolina Golub, Jasna Jablan, Maja Bival Štefan, Tihomir Moslavac, Karla Grudenić, Ivana Rumora Samarin, Tomislav Vinković and Dubravka Vitali Čepo
Appl. Sci. 2025, 15(15), 8447; https://doi.org/10.3390/app15158447 - 30 Jul 2025
Viewed by 155
Abstract
Tomato processing waste (TPW) represents a valuable but underutilized by-product of the food industry with potential for valorization within bioeconomy models. This study investigated the chemical composition, antioxidant profile, and sanitary safety of TPW, analyzing the whole TPW; its fractions (peels and seeds) [...] Read more.
Tomato processing waste (TPW) represents a valuable but underutilized by-product of the food industry with potential for valorization within bioeconomy models. This study investigated the chemical composition, antioxidant profile, and sanitary safety of TPW, analyzing the whole TPW; its fractions (peels and seeds) and oil are obtained from TPW seeds. All samples showed contaminant levels within regulatory limits, confirming their safety for further applications. Various drying methods (air-drying at 70 °C and at 50 °C, lyophilization and vacuum drying) and grinding intensities were evaluated to determine their impact on TPW bioactive compounds retention and organoleptic characteristics. TPW exhibited valuable nutritional properties, particularly high protein and dietary fiber content while TPW oil was characterized with high monounsaturated fatty acid content. Results demonstrated that drying method and particle size significantly influenced the yield of bioactive compound and organoleptic properties, with either lyophilization or vacuum drying and finer milling generally enhancing the recovery of polyphenols, β-carotene, and lycopene and improving color intensity. This research provides the first characterization of the TPW obtained from Croatian indigenous tomato varieties, establishing a scientific foundation for its sustainable valorization and, in broader terms, supporting circular economy objectives and contributing to more resource-efficient food systems. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

27 pages, 3262 KiB  
Article
Energy-Efficient Gold Flotation via Coarse Particle Generation Using VSI and HPGR Comminution
by Sindhura Thatipamula and Sheila Devasahayam
Materials 2025, 18(15), 3553; https://doi.org/10.3390/ma18153553 - 29 Jul 2025
Viewed by 181
Abstract
This study investigates the impact of two comminution technologies—Vertical Shaft Impactors (VSI) and High-Pressure Grinding Rolls (HPGR)—on gold flotation performance, using ore samples from the Ballarat Gold Mine, Australia. The motivation stems from the growing need to improve energy efficiency and flotation recovery [...] Read more.
This study investigates the impact of two comminution technologies—Vertical Shaft Impactors (VSI) and High-Pressure Grinding Rolls (HPGR)—on gold flotation performance, using ore samples from the Ballarat Gold Mine, Australia. The motivation stems from the growing need to improve energy efficiency and flotation recovery in mineral processing, particularly under increasing economic and environmental constraints. Despite the widespread use of HPGR and VSI in the industry, limited comparative studies have explored their effects on downstream flotation behavior. Laboratory-scale experiments were conducted across particle size fractions (300–600 µm) using two collector types—Potassium Amyl Xanthate (PAX) and DSP002 (a proprietary dithiophosphate collector) to assess differences in flotation recovery, concentrate grade, and specific energy consumption. The results reveal that HPGR produces more fines and micro-cracks, enhancing liberation but also increasing gangue entrainment and energy demand. Conversely, VSI produces coarser, cubical particles with fewer slimes, achieving higher flotation grades and recoveries at lower energy input. VSI at 600 µm demonstrated the highest flotation efficiency (4241) with only 9.79 kWh/t energy input. These findings support the development of hybrid or tailored comminution strategies for improved flotation selectivity and sustainable processing. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

24 pages, 5054 KiB  
Article
Technology for the Production of Energy Briquettes from Bean Stalks
by Krzysztof Mudryk, Jarosław Frączek, Joanna Leszczyńska and Mateusz Krotowski
Energies 2025, 18(15), 4009; https://doi.org/10.3390/en18154009 - 28 Jul 2025
Viewed by 253
Abstract
Biomass is gaining increasing importance as a renewable energy source in the global energy mix, offering a viable alternative to fossil fuels and contributing to the decarbonization of the energy sector. Among various types of biomass, agricultural residues such as bean stalks represent [...] Read more.
Biomass is gaining increasing importance as a renewable energy source in the global energy mix, offering a viable alternative to fossil fuels and contributing to the decarbonization of the energy sector. Among various types of biomass, agricultural residues such as bean stalks represent a promising feedstock for the production of solid biofuels. This study analyzes the impact of particle size and selected briquetting parameters (pressure and temperature) on the physical quality of briquettes made from bean stalks. The experimental procedure included milling the raw material using #8, #12, and #16 mesh screens, followed by compaction under pressures of 27, 37, and 47 MPa. Additionally, the briquetting die was heated to 90 °C to improve the mechanical durability of the briquettes. The results showed that both particle size and die temperature significantly influenced the quality of the produced briquettes. Briquettes made from the 16 mm fraction, compacted at 60 °C and 27 MPa, exhibited a durability of 55.76%, which increased to 82.02% when the die temperature was raised to 90 °C. Further improvements were achieved by removing particles smaller than 1 mm. However, these measures did not enable achieving a net calorific value above 14.5 MJ·kg−1. Therefore, additional work was undertaken, involving the addition of biomass with higher calorific value to the bean stalk feedstock. In the study, maize straw and miscanthus straw were used as supplementary substrates. The results allowed for determining their minimum proportions required to exceed the 14.5 MJ·kg−1 threshold. In conclusion, bean stalks can serve as a viable feedstock for the production of solid biofuels, especially when combined with other biomass types possessing more favorable energy parameters. Their utilization aligns with the concept of managing local agricultural residues within decentralized energy systems and supports the development of sustainable bioenergy solutions. Full article
Show Figures

Figure 1

17 pages, 5410 KiB  
Article
Mineral Phase Transformation and Leaching Behavior During the Roasting–Acid–Leaching Process of Clay-Type Lithium Ore in the Qaidam Basin
by Xiaoou Zhang, Jing Zhao, Yan Li, Dong An, Huaigang Cheng, Yuliang Ma and Huiping Song
Minerals 2025, 15(8), 777; https://doi.org/10.3390/min15080777 - 24 Jul 2025
Viewed by 166
Abstract
To address lithium extraction from clay-type lithium ore from the Qaidam Basin, this study identified key controlling factors through particle fractionation, acid-leaching–roasting experiments, and mineral characterization. The results demonstrate that particle size optimization enriched the lithium to 87.65 ppm, where a 74% leaching [...] Read more.
To address lithium extraction from clay-type lithium ore from the Qaidam Basin, this study identified key controlling factors through particle fractionation, acid-leaching–roasting experiments, and mineral characterization. The results demonstrate that particle size optimization enriched the lithium to 87.65 ppm, where a 74% leaching rate was achieved with 65 ppm extraction, which established intermediate-sized samples as optimal. During acid leaching, adsorbed lithium ions with a phyllosilicate interlayer were released via the ion exchange process instead of mineral dissolution, as verified by the Li-O/S-O peak shifts in the FTIR spectra. The roasting induced hydroxyl elimination, carbonate decomposition, and silicate restructuring but triggered lithium encapsulation via mineral phase reorganization, which caused a sharp leaching rate decline. Effective lithium extraction requires integrated particle size screening, acid-leaching optimization, and roasting-induced phase encapsulation disruption. This study established theoretical foundations for clay-type lithium ore exploitation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 734 KiB  
Article
The Influence of Electrostatic Separation Parameters on the Recovery of Metals from Pre-Crushed PCBs
by Antonio Manuel Lopez-Paneque, Victoria Humildad Gallardo García-Orta, Jose Maria Gallardo, Ranier Enrique Sepúlveda-Ferrer and Ernesto Chicardi
Metals 2025, 15(8), 826; https://doi.org/10.3390/met15080826 - 23 Jul 2025
Viewed by 237
Abstract
Electrostatic separation is a promising technology for the recovery of valuable metals from electronic waste, particularly from printed circuit boards (PCBs). This study explores the application of electrostatic separation for the selective recovery of metallic and non-metallic fractions from crushed PCBs (PCBs). The [...] Read more.
Electrostatic separation is a promising technology for the recovery of valuable metals from electronic waste, particularly from printed circuit boards (PCBs). This study explores the application of electrostatic separation for the selective recovery of metallic and non-metallic fractions from crushed PCBs (PCBs). The process exploits the differences in electrical properties between conductive metals and non-conductive polymers and ceramics, facilitating their separation through applied electric fields. The raw materials were pre-treated via mechanical comminution using shredders and hammer mills to achieve an optimal particle size distribution (<3 mm), which enhances separation efficiency. Ferrous materials were removed prior to electrostatic separation to improve process selectivity. Key operational parameters, including particle size, charge accumulation, environmental conditions, and separation efficiency, were systematically analysed. The results demonstrate that electrostatic separation effectively recovers high-value metals such as copper and gold while minimizing material losses. Additionally, the process contributes to the sustainability of e-waste recycling by enabling the recovery of non-metallic fractions for potential secondary applications. This work underscores the significance of electrostatic separation as a viable technique for e-waste management and highlights optimization strategies for enhancing its performance in large-scale recycling operations. Full article
Show Figures

Figure 1

23 pages, 6601 KiB  
Article
Effect of Hemp Shive Granulometry on the Thermal Conductivity of Hemp–Lime Composites
by Wojciech Piątkiewicz, Piotr Narloch, Zuzanna Wólczyńska and Joanna Mańczak
Materials 2025, 18(15), 3458; https://doi.org/10.3390/ma18153458 - 23 Jul 2025
Viewed by 540
Abstract
This study investigates the effect of hemp shive granulometry on the thermal conductivity and microstructure of hemp–lime composites. Three distinct particle size fractions—fine, medium, and coarse—were characterized using high-resolution image analysis to determine geometric parameters such as Feret diameters, circularity, and elongation. Composite [...] Read more.
This study investigates the effect of hemp shive granulometry on the thermal conductivity and microstructure of hemp–lime composites. Three distinct particle size fractions—fine, medium, and coarse—were characterized using high-resolution image analysis to determine geometric parameters such as Feret diameters, circularity, and elongation. Composite mixtures with varying binder-to-shive and water-to-shive ratios were prepared and compacted at a consistent level to isolate the influence of aggregate granulometry on thermal performance. Results demonstrate a clear inverse relationship between particle size and thermal conductivity, with coarse fractions reducing thermal conductivity by up to 7.6% compared to fine fractions. Composite density was also affected, decreasing with increasing particle size, confirming the impact of granulometry on pore structure and packing density. However, binder content exhibited the most significant effect on thermal conductivity, with a 20% increase observed for higher binder-to-shive ratios irrespective of shive size. The study further establishes that a 15 g sample size (~2400 particles) provides sufficient statistical accuracy for granulometric characterization using image analysis. These findings provide critical insights for optimizing hemp–lime composites for enhanced thermal insulation performance, supporting sustainable construction practices by informing material formulation and processing parameters. Full article
Show Figures

Figure 1

20 pages, 2108 KiB  
Article
Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections
by Luis Monrreal-Ortega, Rocío Iturriaga-Gallardo, Andrea Vilicic-Rubio, Pedro Torres, Patricio Leyton, Javier O. Morales, Tania F. Bahamondez-Canas and Daniel Moraga-Espinoza
Gels 2025, 11(8), 567; https://doi.org/10.3390/gels11080567 - 23 Jul 2025
Viewed by 304
Abstract
Chronic lung infection is the main predictor of morbidity and mortality in cystic fibrosis (CF), and current pharmacological alternatives are ineffective against Pseudomonas aeruginosa infections. We developed ciprofloxacin (CIP) for inhalation, aiming at improving its solubility through the formation of an amorphous solid [...] Read more.
Chronic lung infection is the main predictor of morbidity and mortality in cystic fibrosis (CF), and current pharmacological alternatives are ineffective against Pseudomonas aeruginosa infections. We developed ciprofloxacin (CIP) for inhalation, aiming at improving its solubility through the formation of an amorphous solid dispersion (ASD) using gelatin (GA). CIP and GA were dissolved in varying ratios and then spray-dried, obtaining CIP-GA microspheres in a single step. The dissolution rate, size distribution, morphology, and aerodynamic properties of CIP-GA microspheres were studied, as well as their antimicrobial activity on P. aeruginosa biofilms. Microspheres formulated with a higher GA ratio increased the dissolution of CIP ten-fold at 6 h compared to gelatin-free CIP. Formulations with 75% GA or more could form ASDs and improve CIP’s dissolution rate. CIP-GA microspheres outperformed CIP in eradicating P. aeruginosa biofilm at 24 h. The spray-drying process produced CIP-GA microspheres with good aerodynamic properties, as indicated by a fine particle fraction (FPF) of 67%, a D50 of 3.52 μm, and encapsulation efficiencies above 70%. Overall, this study demonstrates the potential of gelatin to enhance the solubility of poorly soluble drugs by forming ASDs. As an FDA-approved excipient for lung delivery, these findings are valuable for particle engineering and facilitating the rapid translation of technologies to the market. Full article
Show Figures

Graphical abstract

17 pages, 4206 KiB  
Article
Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media
by Yuhao Ai, Zhifeng Wan, Han Xu, Yan Li, Yijia Sun, Jingya Xi, Hongfan Hou and Yihang Yang
Water 2025, 17(14), 2115; https://doi.org/10.3390/w17142115 - 16 Jul 2025
Viewed by 272
Abstract
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by [...] Read more.
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by soil matrix particle size distribution. Changes in the DNE across porous media with discrete particle size fractions are investigated via stepwise drying experiments. Through quantification of saturation–capillary pressure hysteresis and DNE metrics, three critical signatures are identified: (1) the temporal lag between peak capillary pressure and minimum water saturation; (2) the pressure gap between transient and equilibrium states; and (3) residual water saturation. In the four experimental sets, with the finest material (Test 1), the peak capillary pressure consistently precedes the minimum water saturation by up to 60 s. Conversely, with the coarsest material (Test 4), peak capillary pressure does not consistently precede minimum saturation, with a maximum lag of only 30 s. The pressure gap between transient and equilibrium states reached 14.04 cm H2O in the finest sand, compared to only 2.65 cm H2O in the coarsest sand. Simultaneously, residual water saturation was significantly higher in the finest sand (0.364) than in the coarsest sand (0.086). The results further reveal that the intensity of the DNE scales inversely with particle size and linearly with wetting phase saturation (Sw), exhibiting systematic decay as Sw decreases. Coarse media exhibit negligible hysteresis due to suppressed capillary retention; this is in stark contrast with fine sands, in which the DNE is observed to persist in advanced drying stages. These results establish pore geometry and capillary dominance as fundamental factors controlling non-equilibrium fluid dynamics, providing a mechanistic framework for the refinement of multi-phase flow models in heterogeneous porous systems. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

129 pages, 6810 KiB  
Review
Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
by Julian Jose Riccardo, Pedro Marcelo Pasinetti, Jose Luis Riccardo and Antonio Jose Ramirez-Pastor
Entropy 2025, 27(7), 750; https://doi.org/10.3390/e27070750 - 14 Jul 2025
Viewed by 245
Abstract
The statistical mechanics of structured particles with arbitrary size and shape adsorbed onto discrete lattices presents a longstanding theoretical challenge, mainly due to complex spatial correlations and entropic effects that emerge at finite densities. Even for simplified systems such as hard-core linear k [...] Read more.
The statistical mechanics of structured particles with arbitrary size and shape adsorbed onto discrete lattices presents a longstanding theoretical challenge, mainly due to complex spatial correlations and entropic effects that emerge at finite densities. Even for simplified systems such as hard-core linear k-mers, exact solutions remain limited to low-dimensional or highly constrained cases. In this review, we summarize the main theoretical approaches developed by our research group over the past three decades to describe adsorption phenomena involving linear k-mers—also known as multisite occupancy adsorption—on regular lattices. We examine modern approximations such as an extension to two dimensions of the exact thermodynamic functions obtained in one dimension, the Fractional Statistical Theory of Adsorption based on Haldane’s fractional statistics, and the so-called Occupation Balance based on expansion of the reciprocal of the fugacity, and hybrid approaches such as the semi-empirical model obtained by combining exact one-dimensional calculations and the Guggenheim–DiMarzio approach. For interacting systems, statistical thermodynamics is explored within generalized Bragg–Williams and quasi-chemical frameworks. Particular focus is given to the recently proposed Multiple Exclusion statistics, which capture the correlated exclusion effects inherent to non-monomeric particles. Applications to monolayer and multilayer adsorption are analyzed, with relevance to hydrocarbon separation technologies. Finally, computational strategies, including advanced Monte Carlo techniques, are reviewed in the context of high-density regimes. This work provides a unified framework for understanding entropic and cooperative effects in lattice-adsorbed polyatomic systems and highlights promising directions for future theoretical and computational research. Full article
(This article belongs to the Special Issue Statistical Mechanics of Lattice Gases)
Show Figures

Figure 1

18 pages, 2052 KiB  
Article
Distribution Characteristics of Cadmium in Soil Aggregates and Their Regulating Effects on Cd Bioavailability
by Ying Chen, Ya Zhang, Hanqing Li and Shiqiang Wei
Agriculture 2025, 15(14), 1514; https://doi.org/10.3390/agriculture15141514 - 14 Jul 2025
Viewed by 316
Abstract
Soil aggregates play critical roles in regulating the behavior of heavy metal in soils. To understand the distribution of cadmium (Cd) in aggregates of different soil types, as well as their roles in regulating the Cd bioavailability of bulk soils, four major arable [...] Read more.
Soil aggregates play critical roles in regulating the behavior of heavy metal in soils. To understand the distribution of cadmium (Cd) in aggregates of different soil types, as well as their roles in regulating the Cd bioavailability of bulk soils, four major arable soils, including acidic, neutral, and calcareous purple soils and calcareous yellow soil (APS, NPS, CPS, and CYS), were sampled from Chongqing, China, for aggregate separation and determination of the total Cd(T-Cd) distribution, fractionation, and extractability in various-sized aggregates. A pot experiment with ryegrass (Lolium perenne L.) was conducted to evaluate the Cd bioavailability in bulk soils as influenced by aggregates. The results show that the composition of soil aggregates varies a lot among soils: lower soil pH tends to increase the proportion of macroaggregates while decreasing that of smaller aggregates. The Cd distribution, HCl-extractability, and active fraction (AF, T-Cd/HCl-Cd) in aggregates are all soil type-dependent, with pH and particle size being the main determining factors; the distribution pattern of Cd concentrated in smaller aggregates is only found for CPS and CYS (pH > 7.5) upon exogenous Cd addition, though the finest aggregates (silt–clay, <0.053 mm) consistently exhibited the highest Cd enrichment for all tested soils. The Cd extractability and AF values in all aggregates show a sequence of APS > NPS > CPS > CYS, indicating the fundamental influence of soil pH on Cd availability. Higher AF values over bulk soils, either in silt–clay aggregates or in microaggregates (0.053–0.25 mm), whereas lower AF in macroaggregates (1–2 mm) are found for APS and NPS, which correspond to the relative portions of Ex-Cd and Fe/Mn oxide-bound Cd (Fe/Mn-Cd) in these aggregates. In contrast, less variation of AF values among aggregates is observed for CPS and CYS and for APS/NPS upon Cd addition. Pot experiments demonstrated strong positive correlations between ryegrass Cd uptake and HCl-Cd in silt–clay aggregates and T-Cd in microaggregates, while a negative correlation was observed with T-Cd in macroaggregates. These findings supply new insight into the mechanisms of aggregates in controlling Cd bioavailability in bulk soils and shed light on the development of new strategies for remediating Cd-polluted soils. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Remediation in Agricultural Soils)
Show Figures

Figure 1

22 pages, 3791 KiB  
Article
Voxel Interpolation of Geotechnical Properties and Soil Classification Based on Empirical Bayesian Kriging and Best-Fit Convergence Function
by Yelbek Utepov, Aliya Aldungarova, Assel Mukhamejanova, Talal Awwad, Sabit Karaulov and Indira Makasheva
Buildings 2025, 15(14), 2452; https://doi.org/10.3390/buildings15142452 - 12 Jul 2025
Viewed by 280
Abstract
To support bearing capacity estimates, this study develops and tests a geoprocessing workflow for predicting soil properties using Empirical Bayesian Kriging 3D and a classification function. The model covers a 183 m × 185 m × 24 m site in Astana (Kazakhstan), based [...] Read more.
To support bearing capacity estimates, this study develops and tests a geoprocessing workflow for predicting soil properties using Empirical Bayesian Kriging 3D and a classification function. The model covers a 183 m × 185 m × 24 m site in Astana (Kazakhstan), based on 16 boreholes (15–24 m deep) and 77 samples. Eight geotechnical properties were mapped in 3D voxel models (812,520 voxels at 1 m × 1 m × 1 m resolution): cohesion (c), friction angle (φ), deformation modulus (E), plasticity index (PI), liquidity index (LI), porosity (e), particle size (PS), and particle size distribution (PSD). Stratification patterns were revealed with ~35% variability. Maximum φ (34.9°), E (36.6 MPa), and PS (1.29 mm) occurred at 8–16 m; c (33.1 kPa) and PSD peaked below 16 m, while PI and e were elevated in the upper and lower strata. Strong correlations emerged in pairs φ-E-PS (0.91) and PI-e (0.95). Classification identified 10 soil types, including one absent in borehole data, indicating the workflow’s capacity to detect hidden lithologies. Predicted fractions of loams (51.99%), sandy loams (22.24%), and sands (25.77%) matched borehole data (52%, 26%, 22%). Adjacency analysis of 2,394,873 voxel pairs showed homogeneous zones in gravel–sandy soils (28%) and stiff loams (21.75%). The workflow accounts for lateral and vertical heterogeneity, reduces subjectivity, and is recommended for digital subsurface 3D mapping and construction design optimization. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Structural Characterization of Micronized Lignocellulose Date Pits as Affected by Water Sonication Followed by Alcoholic Fractionations
by Khalid Al-Harrasi, Nasser Al-Habsi, Mohamed A. Al-Kindi, Linghong Shi, Hafiz A. R. Suleria, Muthupandian Ashokkumar and Mohammad Shafiur Rahman
Int. J. Mol. Sci. 2025, 26(14), 6644; https://doi.org/10.3390/ijms26146644 - 11 Jul 2025
Viewed by 269
Abstract
Date pits are considered waste, and micronized date pit powder could be developed for use in foods and bio-products. In this study, micronized date pit powders were extracted by alcoholic sedimentation after ultrasound treatment. The control was considered untreated, i.e., without sonication. Six [...] Read more.
Date pits are considered waste, and micronized date pit powder could be developed for use in foods and bio-products. In this study, micronized date pit powders were extracted by alcoholic sedimentation after ultrasound treatment. The control was considered untreated, i.e., without sonication. Six micronized fractions (i.e., three from control and three from treated) were prepared by three stages of alcoholic sedimentation. In the case of untreated date pit powder, the average particle size of the fractionated date pit powder (i.e., residue) from three stages of alcoholic sedimentation varied from 89 to 164 µm, while ultrasonic treatment showed variation from 39 to 65 µm. The average particle size of the supernatant fractions of untreated date pit powder varied from 22 to 63 µm, while ultrasonic treatment showed variation from 18 to 44 µm. Ultrasound treatment produced smaller particles. In all cases, Scanning Electron Microscopy (SEM) showed that supernatant fractions contained lumped particles compared to the residue fractions. Transmission Electron Microscopy (TEM) showed the presence of nanoparticles in all extracted fractions. Two glass transitions were observed in all fractions except for the residue from the first sedimentation stage. In addition, higher levels of degradation in the fractionated date pits could be achieved by ultrasonic treatment, as is evident from the Fourier Transform Infrared (FTIR) analysis. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

22 pages, 2474 KiB  
Article
A Rapid Sand Gradation Detection Method Based on Dual-Camera Fusion
by Shihao Zhang, Yang Zhang, Song Sun, Xinghai Yuan, Haoxuan Sun, Heng Wang, Yi Yuan, Dan Luo and Chuanyun Xu
Buildings 2025, 15(14), 2404; https://doi.org/10.3390/buildings15142404 - 9 Jul 2025
Viewed by 229
Abstract
Precise grading of manufactured sand is vital to concrete performance, yet standard sieve tests, though accurate, are too slow for online quality control. Thus, we devised an image-based inspection method combining a dual-camera module with a Temporal Interval Sampling Strategy (TISS) to enhance [...] Read more.
Precise grading of manufactured sand is vital to concrete performance, yet standard sieve tests, though accurate, are too slow for online quality control. Thus, we devised an image-based inspection method combining a dual-camera module with a Temporal Interval Sampling Strategy (TISS) to enhance throughput while maintaining precision. In this design, a global wide-angle camera captures the entire particle field, whereas a local high-magnification camera focuses on fine fractions. TISS selects only statistically representative frames, effectively eliminating redundant data. A lightweight segmentation algorithm based on geometric rules cleanly separates overlapping particles and assigns size classes using a normal-distribution classifier. In tests on ten 500 g batches of manufactured sand spanning fine, medium, and coarse gradations, the system processed each batch in an average of 7.8 min using only 34 image groups. It kept the total gradation error within 12% and the fineness-modulus deviation within ±0.06 compared to reference sieving. These results demonstrate that the combination of complementary optics and targeted sampling can provide a scalable, real-time solution. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

Back to TopTop