Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = six degree of freedom (6DoF) motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8082 KiB  
Article
NPS6D100—A 6D Nanopositioning System with Sub-10 nm Performance in a Ø100 mm × 10 mm Workspace
by Steffen Hesse, Alex Huaman, Michael Katzschmann and Ludwig Herzog
Actuators 2025, 14(8), 361; https://doi.org/10.3390/act14080361 - 22 Jul 2025
Viewed by 164
Abstract
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform [...] Read more.
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform (or slider) in all DOFs. Based on an integrated planar direct drive concept, the system is enhanced by precise vertical actuation and full 6D output feedback control. The mechanical structure, drive architecture, guiding, and measurement subsystems are described in detail, along with experimental results that confirm sub-10 nm servo errors under constant setpoint operation and in synchronized multi-axis motion scenarios. With its scalable and low-disturbance design, the NPS6D100 is well suited as a nanopositioning platform for sub-10 nm applications in nanoscience and precision metrology. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

20 pages, 2645 KiB  
Article
NMPC-Based 3D Path Tracking of a Bioinspired Foot-Wing Amphibious Robot
by Heqiang Cao, Hailong Wang and Zhiqiang Hu
J. Mar. Sci. Eng. 2025, 13(6), 1043; https://doi.org/10.3390/jmse13061043 - 26 May 2025
Viewed by 309
Abstract
To achieve accurate 3D path tracking of a foot-wing hybrid-driven amphibious biomimetic robot under periodically varying forces, this study analyzes the periodic propulsion forces generated by the flapping motion of the robot’s feet and wings, along with the nonlinear hydrodynamic effects during underwater [...] Read more.
To achieve accurate 3D path tracking of a foot-wing hybrid-driven amphibious biomimetic robot under periodically varying forces, this study analyzes the periodic propulsion forces generated by the flapping motion of the robot’s feet and wings, along with the nonlinear hydrodynamic effects during underwater motion. To simplify the resulting complex force expressions, the scaling function averaging method is applied. Consequently, an accurate six-degree-of-freedom (6-DOF) dynamic model is established, in which the characteristic parameters of foot-wing flapping are adopted as control inputs. Based on this dynamic model, a nonlinear state-space representation of the robot’s underwater motion is constructed. In this formulation, 3D path tracking—derived from the Line-of-Sight (LOS) guidance method—and attitude stabilization are jointly defined as control objectives. To this end, a nonlinear model predictive control (NMPC) algorithm is employed to compute optimal control inputs, as it effectively addresses the challenges of strong nonlinearity, coupling effects, and multi-objective optimization. Finally, simulation experiments are conducted to validate the proposed control strategy. The results demonstrate that the robot is capable of accurately following the desired path. Furthermore, compared with conventional PID control, the NMPC approach significantly improves tracking stability and enhances the overall motion performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 15164 KiB  
Article
Coordinated Locomotion Control for a Quadruped Robot with Bionic Parallel Torso
by Yaguang Zhu, Ao Cao, Zhimin He, Mengnan Zhou and Ruyue Li
Biomimetics 2025, 10(5), 335; https://doi.org/10.3390/biomimetics10050335 - 20 May 2025
Viewed by 595
Abstract
This paper presents the design and control of a quadruped robot equipped with a six-degree-of-freedom (6-DOF) bionic active torso based on a parallel mechanism. Inspired by the compliant and flexible torsos of quadrupedal mammals, the proposed torso structure enhances locomotion performance [...] Read more.
This paper presents the design and control of a quadruped robot equipped with a six-degree-of-freedom (6-DOF) bionic active torso based on a parallel mechanism. Inspired by the compliant and flexible torsos of quadrupedal mammals, the proposed torso structure enhances locomotion performance by enabling coordinated motion between the torso and legs. A complete kinematic model of the bionic torso and the whole body of the quadruped robot is developed. To address the variation in inertial properties caused by torso motion, a model predictive control (MPC) strategy with a variable center of mass (CoM) is proposed for integrated whole-body motion control. Comparative simulations under trot gait are conducted between rigid-torso and active-torso configurations. Results show that the active torso significantly improves gait flexibility, postural stability, and locomotion efficiency. This study provides a new approach to enhancing biomimetic locomotion in quadruped robots through active torso-leg coordination. Full article
(This article belongs to the Special Issue Recent Advances in Bioinspired Robot and Intelligent Systems)
Show Figures

Figure 1

25 pages, 58457 KiB  
Article
Design, Modeling, and Experimental Validation of a Bio-Inspired Rigid–Flexible Continuum Robot Driven by Flexible Shaft Tension–Torsion Synergy
by Jiaxiang Dong, Quanquan Liu, Peng Li, Chunbao Wang, Xuezhi Zhao and Xiping Hu
Biomimetics 2025, 10(5), 301; https://doi.org/10.3390/biomimetics10050301 - 8 May 2025
Viewed by 604
Abstract
This paper presents a bio-inspired rigid–flexible continuum robot driven by flexible shaft tension–torsion synergy, tackling the trade-off between actuation complexity and flexibility in continuum robots. Inspired by the muscular arrangement of octopus arms, enabling versatile multi-degree-of-freedom (DoF) movements, the robot achieves 6-DoF motion [...] Read more.
This paper presents a bio-inspired rigid–flexible continuum robot driven by flexible shaft tension–torsion synergy, tackling the trade-off between actuation complexity and flexibility in continuum robots. Inspired by the muscular arrangement of octopus arms, enabling versatile multi-degree-of-freedom (DoF) movements, the robot achieves 6-DoF motion and 1-DoF gripper opening and closing movement with only six flexible shafts, simplifying actuation while boosting dexterity. A comprehensive kinetostatic model, grounded in Cosserat rod theory, is developed; this model explicitly incorporates the coupling between the spinal rods and flexible shafts, the distributed gravitational effects of spacer disks, and friction within the guide tubes. Experimental validation using a physical prototype reveals that accounting for spacer disk gravity diminishes the maximum shape prediction error from 20.56% to 0.60% relative to the robot’s total length. Furthermore, shape perception experiments under no-load and 200 g load conditions show average errors of less than 2.01% and 2.61%, respectively. Performance assessments of the distal rigid joint showcased significant dexterity, including a 53° grasping range, 360° continuous rotation, and a pitching range from −40° to +45°. Successful obstacle avoidance and long-distance target reaching experiments further demonstrate the robot’s effectiveness, highlighting its potential for applications in medical and industrial fields. Full article
(This article belongs to the Special Issue Biologically Inspired Design and Control of Robots: Second Edition)
Show Figures

Figure 1

23 pages, 3258 KiB  
Article
Singular Configuration Analysis of Modular-Driven 4- and 6-DoF Parallel Topology Robots
by Zoltán Forgó, Ferenc Tolvaly-Roșca and Attila Csobán
Robotics 2025, 14(5), 61; https://doi.org/10.3390/robotics14050061 - 2 May 2025
Viewed by 907
Abstract
The number of applications of parallel topology robots in industry is growing, and the interest of academics in finding new solutions and applications to implement such mechanisms is present all over the world. Industrywide, the most commonly used motion types need four- and [...] Read more.
The number of applications of parallel topology robots in industry is growing, and the interest of academics in finding new solutions and applications to implement such mechanisms is present all over the world. Industrywide, the most commonly used motion types need four- and six-degrees-of-freedom (DoF) robots. While there are commercial variants from different robot vendors, this study offers new alternatives to these. Based on Lie algebra synthesis, symmetrical parallel structures are identified, according to certain rules. Implementing 2-DoF actuation modules, the number of robot limbs is reduced compared to existing commercial robot structures. In terms of the applicability of a parallel mechanism (also concerning the control algorithm), it is important to determine singular configurations. Therefore, in addition to the kinematic schematics of the newly proposed mechanisms, their singular configurations are also discussed. Based on some dimensional simplifications (without a loss of generality), the conditions for the singular configurations are enumerated for the presented parallel topology robots with symmetrical kinematic chains. Finally, a comparison of the proposed mechanism is presented, considering its singular configurations. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

16 pages, 6610 KiB  
Article
Numerical Simulation of a Bird-Inspired UAV Which Turns Without a Tail Through Proverse Yaw
by Wee-Beng Tay, Timothy Shawn Jie-Sheng Chong, Jia-Qiang Chan, Woei-Leong Chan and Boo-Cheong Khoo
Biomimetics 2025, 10(4), 253; https://doi.org/10.3390/biomimetics10040253 - 21 Apr 2025
Viewed by 476
Abstract
This study numerically explores a bird-inspired tail-less unmanned aerial vehicle (UAV) design which can turn through proverse yaw by using a bell-shaped spanload wing configuration. The research methodology consists of two phases. In the first phase, the objective is to use computational fluid [...] Read more.
This study numerically explores a bird-inspired tail-less unmanned aerial vehicle (UAV) design which can turn through proverse yaw by using a bell-shaped spanload wing configuration. The research methodology consists of two phases. In the first phase, the objective is to use computational fluid dynamics (CFD) simulations to validate that the bell-shaped spanload wing configuration produces proverse yaw, instead of adverse yaw, similar to other typical wing configurations. This allows the UAV to turn without a tail. The solver used is OpenFOAM and a special self-written routine is used to allow the grid to move together with the UAV, which has six degrees-of-freedom (6DOFs) to translate and rotate when its ailerons deflect after reaching steady motion. In the second phase, we investigate the effect of the sweep angle on the proverse yaw. Results show that proverse yaw is indeed produced due to the bell-shaped spanload wing configuration, as CFD simulation shows the UAV turning after aileron deflection. The effect of the sweep angle is more profound on the proverse yaw as simulations show that increasing the sweep angle by 10° increases the turning effect slightly, but decreasing it by 10° instead results in adverse yaw. These findings will have important implications for improving aircraft efficiencies and the development of wing designs. Full article
(This article belongs to the Special Issue Bioinspired Flapping Wing Aerodynamics: Progress and Challenges)
Show Figures

Figure 1

19 pages, 11253 KiB  
Article
Analysis of the Main Influencing Factors of Marine Environment on the Nuclear Pressure Vessel of Floating Nuclear Power Plants
by Fuxuan Ma, Meng Zhang and Xianqiang Qu
J. Mar. Sci. Eng. 2025, 13(4), 795; https://doi.org/10.3390/jmse13040795 - 16 Apr 2025
Viewed by 407
Abstract
Nuclear energy inherently possesses both immense utility and significant risks. To ensure global safety, designers of floating nuclear power plants (FNPPs) must thoroughly consider the influence of the marine environment on the reactor pressure vessel (RPV). Wave loads act on the hull of [...] Read more.
Nuclear energy inherently possesses both immense utility and significant risks. To ensure global safety, designers of floating nuclear power plants (FNPPs) must thoroughly consider the influence of the marine environment on the reactor pressure vessel (RPV). Wave loads act on the hull of an FNPP, causing structural deformation, which is subsequently transferred to the RPV. Additionally, wave-induced forces generate six degrees of freedom (6-DOF) motion in the hull, resulting in inertial loads. Consequently, the RPV is subjected to both deformation loads transmitted from the hull and inertial loads associated with the 6-DOF motion. To accurately account for the effects of the marine environment while minimizing the computational cost of RPV fatigue analysis, it is essential to identify the primary influencing factors. This study determined that the predominant factors affecting RPV fatigue in an FNPP were the hull’s pitch, roll, and yaw motions. In mechanical analyses of the RPV, including ultimate strength and fatigue assessments, only rotational inertial loads need to be considered, while the influence of translational inertial loads and hull deformation can be neglected. Full article
(This article belongs to the Special Issue Wave Loads on Offshore Structure)
Show Figures

Figure 1

42 pages, 16651 KiB  
Article
Internet of Things-Cloud Control of a Robotic Cell Based on Inverse Kinematics, Hardware-in-the-Loop, Digital Twin, and Industry 4.0/5.0
by Dan Ionescu, Adrian Filipescu, Georgian Simion and Adriana Filipescu
Sensors 2025, 25(6), 1821; https://doi.org/10.3390/s25061821 - 14 Mar 2025
Cited by 1 | Viewed by 1219
Abstract
The main task of the research involves creating a Digital Twin (DT) application serving as a framework for Virtual Commissioning (VC) with Supervisory Control and Data Acquisition (SCADA) and Cloud storage solutions. An Internet of Things (IoT) integrated automation system with Virtual Private [...] Read more.
The main task of the research involves creating a Digital Twin (DT) application serving as a framework for Virtual Commissioning (VC) with Supervisory Control and Data Acquisition (SCADA) and Cloud storage solutions. An Internet of Things (IoT) integrated automation system with Virtual Private Network (VPN) remote control for assembly and disassembly robotic cell (A/DRC) equipped with a six-Degree of Freedom (6-DOF) ABB 120 industrial robotic manipulator (IRM) is presented in this paper. A three-dimensional (3D) virtual model is developed using Siemens NX Mechatronics Concept Designer (MCD), while the Programmable Logic Controller (PLC) is programmed in the Siemens Totally Integrated Automation (TIA) Portal. A Hardware-in-the-Loop (HIL) simulation strategy is primarily used. This concept is implemented and executed as part of a VC approach, where the designed PLC programs are integrated and tested against the physical controller. Closed loop control and RM inverse kinematics model are validated and tested in PLC, following HIL strategy by integrating Industry 4.0/5.0 concepts. A SCADA application is also deployed, serving as a DT operator panel for process monitoring and simulation. Cloud data collection, analysis, supervising, and synchronizing DT tasks are also integrated and explored. Additionally, it provides communication interfaces via PROFINET IO to SCADA and Human Machine Interface (HMI), and through Open Platform Communication—Unified Architecture (OPC-UA) for Siemens NX-MCD with DT virtual model. Virtual A/DRC simulations are performed using the Synchronized Timed Petri Nets (STPN) model for control strategy validation based on task planning integration and synchronization with other IoT devices. The objective is to obtain a clear and understandable representation layout of the A/DRC and to validate the DT model by comparing process dynamics and robot motion kinematics between physical and virtual replicas. Thus, following the results of the current research work, integrating digital technologies in manufacturing, like VC, IoT, and Cloud, is useful for validating and optimizing manufacturing processes, error detection, and reducing the risks before the actual physical system is built or deployed. Full article
Show Figures

Figure 1

54 pages, 18421 KiB  
Review
Innovations in Wave Energy: A Case Study of TALOS-WEC’s Multi-Axis Technology
by Fatemeh Nasr Esfahani, Wanan Sheng, Xiandong Ma, Carrie M. Hall and George Aggidis
J. Mar. Sci. Eng. 2025, 13(2), 279; https://doi.org/10.3390/jmse13020279 - 31 Jan 2025
Viewed by 1579
Abstract
The technologically advanced learning ocean system—wave energy converter (TALOS-WEC) project addresses the urgent need for sustainable and efficient energy solutions by leveraging the vast potential of wave energy. This project presents a pioneering approach to wave energy capture through its unique multi-axis and [...] Read more.
The technologically advanced learning ocean system—wave energy converter (TALOS-WEC) project addresses the urgent need for sustainable and efficient energy solutions by leveraging the vast potential of wave energy. This project presents a pioneering approach to wave energy capture through its unique multi-axis and omnidirectional point absorber design. Featuring a fully enclosed power take-off (PTO) system, the TALOS-WEC harnesses energy across six degrees of freedom (DoFs) using an innovative internal reaction mass (IRM) mechanism. This configuration enables efficient energy extraction from the relative motion between the IRM and the hull, aiming for energy conversion efficiencies ranging between 75–80% under optimal conditions, while ensuring enhanced durability in harsh marine environments. The system’s adaptability is reflected in its versatile geometric configurations, including triangular, octagonal, and circular designs, customised for diverse marine conditions. Developed at Lancaster University, UK, and supported by international collaborations, the TALOS-WEC project emphasises cutting-edge advancements in hydrodynamic modelling, geometric optimisation, and control systems. Computational methodologies leverage hybrid frequency-time domain models and advanced panel codes (WAMIT, HAMS, and NEMOH) to address non-linearities in the PTO system, ensuring precise simulations and optimal performance. Structured work packages (WPs) guide the project, addressing critical aspects such as energy capture optimisation, reliability enhancement, and cost-effectiveness through innovative monitoring and control strategies. This paper provides a comprehensive overview of the TALOS-WEC, detailing its conceptual design, development, and validation. Findings demonstrate TALOS’s potential to achieve scalable, efficient, and robust wave energy conversion, contributing to the broader advancement of renewable energy technologies. The results underscore the TALOS-WEC’s role as a cutting-edge solution for harnessing oceanic energy resources, offering perspectives into its commercial viability and future scalability. Full article
Show Figures

Figure 1

16 pages, 3421 KiB  
Article
Development and Evaluation of a Haptic Virtual Walker for Wheelchair Users in Immersive VR Environments
by Jose Vicente Riera, Belen Palma, Pablo Casanova-Salas, Manolo Pérez, Jesus Gimeno and Marcos Fernandez
Appl. Sci. 2025, 15(1), 23; https://doi.org/10.3390/app15010023 - 24 Dec 2024
Cited by 1 | Viewed by 1013
Abstract
This paper presents the development of a virtual walker for wheelchair users designed for use in highly immersive environments, such as Cave Automatic Virtual Environments (CAVEs). The system allows users to navigate virtual environments using their natural wheelchair movements, providing haptic feedback based [...] Read more.
This paper presents the development of a virtual walker for wheelchair users designed for use in highly immersive environments, such as Cave Automatic Virtual Environments (CAVEs). The system allows users to navigate virtual environments using their natural wheelchair movements, providing haptic feedback based on the terrain they traverse. Both the control software and hardware have been developed from scratch and integrated into various CAVEs, including one with a six-degree-of-freedom (DOF) motion platform. To test the system, a comparative study was conducted with 21 users, measuring the time taken to complete the same course using different interaction methods and various feedback configurations with the virtual environment. The results show that the shortest times were achieved when users navigated using their natural interaction with their wheelchairs. Full article
Show Figures

Figure 1

21 pages, 19119 KiB  
Article
Caterpillar-Inspired Multi-Gait Generation Method for Series-Parallel Hybrid Segmented Robot
by Mingyuan Dou, Ning He, Jianhua Yang, Lile He, Jiaxuan Chen and Yaojiumin Zhang
Biomimetics 2024, 9(12), 754; https://doi.org/10.3390/biomimetics9120754 - 11 Dec 2024
Cited by 1 | Viewed by 1199
Abstract
The body structures and motion stability of worm-like and snake-like robots have garnered significant research interest. Recently, innovative serial–parallel hybrid segmented robots have emerged as a fundamental platform for a wide range of motion modes. To address the hyper-redundancy characteristics of these hybrid [...] Read more.
The body structures and motion stability of worm-like and snake-like robots have garnered significant research interest. Recently, innovative serial–parallel hybrid segmented robots have emerged as a fundamental platform for a wide range of motion modes. To address the hyper-redundancy characteristics of these hybrid structures, we propose a novel caterpillar-inspired Stable Segment Update (SSU) gait generation approach, establishing a unified framework for multi-segment robot gait generation. Drawing inspiration from the locomotion of natural caterpillars, the segments are modeled as rigid bodies with six degrees of freedom (DOF). The SSU gait generation method is specifically designed to parameterize caterpillar-like gaits. An inverse kinematics solution is derived by analyzing the forward kinematics and identifying the minimum lifting segment, framing the problem as a single-segment end-effector tracking task. Three distinct parameter sets are introduced within the SSU method to account for the stability of robot motion. These parameters, represented as discrete hump waves, are intended to improve motion efficiency during locomotion. Furthermore, the trajectories for each swinging segment are determined through kinematic analysis. Experimental results validate the effectiveness of the proposed SSU multi-gait generation method, demonstrating the successful traversal of gaps and rough terrain. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

38 pages, 16704 KiB  
Article
Fast and Intelligent Proportional–Integral–Derivative (PID) Attitude Control of Quadrotor and Dual-Rotor Coaxial Unmanned Aerial Vehicles (UAVs) Based on All-True Composite Motion
by Zhen Wang, Qi Yuan, Yi Zhu, Yifan Hu, Heng Chen, Xingbo Xie and Wenbin Gu
Drones 2024, 8(12), 747; https://doi.org/10.3390/drones8120747 - 10 Dec 2024
Cited by 2 | Viewed by 2068
Abstract
The construction of a six-degree-of-freedom (6-DOF) model for the composite motion of the actual mechanical structure (defined as an all-true composite motion model) of unmanned aerial vehicles (UAVs) is a prerequisite for achieving stable control of rotorcraft UAVs. Therefore, this paper proposes a [...] Read more.
The construction of a six-degree-of-freedom (6-DOF) model for the composite motion of the actual mechanical structure (defined as an all-true composite motion model) of unmanned aerial vehicles (UAVs) is a prerequisite for achieving stable control of rotorcraft UAVs. Therefore, this paper proposes a construction approach for a nonlinear 6-DOF model of quadrotor and dual-rotor coaxial UAVs based on all-true composite motion. Two types of attitude–altitude control systems for rotorcraft based on a self-optimizing intelligent proportional–integral–derivative (PID) control method are constructed. Three-dimensional geometric models of the two rotorcraft types, incorporating their physical characteristics, are built. The attitude responses to different pulse width modulation (PWM) inputs are tested, thereby verifying the accuracy of the all-true composite model and analyzing the stability of the two types of UAVs. Furthermore, two types of attitude–altitude control inner loop controllers are designed, and the intelligent PID control algorithm is used to optimize the control parameters. Further verification of the robustness of the optimized parameters is carried out, and the designed attitude controllers are verified via experiment using a turntable. The simulation and experimental results show that the proposed all-true composite motion model and controller design method can accurately simulate the dynamic characteristics of the two types of UAVs and maintain stable attitude control, thus providing a valuable reference for the accurate attitude control of rotorcraft UAVs based on all-true composite motion. Full article
Show Figures

Figure 1

22 pages, 6455 KiB  
Article
Numerical Study on the Wave Attenuation Performance of a Novel Partial T Special-Type Floating Breakwater
by Xuanqi Ruan, Hongliang Qian, Jingxuan Dai, Feng Fan and Shuang Niu
J. Mar. Sci. Eng. 2024, 12(12), 2269; https://doi.org/10.3390/jmse12122269 - 10 Dec 2024
Cited by 1 | Viewed by 1178
Abstract
Floating breakwaters (FBs) play an important role in protecting coastlines, marine structures, and ports due to their simple construction, convenient movement, cost-effectiveness, and environmental friendliness. However, the traditional box-type FBs are flawed due to their requiring large sizes for wave attenuation and their [...] Read more.
Floating breakwaters (FBs) play an important role in protecting coastlines, marine structures, and ports due to their simple construction, convenient movement, cost-effectiveness, and environmental friendliness. However, the traditional box-type FBs are flawed due to their requiring large sizes for wave attenuation and their overly high level of wave reflection. In this paper, a novel partial T special-type FB with wave attenuation on the surface and flow blocking below the water has been presented. First, the User-Defined Function (UDF) feature in ANSYS Fluent was employed to compile the six degrees of freedom (6-DOF) motion model. A two-dimensional viscous numerical wave flume was developed using the velocity boundary wave-generation method and damping dissipation wave-absorption method, with fully coupled models of the FBs developed. A VOF multiphase flow model and a RANS turbulence model were employed to capture the free flow of gas–liquid two-phase flow. Then, the performance of wave attenuation of the new FB was compared with that of the traditional box-type FB of the same specifications. The simulation results showed that the transmission coefficient of the new FB is significantly lower than that of the box-type FB, and the dissipation coefficient is notably higher, demonstrating excellent performance of wave attenuation, particularly for long-period waves. As wave height increases, the novel FB benefits from its wave attenuation mechanism, with a lower reflection coefficient compared to the box-type FB. Finally, through parametric analysis, some design recommendations of the novel FB suitable for practical engineering applications in deep-sea aquaculture are presented. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 25073 KiB  
Article
Development of 6DOF Hardware-in-the-Loop Ground Testbed for Autonomous Robotic Space Debris Removal
by Ahmad Al Ali, Bahador Beigomi and Zheng H. Zhu
Aerospace 2024, 11(11), 877; https://doi.org/10.3390/aerospace11110877 - 25 Oct 2024
Cited by 3 | Viewed by 1654
Abstract
This paper presents the development of a hardware-in-the-loop ground testbed featuring active gravity compensation via software-in-the-loop integration, specially designed to support research in autonomous robotic removal of space debris. The testbed is designed to replicate six degrees of freedom (6DOF) motion maneuvering to [...] Read more.
This paper presents the development of a hardware-in-the-loop ground testbed featuring active gravity compensation via software-in-the-loop integration, specially designed to support research in autonomous robotic removal of space debris. The testbed is designed to replicate six degrees of freedom (6DOF) motion maneuvering to accurately simulate the dynamic behaviors of free-floating robotic manipulators and free-tumbling space debris under microgravity conditions. The testbed incorporates two industrial 6DOF robotic manipulators, a three-finger robotic gripper, and a suite of sensors, including cameras, force/torque sensors, and tactile tensors. Such a setup provides a robust platform for testing and validating technologies related to autonomous tracking, capture, and post-capture stabilization within the context of active space debris removal missions. Preliminary experimental results have demonstrated advancements in motion control, computer vision, and sensor fusion. This facility is positioned to become an essential resource for the development and validation of robotic manipulators in space, offering substantial improvements to the effectiveness and reliability of autonomous capture operations in space missions. Full article
(This article belongs to the Special Issue Space Mechanisms and Robots)
Show Figures

Figure 1

18 pages, 5267 KiB  
Article
Research on the Effect of a Heave Plate on the Dynamics of the Floating Wind Turbine Using Model Tests
by Lidong Yang, Yuting Jiang, Shibo Guo, Zihe Lin, Wanru Deng and Liqin Liu
J. Mar. Sci. Eng. 2024, 12(10), 1808; https://doi.org/10.3390/jmse12101808 - 10 Oct 2024
Viewed by 1499
Abstract
The increasing demand to harness offshore wind resources has pushed offshore wind turbines into deeper waters, making floating platforms more economically feasible than bottom-fixed ones. When the incident wind and wave forces act on the floating wind turbine, the floating platform will experience [...] Read more.
The increasing demand to harness offshore wind resources has pushed offshore wind turbines into deeper waters, making floating platforms more economically feasible than bottom-fixed ones. When the incident wind and wave forces act on the floating wind turbine, the floating platform will experience oscillations around its equilibrium position in six degrees of freedom (DOFs). Significant floater motions can affect the aerodynamic power output, increase the failure risk, and even shorten the operational lifetime, especially under a harsh offshore environment. To improve the dynamic behavior of the floating platform, this research designed a heave plate for an OC4-Deepcwind wind turbine. The dynamic performance of the wind turbine was specifically investigated based on a series of wave-basin model tests, including free decay tests, regular wave tests, and irregular wave with steady wind tests. The results show that the heave plate increases damping in heave and pitch motions. The weakening effect on the heave and pitch motion is obvious in the wave period of 15–20 s and 20–27 s, respectively. However, the arrangement of the heave plate may exacerbate the fluctuation of the force and moment at the bottom of the tower. Full article
Show Figures

Figure 1

Back to TopTop