Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = site-directed nuclease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5019 KiB  
Article
PAX3 Regulatory Signatures and Gene Targets in Melanoma Cells
by Stephen P. G. Moore, Shripushkar Ganesh Krishnan, Rutu Jaswanth Kothari, Noah B. Prince, Colin Kenny, Chao Zhang and Deborah Lang
Genes 2025, 16(5), 577; https://doi.org/10.3390/genes16050577 - 14 May 2025
Viewed by 1290
Abstract
Background/Objectives: PAX3 is a transcription factor that drives melanoma progression by promoting cell growth, migration, and survival, while inhibiting cellular terminal differentiation. However, known PAX3 target genes are limited and cannot fully explain the wide impact of PAX3 function. The PAX3 protein can [...] Read more.
Background/Objectives: PAX3 is a transcription factor that drives melanoma progression by promoting cell growth, migration, and survival, while inhibiting cellular terminal differentiation. However, known PAX3 target genes are limited and cannot fully explain the wide impact of PAX3 function. The PAX3 protein can regulate DNA through two separate binding domains, the Paired Domain (PD) and Homeodomain (HD), which bind different DNA motifs. It is not clear if these two domains bind and work together to regulate genes and if they promote all or only a subset of downstream cellular events. Methods: PAX3 direct downstream targets were identified using Cleavage Under Targets & Release Using Nuclease (CUT&RUN) assays in SK-MEL-5 melanoma cells. PAX3-binding genomic regions were identified through MACS2 peak calling, and peaks were categorized based on the presence of PD and/or HD binding sites (or neither) through HOMER motif analysis. The peaks were further characterized as Active, Primed, Poised, Repressed, or Closed based on ATAC-seq data and CUT&RUN for histone Post-Translational Modifications H3K4me1, H3K4me3, H3K27me3, and H3K27Ac. Results: This analysis revealed that most of the PAX3 binding sites in the SK-MEL-5 cell line were primarily through the PD and connected to Active genes. Surprisingly, PAX3 does not commonly act as a repressor in SK-MEL-5 cells. Pathway analysis identified genes involved with transcription, RNA modification, and cell growth. Peaks located in distal enhancer elements were connected to genes involved in neuronal growth, function, and signaling. Conclusions: Our results reveal novel PAX3 regulatory regions and putative genes in a melanoma cell line, with a predominance of PAX3 PD binding on active sites. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3118 KiB  
Article
Bunyaviral Cap-Snatching Endonuclease Activity and Inhibition with Baloxavir-like Inhibitors in the Context of Full-Length L Proteins
by Arlo J. Loutan, Baiuyan Yang, Gabrielle Connolly, Adam Montoya, Robert J. Smiley, Arnab K. Chatterjee and Matthias Götte
Viruses 2025, 17(3), 420; https://doi.org/10.3390/v17030420 - 14 Mar 2025
Viewed by 952
Abstract
The Bunyavirales order includes a range of zoonotic viruses, which can cause severe disease in humans. The viral replication machinery is a logical target for the development of direct-acting antivirals. Inhibition of the cap-snatching endonuclease activity of related influenza viruses provides a proof [...] Read more.
The Bunyavirales order includes a range of zoonotic viruses, which can cause severe disease in humans. The viral replication machinery is a logical target for the development of direct-acting antivirals. Inhibition of the cap-snatching endonuclease activity of related influenza viruses provides a proof of concept. Using the influenza B virus (IBV) RNA-dependent RNA polymerase complex as a benchmark, we conducted a comparative analysis of endonuclease activities of recombinant full-length bunyaviral L proteins using gel-based assays. The IBV complex demonstrates specific endonucleolytic cleavage and a clear preference for capped substrates. In contrast, severe fever with thrombocytopenia syndrome, Sin Nombre, and Hantaan virus L proteins readily cleave capped and uncapped RNAs to a broader spectrum of RNA fragments. Active site mutants further help to control for the potential of contaminating nucleases, exonuclease activity, and RNA hydrolysis. The influenza cap-snatching inhibitor baloxavir and derivatives have been used to validate this approach. In conclusion, the results of this study demonstrate the importance of assays with single nucleotide resolution and the use of full-length L proteins as a valuable experimental tool to identify selective endonuclease inhibitors. Full article
(This article belongs to the Special Issue Viral Replication Inhibitors)
Show Figures

Figure 1

13 pages, 884 KiB  
Article
Insight into crRNA Processing in Streptococcus mutans P42S and Application of SmutCas9 in Genome Editing
by Cas Mosterd and Sylvain Moineau
Int. J. Mol. Sci. 2025, 26(5), 2005; https://doi.org/10.3390/ijms26052005 - 25 Feb 2025
Viewed by 758
Abstract
CRISPR-Cas is an adaptive immune system found in bacteria and archaea that provides resistance against invading nucleic acids. Elements of this natural system have been harnessed to develop several genome editing tools, including CRISPR-Cas9. This technology relies on the ability of the nuclease [...] Read more.
CRISPR-Cas is an adaptive immune system found in bacteria and archaea that provides resistance against invading nucleic acids. Elements of this natural system have been harnessed to develop several genome editing tools, including CRISPR-Cas9. This technology relies on the ability of the nuclease Cas9 to cut DNA at specific locations directed by a guide RNA. In addition, the nuclease activity of Cas9 requires the presence of a short nucleotide motif (5′-NGG-3′ for Cas9 from Streptococcus pyogenes) called PAM, flanking the targeted region. As the reliance on this PAM is typically strict, diverse Cas9 variants recognising different PAM motifs have been studied to target a broader range of genomic sites. In this study, we assessed the potential of Cas9 from Streptococcus mutans strain P42S (SmutCas9) in gene editing. SmutCas9 recognises the rarely targeted 5′-NAA-3′ and 5′-NGAA-3′ PAMs. To test its efficacy, two genes of the virulent lactococcal phage p2 were edited, thereby demonstrating the potential of SmutCas9 for gene editing purposes, particularly in AT-rich genomes. Sequencing of total RNA also revealed the RNA components of this system, allowing further molecular characterisation of the type II-A CRISPR-Cas system of S. mutans. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing—2nd Edition)
Show Figures

Figure 1

21 pages, 1436 KiB  
Review
Genome-Editing Products Line up for the Market: Will Europe Harvest the Benefits from Science and Innovation?
by Alexios Polidoros, Irini Nianiou-Obeidat, Nikolaos Tsakirpaloglou, Nestor Petrou, Eleftheria Deligiannidou and Nefeli-Maria Makri
Genes 2024, 15(8), 1014; https://doi.org/10.3390/genes15081014 - 1 Aug 2024
Cited by 2 | Viewed by 4760
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have revolutionized genome editing, significantly advancing the improvement of cultivated crop species. This review provides an overview of genome-edited crops that have either reached the market or received the necessary approvals but are not yet [...] Read more.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have revolutionized genome editing, significantly advancing the improvement of cultivated crop species. This review provides an overview of genome-edited crops that have either reached the market or received the necessary approvals but are not yet available to consumers. We analyze various genome-editing studies to understand the distribution of different genome-editing systems, the types of site-directed nucleases employed, and the geographical spread of these studies, with a specific focus on global and European contexts. Additionally, we examine the target crops involved. The review also outlines the multiple steps required for the legal acceptance of genome-edited crops within European jurisdictions. We conclude with suggestions for the future prospects of genome-editing research in Europe, aiming to streamline the approval process and enhance the development and adoption of genome-edited crops. Full article
(This article belongs to the Collection Feature Papers: 'Plant Genetics and Genomics' Section)
Show Figures

Figure 1

21 pages, 1099 KiB  
Article
Comparison of CRISPR-MAD7 and CRISPR-Cas9 for Gene Disruptions in Komagataella phaffii
by Kirill Smirnov, Florian Weiss, Anna-Maria Hatzl, Lukas Rieder, Kjeld Olesen, Sanne Jensen and Anton Glieder
J. Fungi 2024, 10(3), 197; https://doi.org/10.3390/jof10030197 - 5 Mar 2024
Cited by 2 | Viewed by 4905
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-based technologies are powerful, programmable tools for site-directed genome modifications. After successful adaptation and efficient use of CRISPR-Cas9 for genome engineering in methylotrophic yeast Komagataella phaffii, a broader variety of employable endonucleases was desired to increase [...] Read more.
CRISPR (clustered regularly interspaced short palindromic repeats)-based technologies are powerful, programmable tools for site-directed genome modifications. After successful adaptation and efficient use of CRISPR-Cas9 for genome engineering in methylotrophic yeast Komagataella phaffii, a broader variety of employable endonucleases was desired to increase the experimental flexibility and to provide alternatives in case there are specific legal restrictions in industrial research due to the intellectual property rights (IPRs) of third parties. MAD7, an engineered Class 2 Type V Cas nuclease, was promoted as a royalty-free alternative for academic and industrial research and developed by Inscripta (Pleasanton, CA, USA). In this study, for the first time, CRISPR-MAD7 was used for genome editing in K. phaffii with a high gene-editing rate (up to 90%), as demonstrated for the three targeted genes coding for glycerol kinase 1 (GUT1), red fluorescence protein (DsRed), and zeocin resistance gene (Sh ble). Additionally, the genome-editing efficiencies of the CRISPR-MAD7 and CRISPR-Cas9 systems were systematically compared by targeting 259 kinase genes in K. phaffii. In this broad testing, the CRISPR-Cas9 had a higher genome-editing rate of about 65%, in comparison to the applied CRISPR-MAD7 toolbox (about 23%). Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

21 pages, 2555 KiB  
Review
CRISPR/Cas9 as a Mutagenic Factor
by Andrey R. Shumega, Youri I. Pavlov, Angelina V. Chirinskaite, Aleksandr A. Rubel, Sergey G. Inge-Vechtomov and Elena I. Stepchenkova
Int. J. Mol. Sci. 2024, 25(2), 823; https://doi.org/10.3390/ijms25020823 - 9 Jan 2024
Cited by 9 | Viewed by 5224
Abstract
The discovery of the CRISPR/Cas9 microbial adaptive immune system has revolutionized the field of genetics, by greatly enhancing the capacity for genome editing. CRISPR/Cas9-based editing starts with DNA breaks (or other lesions) predominantly at target sites and, unfortunately, at off-target genome sites. DNA [...] Read more.
The discovery of the CRISPR/Cas9 microbial adaptive immune system has revolutionized the field of genetics, by greatly enhancing the capacity for genome editing. CRISPR/Cas9-based editing starts with DNA breaks (or other lesions) predominantly at target sites and, unfortunately, at off-target genome sites. DNA repair systems differing in accuracy participate in establishing desired genetic changes but also introduce unwanted mutations, that may lead to hereditary, oncological, and other diseases. New approaches to alleviate the risks associated with genome editing include attenuating the off-target activity of editing complex through the use of modified forms of Cas9 nuclease and single guide RNA (sgRNA), improving delivery methods for sgRNA/Cas9 complex, and directing DNA lesions caused by the sgRNA/Cas9 to non-mutagenic repair pathways. Here, we have described CRISPR/Cas9 as a new powerful mutagenic factor, discussed its mutagenic properties, and reviewed factors influencing the mutagenic activity of CRISPR/Cas9. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1940 KiB  
Article
Specificity Testing for NGT PCR-Based Detection Methods in the Context of the EU GMO Regulations
by Caroline Bedin Zanatta, Aline Martins Hoepers, Rubens Onofre Nodari and Sarah Zanon Agapito-Tenfen
Foods 2023, 12(23), 4298; https://doi.org/10.3390/foods12234298 - 28 Nov 2023
Cited by 3 | Viewed by 2349
Abstract
The term new genomic techniques (NGTs) is an umbrella term used to describe a variety of techniques that can alter the genetic material of an organism and that have emerged or have been developed since 2001, when the existing genetically modified organism (GMO) [...] Read more.
The term new genomic techniques (NGTs) is an umbrella term used to describe a variety of techniques that can alter the genetic material of an organism and that have emerged or have been developed since 2001, when the existing genetically modified organism (GMO) legislation was adopted. The analytical framework used to detect GMOs in Europe is an established single harmonized procedure that is mandatory for the authorization of GM food and feed, thus generating a reliable, transparent, and effective labeling scheme for GMO products. However, NGT products can challenge the implementation and enforcement of the current regulatory system in the EU, relating in particular to the detection of NGT products that contain no foreign genetic material. Consequently, the current detection methods might fail to meet the minimum performance requirements. Although existing detection methods may be able to detect and quantify even small alterations in the genome, this does not necessarily confirm the distinction between products resulting from NGTs subject to the GMO legislation and other products. Therefore, this study provides a stepwise approach for the in silico prediction of PCR systems’ specificity by testing a bioinformatics pipeline for amplicon and primer set searches in current genomic databases. In addition, it also empirically tested the PCR system evaluated during the in silico analysis. Two mutant genotypes produced by CRISPR-Cas9 in Arabidopsis thaliana were used as a case study. Overall, our results demonstrate that the single PCR system developed for identifying a nucleotide insertion in the grf1-3 genotype has multiple matches in the databases, which do not enable the discrimination of this mutated event. Empirical assays further support this demonstration. In contrast, the second mutated genotype, grf8-61, which contains a -3 bp deletion, did not yield any matches in the sequence variant database. However, the primer sequences were not efficient during the empirical assay. Our approach represents a first step in decision making for analytical methods for NGT detection, identification, and quantification in light of the European labeling regulations. Full article
Show Figures

Figure 1

26 pages, 1084 KiB  
Review
Perspectives in Genome-Editing Techniques for Livestock
by Julia Popova, Victoria Bets and Elena Kozhevnikova
Animals 2023, 13(16), 2580; https://doi.org/10.3390/ani13162580 - 10 Aug 2023
Cited by 6 | Viewed by 10410
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used [...] Read more.
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species. Full article
(This article belongs to the Collection Applications of Quantitative Genetics in Livestock Production)
Show Figures

Figure 1

18 pages, 1605 KiB  
Review
Homology-Directed-Repair-Based Genome Editing in HSPCs for the Treatment of Inborn Errors of Immunity and Blood Disorders
by Daniel Allen, Nechama Kalter, Michael Rosenberg and Ayal Hendel
Pharmaceutics 2023, 15(5), 1329; https://doi.org/10.3390/pharmaceutics15051329 - 24 Apr 2023
Cited by 11 | Viewed by 4735
Abstract
Genome engineering via targeted nucleases, specifically CRISPR-Cas9, has revolutionized the field of gene therapy research, providing a potential treatment for diseases of the blood and immune system. While numerous genome editing techniques have been used, CRISPR-Cas9 homology-directed repair (HDR)-mediated editing represents a promising [...] Read more.
Genome engineering via targeted nucleases, specifically CRISPR-Cas9, has revolutionized the field of gene therapy research, providing a potential treatment for diseases of the blood and immune system. While numerous genome editing techniques have been used, CRISPR-Cas9 homology-directed repair (HDR)-mediated editing represents a promising method for the site-specific insertion of large transgenes for gene knock-in or gene correction. Alternative methods, such as lentiviral/gammaretroviral gene addition, gene knock-out via non-homologous end joining (NHEJ)-mediated editing, and base or prime editing, have shown great promise for clinical applications, yet all possess significant drawbacks when applied in the treatment of patients suffering from inborn errors of immunity or blood system disorders. This review aims to highlight the transformational benefits of HDR-mediated gene therapy and possible solutions for the existing problems holding the methodology back. Together, we aim to help bring HDR-based gene therapy in CD34+ hematopoietic stem progenitor cells (HSPCs) from the lab bench to the bedside. Full article
Show Figures

Figure 1

15 pages, 994 KiB  
Perspective
Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects
by Muhammad Naeem and Omer S. Alkhnbashi
Int. J. Mol. Sci. 2023, 24(7), 6261; https://doi.org/10.3390/ijms24076261 - 27 Mar 2023
Cited by 48 | Viewed by 8378
Abstract
The CRISPR-Cas system has evolved into a cutting-edge technology that has transformed the field of biological sciences through precise genetic manipulation. CRISPR/Cas9 nuclease is evolving into a revolutionizing method to edit any gene of any species with desirable outcomes. The swift advancement of [...] Read more.
The CRISPR-Cas system has evolved into a cutting-edge technology that has transformed the field of biological sciences through precise genetic manipulation. CRISPR/Cas9 nuclease is evolving into a revolutionizing method to edit any gene of any species with desirable outcomes. The swift advancement of CRISPR-Cas technology is reflected in an ever-expanding ecosystem of bioinformatics tools designed to make CRISPR/Cas9 experiments easier. To assist researchers with efficient guide RNA designs with fewer off-target effects, nuclease target site selection, and experimental validation, bioinformaticians have built and developed a comprehensive set of tools. In this article, we will review the various computational tools available for the assessment of off-target effects, as well as the quantification of nuclease activity and specificity, including web-based search tools and experimental methods, and we will describe how these tools can be optimized for gene knock-out (KO) and gene knock-in (KI) for model organisms. We also discuss future directions in precision genome editing and its applications, as well as challenges in target selection, particularly in predicting off-target effects. Full article
(This article belongs to the Special Issue RNA-Targeting CRISPR Systems)
Show Figures

Figure 1

14 pages, 1522 KiB  
Protocol
A Simple, Improved Method for Scarless Genome Editing of Budding Yeast Using CRISPR-Cas9
by Rhiannon R. Aguilar, Zih-Jie Shen and Jessica K. Tyler
Methods Protoc. 2022, 5(5), 79; https://doi.org/10.3390/mps5050079 - 4 Oct 2022
Cited by 2 | Viewed by 4436
Abstract
Until recently, the favored method for making directed modifications to the budding yeast genome involved the introduction of a DNA template carrying the desired genetic changes along with a selectable marker, flanked by homology arms. This approach both limited the ability to make [...] Read more.
Until recently, the favored method for making directed modifications to the budding yeast genome involved the introduction of a DNA template carrying the desired genetic changes along with a selectable marker, flanked by homology arms. This approach both limited the ability to make changes within genes due to disruption by the introduced selectable marker and prevented the use of that selectable marker for subsequent genomic manipulations. Following the discovery of CRISPR-Cas9-mediated genome editing, protocols were developed for modifying any DNA region of interest in a similar single transformation step without the need for a permanent selectable marker. This approach involves the generation of a DNA double-strand break (DSB) at the desired genomic location by the Cas9 nuclease, expressed on a plasmid which also expresses the guide RNA (gRNA) sequence directing the location of the DSB. The DSB is subsequently repaired via homologous recombination using a PCR-derived DNA repair template. Here, we describe in detail an improved method for incorporation of the gRNA-encoding DNA sequences into the Cas9 expression plasmid. Using Golden Gate cloning, annealed oligonucleotides bearing unique single-strand DNA overhangs are ligated into directional restriction enzyme sites. We describe the use of this CRISPR-Cas9 genome editing protocol to introduce multiple types of directed genetic changes into the yeast genome. Full article
(This article belongs to the Collection Current Advances and Methodologies in Gene Editing)
Show Figures

Figure 1

18 pages, 7071 KiB  
Article
Optimization of Signal Peptide via Site-Directed Mutagenesis for Enhanced Secretion of Heterologous Proteins in Lactococcus lactis
by Nur Aqlili Riana Alias, Adelene Ai-Lian Song, Noorjahan Banu Alitheen, Raha Abdul Rahim, Siti Sarah Othman and Lionel Lian Aun In
Int. J. Mol. Sci. 2022, 23(17), 10044; https://doi.org/10.3390/ijms231710044 - 2 Sep 2022
Cited by 6 | Viewed by 3965
Abstract
Secretion efficiency of heterologous proteins in the Generally Regarded As Safe (GRAS) Lactococcus lactis is often reported to be insufficiently low due to limitations such as poor targeting and translocation by the signal peptide or degradation by the host proteases. In this study, [...] Read more.
Secretion efficiency of heterologous proteins in the Generally Regarded As Safe (GRAS) Lactococcus lactis is often reported to be insufficiently low due to limitations such as poor targeting and translocation by the signal peptide or degradation by the host proteases. In this study, the secretion efficiency in the host was enhanced through the utilization of a heterologous signal peptide (SP) SPK1 of Pediococcus pentosaceus. The SPK1 was subjected to site-directed mutations targeting its tripartite N-, H-, and C-domains, and the effect on secretion efficiency as compared to the wild-type SPK1 and native lactococcal USP45 was determined on a reporter nuclease (NUC) of Staphylococcus aureus. A Fluorescence Resonance Energy Transfer (FRET) analysis indicated that four out of eight SPK1 variants successfully enhanced the secretion of NUC, with the best mutant, SPKM19, showing elevated secretion efficiency up to 88% (or by 1.4-fold) and an improved secretion activity yield of 0.292 ± 0.122 U/mL (or by 1.7-fold) compared to the wild-type SPK1. Modifications of the SPK1 at the cleavage site C-domain region had successfully augmented the secretion efficiency. Meanwhile, mutations in the H-domain region had resulted in a detrimental effect on the NUC secretion. The development of heterologous SPs with better efficacy than the USP45 has been demonstrated in this study for enhanced secretion of heterologous production and mucosal delivery applications in the lactococcal host. Full article
(This article belongs to the Special Issue Microbial Enzymes and Metabolites)
Show Figures

Figure 1

20 pages, 2916 KiB  
Article
Correction of Fanconi Anemia Mutations Using Digital Genome Engineering
by Christopher J. Sipe, Mitchell G. Kluesner, Samuel P. Bingea, Walker S. Lahr, Aneesha A. Andrew, Minjing Wang, Anthony P. DeFeo, Timothy L. Hinkel, Kanut Laoharawee, John E. Wagner, Margaret L. MacMillan, Gregory M. Vercellotti, Jakub Tolar, Mark J. Osborn, R. Scott McIvor, Beau R. Webber and Branden S. Moriarity
Int. J. Mol. Sci. 2022, 23(15), 8416; https://doi.org/10.3390/ijms23158416 - 29 Jul 2022
Cited by 7 | Viewed by 4718
Abstract
Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The [...] Read more.
Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk. Successful engraftment of gene-corrected autologous hematopoietic stem cells (HSC) circumvents the need for an allogeneic HCT and has been achieved in other genetic diseases using targeted nucleases to induce site specific DSBs and the correction of mutated genes through homology-directed repair (HDR). However, this process is extremely inefficient in FA cells, as they are inherently deficient in DNA repair. Here, we demonstrate the correction of FANCA mutations in primary patient cells using ‘digital’ genome editing with the cytosine and adenine base editors (BEs). These Cas9-based tools allow for C:G > T:A or A:T > C:G base transitions without the induction of a toxic DSB or the need for a DNA donor molecule. These genetic corrections or conservative codon substitution strategies lead to phenotypic rescue as illustrated by a resistance to the alkylating crosslinking agent Mitomycin C (MMC). Further, FANCA protein expression was restored, and an intact FA pathway was demonstrated by downstream FANCD2 monoubiquitination induction. This BE digital correction strategy will enable the use of gene-corrected FA patient hematopoietic stem and progenitor cells (HSPCs) for autologous HCT, obviating the risks associated with allogeneic HCT and DSB induction during autologous HSC gene therapy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1840 KiB  
Review
CRISPR/Cas9 in Planta Hairy Root Transformation: A Powerful Platform for Functional Analysis of Root Traits in Soybean
by Mohsen Niazian, François Belzile and Davoud Torkamaneh
Plants 2022, 11(8), 1044; https://doi.org/10.3390/plants11081044 - 12 Apr 2022
Cited by 24 | Viewed by 6086
Abstract
Sequence and expression data obtained by next-generation sequencing (NGS)-based forward genetics methods often allow the identification of candidate causal genes. To provide true experimental evidence of a gene’s function, reverse genetics techniques are highly valuable. Site-directed mutagenesis through transfer DNA (T-DNA) delivery is [...] Read more.
Sequence and expression data obtained by next-generation sequencing (NGS)-based forward genetics methods often allow the identification of candidate causal genes. To provide true experimental evidence of a gene’s function, reverse genetics techniques are highly valuable. Site-directed mutagenesis through transfer DNA (T-DNA) delivery is an efficient reverse screen method in plant functional analysis. Precise modification of targeted crop genome sequences is possible through the stable and/or transient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) reagents. Currently, CRISPR/Cas9 is the most powerful reverse genetics approach for fast and precise functional analysis of candidate genes/mutations of interest. Rapid and large-scale analyses of CRISPR/Cas-induced mutagenesis is achievable through Agrobacterium rhizogenes-mediated hairy root transformation. The combination of A. rhizogenes hairy root-CRISPR/Cas provides an extraordinary platform for rapid, precise, easy, and cost-effective “in root” functional analysis of genes of interest in legume plants, including soybean. Both hairy root transformation and CRISPR/Cas9 techniques have their own complexities and considerations. Here, we discuss recent advancements in soybean hairy root transformation and CRISPR/Cas9 techniques. We highlight the critical factors required to enhance mutation induction and hairy root transformation, including the new generation of reporter genes, methods of Agrobacterium infection, accurate gRNA design strategies, Cas9 variants, gene regulatory elements of gRNAs and Cas9 nuclease cassettes and their configuration in the final binary vector to study genes involved in root-related traits in soybean. Full article
Show Figures

Figure 1

40 pages, 3776 KiB  
Review
An Outlook on Global Regulatory Landscape for Genome-Edited Crops
by Aftab Ahmad, Nayla Munawar, Zulqurnain Khan, Alaa T. Qusmani, Sultan Habibullah Khan, Amer Jamil, Sidra Ashraf, Muhammad Zubair Ghouri, Sabin Aslam, Muhammad Salman Mubarik, Ahmad Munir, Qaiser Sultan, Kamel A. Abd-Elsalam and Sameer H. Qari
Int. J. Mol. Sci. 2021, 22(21), 11753; https://doi.org/10.3390/ijms222111753 - 29 Oct 2021
Cited by 66 | Viewed by 9164
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new [...] Read more.
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits—without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products. Full article
(This article belongs to the Special Issue CRISPR-Mediated Base Editing in Plants)
Show Figures

Figure 1

Back to TopTop