Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,515)

Search Parameters:
Keywords = single-zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2065 KB  
Article
Synergistic Effects of Big Data and Low-Carbon Pilots on Urban Carbon Emissions: New Evidence from China
by Zihan Yang, Zhaoyan Xu and Jun Shen
Sustainability 2026, 18(3), 1282; https://doi.org/10.3390/su18031282 - 27 Jan 2026
Abstract
The synergistic development of digitalization and green transition has become a key driver for promoting China’s high-quality economic development. To elucidate the impact and mechanism of digital–green policy synergy on urban carbon emissions, this paper utilizes the intersection of the “National Big Data [...] Read more.
The synergistic development of digitalization and green transition has become a key driver for promoting China’s high-quality economic development. To elucidate the impact and mechanism of digital–green policy synergy on urban carbon emissions, this paper utilizes the intersection of the “National Big Data Comprehensive Pilot Zones” (BDPZ) and “Low-Carbon City Pilot” (LCCP) programs as a quasi-natural experiment. Based on panel data from 300 prefecture-level cities in China from 2005 to 2023, a multi-period DID model is constructed for empirical research. The empirical results indicate the following: (1) The synergy between digital and green policies significantly curbs urban carbon emissions, and this conclusion remains robust after parallel trend tests and a series of robustness checks. (2) Compared with single digital or green policies, the digital–green synergy exhibits a significantly superior carbon reduction effect. (3) Mechanism analysis reveals that digital–green synergy promotes low-carbon transition primarily through three pathways: driving green technology innovation, promoting the agglomeration of scientific and technological talent, and optimizing the allocation efficiency of capital factors. (4) Heterogeneity analysis reveals stronger emission reduction effects in non-resource-based, eastern, and developed cities, highlighting how structural rigidities and the digital divide constrain the policy’s effectiveness. We suggest strengthening policy integration and adopting differentiated strategies to break path dependence and achieve “Dual Carbon” goals. Full article
(This article belongs to the Topic Multiple Roads to Achieve Net-Zero Emissions by 2050)
40 pages, 9833 KB  
Article
Decision-Level Fusion of PS-InSAR and Optical Data for Landslide Susceptibility Mapping Using Wavelet Transform and MAMBA
by Hongyi Guo, Antonio M. Martínez-Graña, Leticia Merchán, Agustina Fernández and Manuel Casado
Land 2026, 15(2), 211; https://doi.org/10.3390/land15020211 - 26 Jan 2026
Abstract
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy [...] Read more.
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy integrating Permanent Scatterer InSAR (PS-InSAR) deformation dynamics with multi-source optical remote sensing indicators via a Wavelet Transform (WT) enhanced Multi-source Additive Model Based on Bayesian Analysis (MAMBA). San Martín del Castañar (Spain), a region characterized by rugged terrain and active deformation, served as the study area. We utilized Sentinel-1A C-band datasets (January 2020–February 2025) as the primary source for continuous monitoring, complemented by L-band ALOS-2 observations to ensure coherence in vegetated zones, yielding 24,102 high-quality persistent scatterers. The WT-based multi-scale enhancement improved the signal-to-noise ratio by 23.5% and increased deformation anomaly detection by 18.7% across 24,102 validated persistent scatterers. Bayesian fusion within MAMBA produced high-resolution susceptibility maps, indicating that very-high and high susceptibility zones occupy 24.0% of the study area while capturing 84.5% of the inventoried landslides. Quantitative validation against 1247 landslide events (2020–2025) achieved an AUC of 0.912, an overall accuracy of 87.3%, and a recall of 84.5%, outperforming Random Forest, Logistic Regression, and Frequency Ratio models by 6.8%, 10.8%, and 14.3%, respectively (p < 0.001). Statistical analysis further demonstrates a strong geo-ecological coupling, with landslide susceptibility significantly correlated with ecological vulnerability (r = 0.72, p < 0.01), while SHapley Additive exPlanations identify land-use type, rainfall, and slope as the dominant controlling factors. Full article
(This article belongs to the Special Issue Ground Deformation Monitoring via Remote Sensing Time Series Data)
Show Figures

Figure 1

23 pages, 17688 KB  
Article
A GIS-Based Platform for Efficient Governance of Illegal Land Use and Construction: A Case Study of Xiamen City
by Chuxin Li, Yuanrong He, Yuanmao Zheng, Yuantong Jiang, Xinhui Wu, Panlin Hao, Min Luo and Yuting Kang
Land 2026, 15(2), 209; https://doi.org/10.3390/land15020209 - 25 Jan 2026
Viewed by 64
Abstract
By addressing the challenges of management difficulties, insufficient integration of driver analysis, and single-dimensional analysis in the governance of illegal land use and illegal construction (collectively referred to as the “Two Illegalities”) under rapid urbanization, this study designs and implements a GIS-based governance [...] Read more.
By addressing the challenges of management difficulties, insufficient integration of driver analysis, and single-dimensional analysis in the governance of illegal land use and illegal construction (collectively referred to as the “Two Illegalities”) under rapid urbanization, this study designs and implements a GIS-based governance system using Xiamen City as the study area. First, we propose a standardized data-processing workflow and construct a comprehensive management platform integrating multi-source data fusion, spatiotemporal visualization, intelligent analysis, and customized report generation, effectively lowering the barrier for non-professional users. Second, utilizing methods integrated into the platform, such as Moran’s I and centroid trajectory analysis, we deeply analyze the spatiotemporal evolution and driving mechanisms of “Two Illegalities” activities in Xiamen from 2018 to 2023. The results indicate that the distribution of “Two Illegalities” exhibits significant spatial clustering, with hotspots concentrated in urban–rural transition zones. The spatial morphology evolved from multi-core diffusion to the contraction of agglomeration belts. This evolution is essentially the result of the dynamic adaptation between regional economic development gradients, urbanization processes, and policy-enforcement synergy mechanisms. Through a modular, open technical architecture and a “Data-Technology-Enforcement” collaborative mechanism, the system significantly improves information management efficiency and the scientific basis of decision-making. It provides a replicable and scalable technical framework and practical paradigm for similar cities to transform “Two Illegalities” governance from passive disposal to active prevention and control. Full article
Show Figures

Figure 1

15 pages, 4429 KB  
Article
Maternal Poly (I:C)-Induced Placental Inflammation and Endocrine Dysfunction Are Associated with Disrupted Corticogenesis in Mouse Offspring
by Catherine Zhou, Callan Baldwin, Shuying Lin, Aaron Hayes, Kathleen Carter, Lir-Wan Fan, Abhay Bhatt and Yi Pang
Brain Sci. 2026, 16(2), 126; https://doi.org/10.3390/brainsci16020126 - 24 Jan 2026
Viewed by 119
Abstract
Background/Objectives: Maternal immune activation (MIA) increases the risk of Autism Spectrum Disorders (ASD). Experimental models demonstrate that maternal exposure to bacterial endotoxin or the viral mimic polyinosinic:polycytidylic acid [poly (I:C)] reliably recapitulates ASD-like behavioral abnormalities in offspring, yet the underlying neurobiological mechanisms linking [...] Read more.
Background/Objectives: Maternal immune activation (MIA) increases the risk of Autism Spectrum Disorders (ASD). Experimental models demonstrate that maternal exposure to bacterial endotoxin or the viral mimic polyinosinic:polycytidylic acid [poly (I:C)] reliably recapitulates ASD-like behavioral abnormalities in offspring, yet the underlying neurobiological mechanisms linking MIA to altered neurodevelopment remain incompletely understood. Increasing evidence highlights the placenta as a critical mediator in shaping fetal brain development through immunological and hormonal regulation. Likewise, disruption of placental regulatory functions upon MIA may therefore represent a mechanistic pathway. Here, we investigated how alterations in placental cytokine profiles, innate immune cell composition, and endocrine outputs relate to neuroinflammation and neurogenesis in the offspring. Methods: Pregnant mice at gestational day 12.5 received a single intraperitoneal injection of poly (I:C). Placental macrophages, neutrophils, inflammatory cytokines, and nerve growth factor (NGF) expression were examined 72 h later. Neurodevelopmental outcomes, including microglial activity and neurogenic markers, were evaluated in mouse offspring at postnatal day (P) 1 and 6. Results: MIA induced a significant accumulation of monocytes and neutrophils in the placenta, which was associated with elevated levels of a broad spectrum of inflammatory mediators, including Th17-biased proinflammatory cytokines, chemokines, and adhesion proteins, in the placenta and amniotic fluid. In contrast, the placenta-derived NGF levels were significantly reduced. MIA induced strong and sustained microglial activation in the fetal and neonatal brain. This inflammatory milieu was accompanied by disrupted cortical neurogenesis, characterized by a marked increase in Ki67+ neuronal progenitor cells (NPCs) in the subventricular zone (SVZ), overproduction of early-born Tbr1+ neurons at P1, later-born Satb2+ neurons at P6. Conclusions: Collectively, these findings suggest that heightened Th17 inflammatory signaling, coupled with impaired placental endocrine function, contributes to dysregulated cortical neurogenesis in the offspring. Full article
(This article belongs to the Special Issue Inflammation and Central Nervous System)
Show Figures

Figure 1

15 pages, 2389 KB  
Article
Diffmap: Enhancement Difference Map for Peripheral Prostate Zone Cancer Localization Based on Functional Data Analysis and Dynamic Contrast Enhancement MRI
by Roman Surkant, Jurgita Markevičiūtė, Ieva Naruševičiūtė, Mantas Trakymas, Povilas Treigys and Jolita Bernatavičienė
Electronics 2026, 15(3), 507; https://doi.org/10.3390/electronics15030507 - 24 Jan 2026
Viewed by 58
Abstract
Dynamic contrast-enhancement (DCE) modality of MRI is typically considered secondary in prostate cancer (PCa) diagnostics, due to the common interpretation that its diagnostic power is lower than that of other modalities like T2-weighted (T2W) or diffusion-weighted imaging (DWI). To challenge this paradigm, this [...] Read more.
Dynamic contrast-enhancement (DCE) modality of MRI is typically considered secondary in prostate cancer (PCa) diagnostics, due to the common interpretation that its diagnostic power is lower than that of other modalities like T2-weighted (T2W) or diffusion-weighted imaging (DWI). To challenge this paradigm, this study introduces a novel concept of a difference map, which relies exclusively on DCE-MRI for the localization of peripheral zone prostate cancer using functional data analysis-based (FDA) signal processing. The proposed workflow uses discrete voxel-level DCE time–signal curves that are transformed into a continuous functional form. First-order derivatives are then used to determine patient-specific time points of greatest enhancement change that adapt to the intrinsic characteristics of each patient, producing diffmaps that highlight regions with pronounced enhancement dynamics, indicative of malignancy. A subsequent normalization step accounts for inter-patient variability, enabling consistent interpretation across subjects and probabilistic PCa localization. The approach is validated on a curated dataset of 20 patients. Evaluation of eight workflow variants is performed using weighted log loss, the best variant achieving a mean log loss of 0.578. This study demonstrates the feasibility and effectiveness of a single-modality, automated, and interpretable approach for peripheral prostate cancer localization based solely on DCE-MRI. Full article
Show Figures

Figure 1

26 pages, 6479 KB  
Article
Smart Solutions for Mitigating Eutrophication in the Romanian Black Sea Coastal Waters Through an Integrated Approach Using Random Forest, Remote Sensing, and System Dynamics
by Luminita Lazar, Elena Ristea and Elena Bisinicu
Earth 2026, 7(1), 13; https://doi.org/10.3390/earth7010013 - 23 Jan 2026
Viewed by 215
Abstract
Eutrophication remains a persistent challenge in the Romanian Black Sea coastal zone, driven by excess nutrient inputs from riverine and coastal sources and further intensified by climate change. This study assesses eutrophication dynamics and explores mitigation options using an integrated framework that combines [...] Read more.
Eutrophication remains a persistent challenge in the Romanian Black Sea coastal zone, driven by excess nutrient inputs from riverine and coastal sources and further intensified by climate change. This study assesses eutrophication dynamics and explores mitigation options using an integrated framework that combines in situ observations, satellite-derived chlorophyll a data, machine learning, and system dynamics modelling. Water samples collected during two field campaigns (2023–2024) were analyzed for nutrient concentrations and linked with chlorophyll a products from the Copernicus Marine Service. Random Forest analysis identified dissolved inorganic nitrogen, phosphate, salinity, and temperature as the most influential predictors of chlorophyll a distribution. A system dynamics model was subsequently used to explore relative ecosystem responses under multiple management scenarios, including nutrient reduction, enhanced zooplankton grazing, and combined interventions. Scenario-based simulations indicate that nutrient reduction alone produces a moderate decrease in chlorophyll a (45% relative to baseline conditions), while restoration of grazing pressure yields a comparable response. The strongest reduction is achieved under the combined scenario, which integrates nutrient reduction with biological control and lowers normalized chlorophyll a levels by approximately two thirds (71%) relative to baseline. In contrast, a bloom-favourable scenario results in a several-fold increase in chlorophyll a of 160%. Spatial analysis highlights persistent eutrophication hotspots near the Danube mouths and urban discharge areas. These results demonstrate that integrated strategies combining nutrient source control with ecological restoration are substantially more effective than single-measure interventions. The proposed framework provides a scenario-based decision-support tool for ecosystem-based management and supports progress toward achieving Good Environmental Status under the Marine Strategy Framework Directive. Full article
Show Figures

Figure 1

25 pages, 9214 KB  
Article
Measurement and Optimization of Sustainable Form in Shenyang’s Historic Urban District Based on Multi-Source Data Fusion
by Jing Yuan, Lingling Zhang, Hongtao Sun and Congbo Guan
Buildings 2026, 16(3), 474; https://doi.org/10.3390/buildings16030474 - 23 Jan 2026
Viewed by 134
Abstract
The optimization of historic district form, given the coordinated relationship between global urbanization and sustainable development, faces the core contradiction between preservation and development. Taking Shenyang’s Nanshi area as a case study, this study aimed to construct a sustainable urban form evaluation system [...] Read more.
The optimization of historic district form, given the coordinated relationship between global urbanization and sustainable development, faces the core contradiction between preservation and development. Taking Shenyang’s Nanshi area as a case study, this study aimed to construct a sustainable urban form evaluation system comprising 7 dimensions and 23 indicators by integrating multi-source geographic Big Data. A combination of a weighting approach in rank-order analysis and the entropy weight method was adopted, followed by spatial quantitative analysis conducted based on ArcGIS. The results showed that the sustainability of the area exhibited significant spatial differentiation: historic blocks became high-value areas due to their “small blocks, dense road network” fabric and high functional mix. However, newly built residential areas were low-value zones, constrained by factors such as fragmented green spaces, single-functional land use, and other limitations. Road network density and functional mixing were identified as the primary driving factors, while green coverage rate served as a secondary factor. Based on these findings, a three-tier “element–structure–system” optimization strategy was proposed, providing quantitative decision support for the low-carbon renewal of high-density historic urban districts. Full article
Show Figures

Figure 1

26 pages, 31202 KB  
Article
Analyzing Fault Reactivation Behavior Using InSAR, Stress Inversion, and Field Observations During the 2025 Sındırgı Earthquake Sequence, Simav Fault Zone, Western Türkiye
by Şenol Hakan Kutoğlu, Mustafa Softa, Elif Akgün, Murat Nas and Savaş Topal
Sensors 2026, 26(3), 760; https://doi.org/10.3390/s26030760 - 23 Jan 2026
Viewed by 201
Abstract
The Sındırgı earthquake sequence, with moment magnitudes of 6.1 on 10 August and 27 October 2025, respectively, occurred within the Simav Fault Zone in western Türkiye, rupturing nearby but structurally distinct fault segments. In this study, we combine Sentinel-1 InSAR time-series measurements with [...] Read more.
The Sındırgı earthquake sequence, with moment magnitudes of 6.1 on 10 August and 27 October 2025, respectively, occurred within the Simav Fault Zone in western Türkiye, rupturing nearby but structurally distinct fault segments. In this study, we combine Sentinel-1 InSAR time-series measurements with seismological data, geomorphic observations, and post-event field surveys to examine how deformation evolved between and after these events. InSAR results indicate coseismic line-of-sight displacements of 6–7 cm, followed by post-seismic deformation that persisted for months at 8–10 mm/yr. This behavior signifies that deformation continued well beyond the initial rupture. The estimated displacement does not align with a single fault plane. Instead, it corresponds to a network of early-mapped and previously unrecognized fault segments. Seismicity patterns and stress tensor inversions show that activity migrated spatially after 10 August and that the faulting mechanism altered before the second earthquake. When synthesized, observations indicate stress transfer within a modular, segmented fault system, thought to have been influenced by regional structural complexity. Field investigations after the October earthquake reported new surface cracks and fault traces, providing evidence of shallow deformation. The collected results indicate that post-seismic stress redistribution played a leading role in modulating the 2025 Sındırgı earthquake sequence. Full article
(This article belongs to the Special Issue Sensing Technologies for Geophysical Monitoring)
Show Figures

Figure 1

18 pages, 5057 KB  
Article
Research on the Lubrication and Thermal Effects of Single-Metal Seals on Sealing Performance
by Weidong Meng, Haijuan Wang, Hai Ma, Yi Zhang and Li Yao
Lubricants 2026, 14(2), 47; https://doi.org/10.3390/lubricants14020047 - 23 Jan 2026
Viewed by 166
Abstract
This paper investigates the impact of lubrication and thermal effects on the performance of single-metal seals in roller cone bits, and it establishes the geometric, material, and operating parameter models for the single-metal seal. Based on the theory of statistics, the Greenwood–Williamson (G–W) [...] Read more.
This paper investigates the impact of lubrication and thermal effects on the performance of single-metal seals in roller cone bits, and it establishes the geometric, material, and operating parameter models for the single-metal seal. Based on the theory of statistics, the Greenwood–Williamson (G–W) model is employed to predict the contact stress of micro-protrusions on the sealing pair surface. This study establishes a Thermal Elastohydrodynamic Lubrication (TEHL) coupling model for single-metal seals, which utilizes the deformation matrix method to characterize the microscopic deformation of the sealing interface. The central difference method is applied to solve the oil film thickness and temperature distribution in the axial and film thickness directions of the sealing surface. The results indicate that the sealing zone is predominantly under rough peak contact pressure, operating in a mixed-lubrication state. Oil film thickness negatively correlates with static contact pressure, and seal pressure and pre-compression displacement significantly influence lubrication performance. Experiments validate the numerical simulation results, with a mean relative error of less than 15%, confirming the model’s effectiveness. This study offers a theoretical basis for optimizing single-metal seal design, enhancing the reliability and lifespan of roller cone bits in harsh conditions. Full article
Show Figures

Figure 1

18 pages, 2814 KB  
Review
Spatial Patterns and Drivers of Ecosystem Service Values in the Qinghai Lake Basin, Northwestern China (2000–2020)
by Yuyu Ma, Kelong Chen, Yanli Han, Shijia Zhou, Xingyue Li, Shuchang Zhu and Hairui Zhao
Sustainability 2026, 18(2), 1141; https://doi.org/10.3390/su18021141 - 22 Jan 2026
Viewed by 89
Abstract
As a vital ecological security barrier and climate regulator in northwestern China, the spatial patterns and evolving formation mechanisms of ecosystem services within the Qinghai Lake basin hold significant strategic value for ecological conservation and national park development in the region. This study [...] Read more.
As a vital ecological security barrier and climate regulator in northwestern China, the spatial patterns and evolving formation mechanisms of ecosystem services within the Qinghai Lake basin hold significant strategic value for ecological conservation and national park development in the region. This study selected land use data during 2000–2020, integrating the equivalent factor method, spatial correlation analysis, and the geodetector approach to systematically investigate the spatial heterogeneity characteristics of ESV in the Qinghai Lake basin and its corresponding driving mechanisms. The results indicate the following: (1) During the period 2000–2020, grassland consistently constituted the primary land cover category within the Qinghai Lake Basin, accounting for over 60% of the total area; water bodies (16.67%) and unused land (16.56%) represented the secondary land use categories. Over this twenty-year period, the total ESV exhibited a slight increasing trend, rising from USD 30.30 × 108 to USD 30.75 × 108, representing a growth of 0.31%. Regulating services constituted the primary component of ESV. The highest contribution to ESV originated from water bodies, with grassland ranking second. (2) ESV displayed a spatial arrangement marked by “high values in the lake center and low values in the surrounding areas” and “higher values in the southeast and lower values in the northwest.” Its spatial correlation exhibits a pronounced positive relationship. The number of units classified as high-high clusters (primarily water bodies at low elevations) and low-low clusters (mainly grasslands and unused land at high elevations) both increased over the study period, indicating a continuous intensification of ESV spatial agglomeration. (3) Results from the geographical detector reveal that both natural and anthropogenic factors collectively drive the spatial variation in ESV, with natural factors exhibiting stronger explanatory capacity. Among these, elevation and temperature are identified as the dominant drivers of ESV spatiotemporal differentiation. The combined effect of two interacting factors surpasses the influence exerted by any single factor in isolation. This research clarifies that the spatial distribution of ESV in the Qinghai Lake Basin, which features “high values in the lake center and low values in the surrounding areas” as well as “higher values in the southeast and lower values in the northwest,” is jointly shaped by the combined control of vertical zonality governed by topographic and climatic factors and the spatial differentiation of human activities. In low-altitude lakeshore zones, ESV rose as a consequence of water body expansion and the enforcement of ecological conservation measures, leading to the emergence of high-value clusters. In contrast, ESV improvement in high-elevation regions remained limited, constrained by fragile natural conditions and minimal human intervention. The insights derived from this research offer a scientific foundation for refining the “one core, four zones, one ring, multiple points” functional zoning framework of the Qinghai Lake National Park, as well as for developing tailored management approaches suited to distinct elevation-based regions. Full article
Show Figures

Figure 1

20 pages, 3134 KB  
Article
Spatial Associations and Co-Occurrence Networks of Sympatric Species in an Asian Elephant Community
by Jingshan Wang, Xu Li, Yuan Tian, Wenguan Duan, Yuhui Si, Dusu Wen, Weibin Wang and Dehuai Meng
Animals 2026, 16(2), 351; https://doi.org/10.3390/ani16020351 - 22 Jan 2026
Viewed by 24
Abstract
Understanding how species share resources (niche dynamics) and associate with each other is crucial for maintaining stable ecological communities. Using infrared camera traps, we constructed spatial association networks for an isolated Asian elephant population. The Asian elephant (Elephas maximus), a keystone [...] Read more.
Understanding how species share resources (niche dynamics) and associate with each other is crucial for maintaining stable ecological communities. Using infrared camera traps, we constructed spatial association networks for an isolated Asian elephant population. The Asian elephant (Elephas maximus), a keystone species in tropical forests, faces significant threats from habitat fragmentation and human disturbances, particularly in the isolated population of Nangunhe National Nature Reserve, Yunnan, China. Using infrared camera trapping, niche analysis, and interspecific association models, we examined the ecological role of Asian elephants and their sympatric species networks in fragmented habitats. We identified 44 species, including 11 species with higher relative abundance showing significant ecological correlations with elephants. Asian elephants exhibited the broadest spatial distribution, consistent with their role as ecological engineers due to high environmental tolerance and diverse resource utilization. Sympatric herbivores exhibited moderate spatial co-occurrence. Wild boars (Sus scrofa), red-bellied squirrels (Callosciurus erythraeus), northern pig-tailed macaques (Macaca leonina), and red junglefowl (Gallus gallus) demonstrated significant spatial associations with elephants. Lambda coefficient analysis revealed asymmetric associations reflecting spatial reliance of red-bellied squirrels and wild boars on elephant activity zones. Temporally, Asian elephants exhibited a stable bimodal activity pattern at dawn and dusk. Despite varying degrees of diel overlap with sympatric species, no significant temporal avoidance was detected, suggesting fine-scale coexistence mechanisms beyond the temporal dimension. We argue that conservation strategies are in urgent need of a transformation from single-species protection to the preservation of ecological interaction networks. This study clarifies the dominant position of Asian elephants in the community by mapping the spatial association networks between Asian elephants and sympatric species, and its findings hold substantial guiding significance for the recovery and protection of isolated Asian elephant populations. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

21 pages, 11053 KB  
Article
Characteristics of Stratum Disturbance During the Construction of Dual-Line Shield Tunnels with Consideration of Soil Spatial Variability
by Yuan Lyu, Yong Liu, Chaoqun Huang, Zehang Wang, Dong Huang, Jing Peng and Xuedong Luo
Appl. Sci. 2026, 16(2), 1132; https://doi.org/10.3390/app16021132 - 22 Jan 2026
Viewed by 24
Abstract
Soil spatial variability is an inherent feature of natural strata, and random field theory provides an effective framework for quantifying it, aiding accurate deformation prediction. This study focuses on the tunnel section between Kepugongyuan and Gangduhuayuan Stations on Wuhan Metro Line 12. Its [...] Read more.
Soil spatial variability is an inherent feature of natural strata, and random field theory provides an effective framework for quantifying it, aiding accurate deformation prediction. This study focuses on the tunnel section between Kepugongyuan and Gangduhuayuan Stations on Wuhan Metro Line 12. Its novelty focuses on analyzing dual-line shield-induced ground response with explicit consideration of multi-layer soil spatial variability. It examines the effects of the coefficient of variation and the horizontal/vertical spatial correlation distances of cohesion, internal friction angle, and elastic modulus—considering multilayer soil variability—on ground disturbance induced by twin-tunnel shield construction. The main findings include the following: (1) In cross-section, the settlement trough transitions from a “W”-shaped double trough to a “V”-shaped single trough as excavation advances, with the settlement center moving toward the midpoint between the tunnels. Longitudinally, soil heaves ahead of the shield and settles behind. (2) Ignoring spatial variability results in underestimated deformations; nearly 80% of stochastic simulations produced larger maximum surface settlements compared to deterministic analysis. (3) Ground loss and shield thrust disturbance are categorized into four zones based on tunnel diameter (D): Disturbance Zone, Secondary Zone, Transition Zone, and Undisturbed Zone. These findings provide practical guidance for predicting ground deformation and managing settlement-related risks in urban dual-line shield projects. Full article
Show Figures

Figure 1

16 pages, 4846 KB  
Article
Therapeutically Induced Modulation of Collagen I-to-III Ratio Three Weeks After Rabbit Achilles Tendon Full Transection
by Gabriella Meier Bürgisser, Olivera Evrova, Pietro Giovanoli, Maurizio Calcagni and Johanna Buschmann
Biology 2026, 15(2), 204; https://doi.org/10.3390/biology15020204 - 22 Jan 2026
Viewed by 55
Abstract
During tendon healing, collagen III expression precedes that of collagen I. The collagen I-to-III ratio at a certain time point post-laceration serves as an indicator of the healing status. Consequently, it is crucial to understand how different therapeutic approaches to support tendon healing [...] Read more.
During tendon healing, collagen III expression precedes that of collagen I. The collagen I-to-III ratio at a certain time point post-laceration serves as an indicator of the healing status. Consequently, it is crucial to understand how different therapeutic approaches to support tendon healing affect the collagen I-to-III ratio in the extracellular matrix of a healing tendon, particularly across distinct anatomical zones. We compared the impact of a platelet-derived growth factor-BB (PDGF-BB) treatment via controlled release from coaxially electrospun DegraPol® (Ab medica, Cerro Maggiore, Italy) hollow-fiber mesh with a treatment by the vehicle alone (no PDGF-BB) in the rabbit Achilles tendon full transection model and provide data on the collagen I-to-III ratio 3 weeks post-operation. For this purpose, we compared a dual-color Herovici staining to two single IHC labeling, for collagen I and collagen III, respectively. Herovici staining (HV) was expected to offer a more precise approach (pink-to-blue histogram) than the two separately labeled IHC stainings, both with chromogenic DAB labeling (red-to-green histogram), despite an anticipated positive correlation of the data assessed by these methods. Different zones were compared, i.e., native tendon tissue, reactive zone at interface to implant, hot zone within the core of the healing tendon and the zone within the scaffold, meaning the collagen deposited within the fibers of the implanted DegraPol® tube, respectively. The analysis revealed that the ratios obtained via HV correlated weakly with the ratios obtained by IHC. Based on HV, PDGF-BB therapy led to higher collagen I-to-III ratios in all zones, except for the zone within the scaffold pores, while IHC did not reveal significant differences. Notably, collagen I-to-III ratios were not higher in immediate proximity, but rather distal from the PDGF-BB releasing implant, specifically in the core of the healing tendon tissue. Hence, a PDGF-BB therapy is suggestive of greater collagen maturation in specific zones of the healing tendon. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

41 pages, 7490 KB  
Review
Research Progress and Application Status of Evaporative Cooling Technology
by Lin Xia, Haogen Li, Suoying He, Zhe Geng, Shuzhen Zhang, Feiyang Long, Zongjun Long, Jisheng Li, Wujin Yuan and Ming Gao
Energies 2026, 19(2), 570; https://doi.org/10.3390/en19020570 - 22 Jan 2026
Viewed by 40
Abstract
This review systematically examines the latest research progress and diverse applications of direct evaporative cooling and indirect evaporative cooling across five core sectors: industrial and energy engineering, the built environment, agriculture and food preservation, transportation and aerospace, and emerging interdisciplinary fields. While existing [...] Read more.
This review systematically examines the latest research progress and diverse applications of direct evaporative cooling and indirect evaporative cooling across five core sectors: industrial and energy engineering, the built environment, agriculture and food preservation, transportation and aerospace, and emerging interdisciplinary fields. While existing research often focuses on single application silos, this paper distills two common foundational challenges: climate adaptability and water resource management. Quantitative analysis demonstrates significant performance gains. Hybrid systems in data centers increase annual energy-saving potential by 14% to 41%, while precision root-zone cooling in greenhouses boosts crop yields by 13.22%. Additionally, passive cooling blankets reduce post-harvest losses by up to 45%, and integrated desalination cycles achieve 18.64% lower energy consumption compared to conventional systems. Innovative strategies to overcome humidity bottlenecks include vacuum-assisted membranes, advanced porous materials, and hybrid radiative-evaporative systems. The paper also analyzes sustainable water management through rainwater harvesting, seawater utilization, and atmospheric water capture. Collectively, these advancements provide a comprehensive framework to guide the future development and commercialization of sustainable cooling technologies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Graphical abstract

17 pages, 3175 KB  
Article
Flavonoid-Rich Cyperus esculentus Extracts Disrupt Cellular and Metabolic Functions in Staphylococcus aureus
by Yaning Zhang, Zhengdong Ma, Xuzhe Wang, Qilong Jiang, Xue Kang and Hongmei Gao
Microorganisms 2026, 14(1), 260; https://doi.org/10.3390/microorganisms14010260 - 22 Jan 2026
Viewed by 62
Abstract
The escalating threat of antibiotic resistance, particularly from Staphylococcus aureus (S. aureus), has become a critical challenge in both public health and animal husbandry. The extensive use of conventional antibiotics in livestock production accelerates the emergence of resistant strains, heightening risks [...] Read more.
The escalating threat of antibiotic resistance, particularly from Staphylococcus aureus (S. aureus), has become a critical challenge in both public health and animal husbandry. The extensive use of conventional antibiotics in livestock production accelerates the emergence of resistant strains, heightening risks to food safety and human health. Although plant-derived bioactive compounds are increasingly recognized as promising alternatives to synthetic antimicrobials, the mechanisms underlying their efficacy—and the potential for synergistic action among different plant parts—remain poorly understood. In particular, the antibacterial interactions among extracts from different tissues of Cyperus esculentus L. (C. esculentus), a plant rich in flavonoids and phenolics, have yet to be systematically evaluated. Here, we investigated the antibacterial properties and mechanisms of ethanol extracts from the tubers, stems–leaves and their mixture of C. esculentus against S. aureus. Using Oxford cup diffusion assays, scanning electron microscopy (SEM), bacterial growth kinetics, and untargeted metabolomics, we assessed both phenotypic inhibition and metabolic disruption. The mixed extract exhibited the strongest antibacterial effect, producing a 26.15 mm inhibition zone—approximately 7% greater than that of single-part extracts—and induced cell wall rupture and disintegration as observed by SEM. Growth curve analyses revealed time-dependent bacterial suppression, while metabolomic profiling identified 845 differential metabolites, indicating disturbances in amino acid, lipid, and nucleotide metabolism. Flavonoids such as acacetin, diosmetin, naringenin, and silybin A were identified as principal active compounds contributing to these effects. Full article
(This article belongs to the Special Issue Microorganisms in Silage—2nd Edition)
Show Figures

Figure 1

Back to TopTop