Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = single-hidden layer feedforward network (SLFN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9933 KB  
Article
Nanosatellite Autonomous Navigation via Extreme Learning Machine Using Magnetometer Measurements
by Gilberto Goracci, Fabio Curti and Mark Anthony de Guzman
Aerospace 2025, 12(2), 117; https://doi.org/10.3390/aerospace12020117 - 3 Feb 2025
Viewed by 1167
Abstract
This work presents an algorithm to perform autonomous navigation in spacecraft using onboard magnetometer data during GPS outages. An Extended Kalman Filter (EKF) exploiting magnetic field measurements is combined with a Single-Hidden-Layer Feedforward Neural Network (SLFN) trained via the Extreme Learning Machine to [...] Read more.
This work presents an algorithm to perform autonomous navigation in spacecraft using onboard magnetometer data during GPS outages. An Extended Kalman Filter (EKF) exploiting magnetic field measurements is combined with a Single-Hidden-Layer Feedforward Neural Network (SLFN) trained via the Extreme Learning Machine to improve the accuracy of the state estimate. The SLFN is trained using GPS data when available and predicts the state correction to be applied to the EKF estimates. The CHAOS-7 magnetic field model is used to generate the magnetometer measurements, while a 13th-order IGRF model is exploited by the EKF. Tests on simulated data showed that the algorithm improved the state estimate provided by the EKF by a factor of 2.4 for a total of 51 days when trained on 5 days of GPS data. Full article
(This article belongs to the Special Issue Deep Space Exploration)
Show Figures

Figure 1

16 pages, 3093 KB  
Article
Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch
by Tan-Hsu Tan, Jyun-Yu Shih, Shing-Hong Liu, Mohammad Alkhaleefah, Yang-Lang Chang and Munkhjargal Gochoo
Sensors 2023, 23(6), 3354; https://doi.org/10.3390/s23063354 - 22 Mar 2023
Cited by 6 | Viewed by 3273
Abstract
Mobile health (mHealth) utilizes mobile devices, mobile communication techniques, and the Internet of Things (IoT) to improve not only traditional telemedicine and monitoring and alerting systems, but also fitness and medical information awareness in daily life. In the last decade, human activity recognition [...] Read more.
Mobile health (mHealth) utilizes mobile devices, mobile communication techniques, and the Internet of Things (IoT) to improve not only traditional telemedicine and monitoring and alerting systems, but also fitness and medical information awareness in daily life. In the last decade, human activity recognition (HAR) has been extensively studied because of the strong correlation between people’s activities and their physical and mental health. HAR can also be used to care for elderly people in their daily lives. This study proposes an HAR system for classifying 18 types of physical activity using data from sensors embedded in smartphones and smartwatches. The recognition process consists of two parts: feature extraction and HAR. To extract features, a hybrid structure consisting of a convolutional neural network (CNN) and a bidirectional gated recurrent unit GRU (BiGRU) was used. For activity recognition, a single-hidden-layer feedforward neural network (SLFN) with a regularized extreme machine learning (RELM) algorithm was used. The experimental results show an average precision of 98.3%, recall of 98.4%, an F1-score of 98.4%, and accuracy of 98.3%, which results are superior to those of existing schemes. Full article
(This article belongs to the Special Issue Recent Developments in Wireless Network Technology)
Show Figures

Figure 1

20 pages, 3066 KB  
Article
Classification of Program Texts Represented as Markov Chains with Biology-Inspired Algorithms-Enhanced Extreme Learning Machines
by Liliya A. Demidova and Artyom V. Gorchakov
Algorithms 2022, 15(9), 329; https://doi.org/10.3390/a15090329 - 15 Sep 2022
Cited by 7 | Viewed by 2890
Abstract
The massive nature of modern university programming courses increases the burden on academic workers. The Digital Teaching Assistant (DTA) system addresses this issue by automating unique programming exercise generation and checking, and provides means for analyzing programs received from students by the end [...] Read more.
The massive nature of modern university programming courses increases the burden on academic workers. The Digital Teaching Assistant (DTA) system addresses this issue by automating unique programming exercise generation and checking, and provides means for analyzing programs received from students by the end of semester. In this paper, we propose a machine learning-based approach to the classification of student programs represented as Markov chains. The proposed approach enables real-time student submissions analysis in the DTA system. We compare the performance of different multi-class classification algorithms, such as support vector machine (SVM), the k nearest neighbors (KNN) algorithm, random forest (RF), and extreme learning machine (ELM). ELM is a single-hidden layer feedforward network (SLFN) learning scheme that drastically speeds up the SLFN training process. This is achieved by randomly initializing weights of connections among input and hidden neurons, and explicitly computing weights of connections among hidden and output neurons. The experimental results show that ELM is the most computationally efficient algorithm among the considered ones. In addition, we apply biology-inspired algorithms to ELM input weights fine-tuning in order to further improve the generalization capabilities of this algorithm. The obtained results show that ELMs fine-tuned with biology-inspired algorithms achieve the best accuracy on test data in most of the considered problems. Full article
(This article belongs to the Special Issue Mathematical Models and Their Applications III)
Show Figures

Figure 1

14 pages, 1515 KB  
Article
A miRNA-Disease Association Identification Method Based on Reliable Negative Sample Selection and Improved Single-Hidden Layer Feedforward Neural Network
by Qinglong Tian, Su Zhou and Qi Wu
Information 2022, 13(3), 108; https://doi.org/10.3390/info13030108 - 24 Feb 2022
Cited by 3 | Viewed by 2426
Abstract
miRNAs are a category of important endogenous non-coding small RNAs and are ubiquitous in eukaryotes. They are widely involved in the regulatory process of post-transcriptional gene expression and play a critical part in the development of human diseases. By utilizing recent advancements in [...] Read more.
miRNAs are a category of important endogenous non-coding small RNAs and are ubiquitous in eukaryotes. They are widely involved in the regulatory process of post-transcriptional gene expression and play a critical part in the development of human diseases. By utilizing recent advancements in big data technology, using bioinformatics methods to identify causative miRNA becomes a hot spot. In this paper, a method called RNSSLFN is proposed to identify the miRNA-disease associations by reliable negative sample selection and an improved single-hidden layer feedforward neural network (SLFN). It involves, firstly, obtaining integrated similarity for miRNAs and diseases; next, selecting reliable negative samples from unknown miRNA-disease associations via distinguishing up-regulated or down-regulated miRNAs; then, introducing an improved SLFN to solve the prediction task. The experimental results on the latest data sets HMDD v3.2 and the framework of 5-fold cross-validation (CV) show that the average AUC and AUPR of RNSSLFN achieve 0.9316 and 0.9065 m, respectively, which are superior to the other three state-of-the-art methods. Furthermore, in the case studies of 10 common cancers, more than 70% of the top 30 predicted miRNA-disease association pairs are verified in the databases, which further confirms the reliability and effectiveness of the RNSSLFN model. Generally, RNSSLFN in predicting miRNA-disease associations has prodigious potential and extensive foreground. Full article
(This article belongs to the Special Issue Recent Advances in Video Compression and Coding)
Show Figures

Figure 1

21 pages, 1256 KB  
Article
A Multi-Layer Classification Approach for Intrusion Detection in IoT Networks Based on Deep Learning
by Raneem Qaddoura, Ala’ M. Al-Zoubi, Hossam Faris and Iman Almomani
Sensors 2021, 21(9), 2987; https://doi.org/10.3390/s21092987 - 24 Apr 2021
Cited by 77 | Viewed by 6895
Abstract
The security of IoT networks is an important concern to researchers and business owners, which is taken into careful consideration due to its direct impact on the availability of the services offered by IoT devices and the privacy of the users connected with [...] Read more.
The security of IoT networks is an important concern to researchers and business owners, which is taken into careful consideration due to its direct impact on the availability of the services offered by IoT devices and the privacy of the users connected with the network. An intrusion detection system ensures the security of the network and detects malicious activities attacking the network. In this study, a deep multi-layer classification approach for intrusion detection is proposed combining two stages of detection of the existence of an intrusion and the type of intrusion, along with an oversampling technique to ensure better quality of the classification results. Extensive experiments are made for different settings of the first stage and the second stage in addition to two different strategies for the oversampling technique. The experiments show that the best settings of the proposed approach include oversampling by the intrusion type identification label (ITI), 150 neurons for the Single-hidden Layer Feed-forward Neural Network (SLFN), and 2 layers and 150 neurons for LSTM. The results are compared to well-known classification techniques, which shows that the proposed technique outperforms the others in terms of the G-mean having the value of 78% compared to 75% for KNN and less than 50% for the other techniques. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

30 pages, 3454 KB  
Article
A Hybrid Method Based on Extreme Learning Machine and Wavelet Transform Denoising for Stock Prediction
by Dingming Wu, Xiaolong Wang and Shaocong Wu
Entropy 2021, 23(4), 440; https://doi.org/10.3390/e23040440 - 9 Apr 2021
Cited by 39 | Viewed by 5606
Abstract
The trend prediction of the stock is a main challenge. Accidental factors often lead to short-term sharp fluctuations in stock markets, deviating from the original normal trend. The short-term fluctuation of stock price has high noise, which is not conducive to the prediction [...] Read more.
The trend prediction of the stock is a main challenge. Accidental factors often lead to short-term sharp fluctuations in stock markets, deviating from the original normal trend. The short-term fluctuation of stock price has high noise, which is not conducive to the prediction of stock trends. Therefore, we used discrete wavelet transform (DWT)-based denoising to denoise stock data. Denoising the stock data assisted us to eliminate the influences of short-term random events on the continuous trend of the stock. The denoised data showed more stable trend characteristics and smoothness. Extreme learning machine (ELM) is one of the effective training algorithms for fully connected single-hidden-layer feedforward neural networks (SLFNs), which possesses the advantages of fast convergence, unique results, and it does not converge to a local minimum. Therefore, this paper proposed a combination of ELM- and DWT-based denoising to predict the trend of stocks. The proposed method was used to predict the trend of 400 stocks in China. The prediction results of the proposed method are a good proof of the efficacy of DWT-based denoising for stock trends, and showed an excellent performance compared to 12 machine learning algorithms (e.g., recurrent neural network (RNN) and long short-term memory (LSTM)). Full article
Show Figures

Figure 1

19 pages, 1675 KB  
Article
A Multi-Stage Classification Approach for IoT Intrusion Detection Based on Clustering with Oversampling
by Raneem Qaddoura, Ala’ M. Al-Zoubi, Iman Almomani and Hossam Faris
Appl. Sci. 2021, 11(7), 3022; https://doi.org/10.3390/app11073022 - 28 Mar 2021
Cited by 84 | Viewed by 5725
Abstract
Intrusion detection of IoT-based data is a hot topic and has received a lot of interests from researchers and practitioners since the security of IoT networks is crucial. Both supervised and unsupervised learning methods are used for intrusion detection of IoT networks. This [...] Read more.
Intrusion detection of IoT-based data is a hot topic and has received a lot of interests from researchers and practitioners since the security of IoT networks is crucial. Both supervised and unsupervised learning methods are used for intrusion detection of IoT networks. This paper proposes an approach of three stages considering a clustering with reduction stage, an oversampling stage, and a classification by a Single Hidden Layer Feed-Forward Neural Network (SLFN) stage. The novelty of the paper resides in the technique of data reduction and data oversampling for generating useful and balanced training data and the hybrid consideration of the unsupervised and supervised methods for detecting the intrusion activities. The experiments were evaluated in terms of accuracy, precision, recall, and G-mean and divided into four steps: measuring the effect of the data reduction with clustering, the evaluation of the framework with basic classifiers, the effect of the oversampling technique, and a comparison with basic classifiers. The results show that SLFN classification technique and the choice of Support Vector Machine and Synthetic Minority Oversampling Technique (SVM-SMOTE) with a ratio of 0.9 and the k value of 3 for k-means++ clustering technique give better results than other values and other classification techniques. Full article
Show Figures

Figure 1

24 pages, 18699 KB  
Article
Radar HRRP Target Recognition Based on Dynamic Learning with Limited Training Data
by Jingjing Wang, Zheng Liu, Rong Xie and Lei Ran
Remote Sens. 2021, 13(4), 750; https://doi.org/10.3390/rs13040750 - 18 Feb 2021
Cited by 14 | Viewed by 3323
Abstract
For high-resolution range profile (HRRP)-based radar automatic target recognition (RATR), adequate training data are required to characterize a target signature effectively and get good recognition performance. However, collecting enough training data involving HRRP samples from each target orientation is hard. To tackle the [...] Read more.
For high-resolution range profile (HRRP)-based radar automatic target recognition (RATR), adequate training data are required to characterize a target signature effectively and get good recognition performance. However, collecting enough training data involving HRRP samples from each target orientation is hard. To tackle the HRRP-based RATR task with limited training data, a novel dynamic learning strategy is proposed based on the single-hidden layer feedforward network (SLFN) with an assistant classifier. In the offline training phase, the training data are used for pretraining the SLFN using a reduced kernel extreme learning machine (RKELM). In the online classification phase, the collected test data are first labeled by fusing the recognition results of the current SLFN and assistant classifier. Then the test samples with reliable pseudolabels are used as additional training data to update the parameters of SLFN with the online sequential RKELM (OS-RKELM). Moreover, to improve the accuracy of label estimation for test data, a novel semi-supervised learning method named constraint propagation-based label propagation (CPLP) was developed as an assistant classifier. The proposed method dynamically accumulates knowledge from training and test data through online learning, thereby reinforcing performance of the RATR system with limited training data. Experiments conducted on the simulated HRRP data from 10 civilian vehicles and real HRRP data from three military vehicles demonstrated the effectiveness of the proposed method when the training data are limited. Full article
Show Figures

Figure 1

20 pages, 6002 KB  
Article
Wind Turbine Prognosis Models Based on SCADA Data and Extreme Learning Machines
by Pere Marti-Puig, Alejandro Blanco-M., Moisès Serra-Serra and Jordi Solé-Casals
Appl. Sci. 2021, 11(2), 590; https://doi.org/10.3390/app11020590 - 9 Jan 2021
Cited by 25 | Viewed by 4238
Abstract
In this paper, a method to build models to monitor and evaluate the health status of wind turbines using Single-hidden Layer Feedforward Neural networks (SLFN) is presented. The models are trained using the Extreme Learning Machines (ELM) strategy. The data used is obtained [...] Read more.
In this paper, a method to build models to monitor and evaluate the health status of wind turbines using Single-hidden Layer Feedforward Neural networks (SLFN) is presented. The models are trained using the Extreme Learning Machines (ELM) strategy. The data used is obtained from the SCADA systems, easily available in modern wind turbines. The ELM technique requires very low computational costs for the training of the models, and thus allows for the integration of a grid-search approach with parallelized instances to find out the optimal model parameters. These models can be built both individually, considering the turbines separately, or as an aggregate for the whole wind plant. The followed strategy consists in predicting a target variable using the rest of the variables of the system/subsystem, computing the error deviation from the real target variable and finally comparing high error values with a selection of alarm events for that system, therefore validating the performance of the model. The experimental results indicate that this methodology leads to the detection of mismatches in the stages of the system’s failure, thus making it possible to schedule the maintenance operation before a critical failure occurs. The simplicity of the ELM systems and the ease with which the parameters can be adjusted make it a realistic option to be implemented in wind turbine models to work in real time. Full article
(This article belongs to the Special Issue Fault Diagnosis and Control Design Applications of Energy Systems)
Show Figures

Figure 1

15 pages, 2490 KB  
Article
Road Traffic Prediction Model Using Extreme Learning Machine: The Case Study of Tangier, Morocco
by Mouna Jiber, Abdelilah Mbarek, Ali Yahyaouy, My Abdelouahed Sabri and Jaouad Boumhidi
Information 2020, 11(12), 542; https://doi.org/10.3390/info11120542 - 24 Nov 2020
Cited by 16 | Viewed by 4490
Abstract
An efficient and credible approach to road traffic management and prediction is a crucial aspect in the Intelligent Transportation Systems (ITS). It can strongly influence the development of road structures and projects. It is also essential for route planning and traffic regulations. In [...] Read more.
An efficient and credible approach to road traffic management and prediction is a crucial aspect in the Intelligent Transportation Systems (ITS). It can strongly influence the development of road structures and projects. It is also essential for route planning and traffic regulations. In this paper, we propose a hybrid model that combines extreme learning machine (ELM) and ensemble-based techniques to predict the future hourly traffic of a road section in Tangier, a city in the north of Morocco. The model was applied to a real-world historical data set extracted from fixed sensors over a 5-years period. Our approach is based on a type of Single hidden Layer Feed-forward Neural Network (SLFN) known for being a high-speed machine learning algorithm. The model was, then, compared to other well-known algorithms in the prediction literature. Experimental results demonstrated that, according to the most commonly used criteria of error measurements (RMSE, MAE, and MAPE), our model is performing better in terms of prediction accuracy. The use of Akaike’s Information Criterion technique (AIC) has also shown that the proposed model has a higher performance. Full article
Show Figures

Figure 1

16 pages, 4392 KB  
Article
An Ensemble Extreme Learning Machine for Data Stream Classification
by Rui Yang, Shuliang Xu and Lin Feng
Algorithms 2018, 11(7), 107; https://doi.org/10.3390/a11070107 - 17 Jul 2018
Cited by 16 | Viewed by 5137
Abstract
Extreme learning machine (ELM) is a single hidden layer feedforward neural network (SLFN). Because ELM has a fast speed for classification, it is widely applied in data stream classification tasks. In this paper, a new ensemble extreme learning machine is presented. Different from [...] Read more.
Extreme learning machine (ELM) is a single hidden layer feedforward neural network (SLFN). Because ELM has a fast speed for classification, it is widely applied in data stream classification tasks. In this paper, a new ensemble extreme learning machine is presented. Different from traditional ELM methods, a concept drift detection method is embedded; it uses online sequence learning strategy to handle gradual concept drift and uses updating classifier to deal with abrupt concept drift, so both gradual concept drift and abrupt concept drift can be detected in this paper. The experimental results showed the new ELM algorithm not only can improve the accuracy of classification result, but also can adapt to new concept in a short time. Full article
Show Figures

Figure 1

17 pages, 5809 KB  
Article
Effective Data-Driven Calibration for a Galvanometric Laser Scanning System Using Binocular Stereo Vision
by Junchao Tu and Liyan Zhang
Sensors 2018, 18(1), 197; https://doi.org/10.3390/s18010197 - 12 Jan 2018
Cited by 25 | Viewed by 5459
Abstract
A new solution to the problem of galvanometric laser scanning (GLS) system calibration is presented. Under the machine learning framework, we build a single-hidden layer feedforward neural network (SLFN)to represent the GLS system, which takes the digital control signal at the drives of [...] Read more.
A new solution to the problem of galvanometric laser scanning (GLS) system calibration is presented. Under the machine learning framework, we build a single-hidden layer feedforward neural network (SLFN)to represent the GLS system, which takes the digital control signal at the drives of the GLS system as input and the space vector of the corresponding outgoing laser beam as output. The training data set is obtained with the aid of a moving mechanism and a binocular stereo system. The parameters of the SLFN are efficiently solved in a closed form by using extreme learning machine (ELM). By quantitatively analyzing the regression precision with respective to the number of hidden neurons in the SLFN, we demonstrate that the proper number of hidden neurons can be safely chosen from a broad interval to guarantee good generalization performance. Compared to the traditional model-driven calibration, the proposed calibration method does not need a complex modeling process and is more accurate and stable. As the output of the network is the space vectors of the outgoing laser beams, it costs much less training time and can provide a uniform solution to both laser projection and 3D-reconstruction, in contrast with the existing data-driven calibration method which only works for the laser triangulation problem. Calibration experiment, projection experiment and 3D reconstruction experiment are respectively conducted to test the proposed method, and good results are obtained. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 2352 KB  
Article
Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine
by Feixiang Zhao, Yongxiang Liu, Kai Huo, Shuanghui Zhang and Zhongshuai Zhang
Sensors 2018, 18(1), 173; https://doi.org/10.3390/s18010173 - 10 Jan 2018
Cited by 70 | Viewed by 7235
Abstract
A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use [...] Read more.
A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

14 pages, 871 KB  
Article
A Novel Neutrosophic Weighted Extreme Learning Machine for Imbalanced Data Set
by Yaman Akbulut, Abdulkadir Şengür, Yanhui Guo and Florentin Smarandache
Symmetry 2017, 9(8), 142; https://doi.org/10.3390/sym9080142 - 3 Aug 2017
Cited by 19 | Viewed by 6290
Abstract
Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward network (SLFN), and has obtained considerable attention within the machine learning community and achieved various real-world applications. It has advantages such as good generalization performance, fast learning speed, and low [...] Read more.
Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward network (SLFN), and has obtained considerable attention within the machine learning community and achieved various real-world applications. It has advantages such as good generalization performance, fast learning speed, and low computational cost. However, the ELM might have problems in the classification of imbalanced data sets. In this paper, we present a novel weighted ELM scheme based on neutrosophic set theory, denoted as neutrosophic weighted extreme learning machine (NWELM), in which neutrosophic c-means (NCM) clustering algorithm is used for the approximation of the output weights of the ELM. We also investigate and compare NWELM with several weighted algorithms. The proposed method demonstrates advantages to compare with the previous studies on benchmarks. Full article
(This article belongs to the Special Issue Neutrosophic Theories Applied in Engineering)
Show Figures

Figure 1

19 pages, 1499 KB  
Article
A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach
by Yulin Jian, Daoyu Huang, Jia Yan, Kun Lu, Ying Huang, Tailai Wen, Tanyue Zeng, Shijie Zhong and Qilong Xie
Sensors 2017, 17(6), 1434; https://doi.org/10.3390/s17061434 - 19 Jun 2017
Cited by 30 | Viewed by 7074
Abstract
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme [...] Read more.
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. Full article
(This article belongs to the Special Issue Electronic Tongues and Electronic Noses)
Show Figures

Figure 1

Back to TopTop