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Abstract: For high-resolution range profile (HRRP)-based radar automatic target recognition (RATR),
adequate training data are required to characterize a target signature effectively and get good
recognition performance. However, collecting enough training data involving HRRP samples from
each target orientation is hard. To tackle the HRRP-based RATR task with limited training data, a
novel dynamic learning strategy is proposed based on the single-hidden layer feedforward network
(SLFN) with an assistant classifier. In the offline training phase, the training data are used for
pretraining the SLFN using a reduced kernel extreme learning machine (RKELM). In the online
classification phase, the collected test data are first labeled by fusing the recognition results of the
current SLFN and assistant classifier. Then the test samples with reliable pseudolabels are used as
additional training data to update the parameters of SLFN with the online sequential RKELM (OS-
RKELM). Moreover, to improve the accuracy of label estimation for test data, a novel semi-supervised
learning method named constraint propagation-based label propagation (CPLP) was developed as
an assistant classifier. The proposed method dynamically accumulates knowledge from training and
test data through online learning, thereby reinforcing performance of the RATR system with limited
training data. Experiments conducted on the simulated HRRP data from 10 civilian vehicles and
real HRRP data from three military vehicles demonstrated the effectiveness of the proposed method
when the training data are limited.

Keywords: constraint propagation-based label propagation (CPLP); dynamic learning; high-resolution
range profile (HRRP); online sequential reduced kernel extreme learning machine (OS-RKELM);
radar automatic target recognition (RATR); single-hidden layer feedforward network (SLFN)

1. Introduction

A high-resolution range profile (HRRP) provides the geometrical shape and structural
characteristics of a target along the radar line-of-sight (LOS). Compared to synthetic
aperture radar (SAR) [1] and inverse SAR images, it is easier to get and store. Therefore,
HRRP has been widely used for radar automatic target recognition (RATR) systems.

A typical RATR system comprises the feature extraction followed by a powerful
classifier. Various target features from HRRP have been developed over the years, such as
spectral features [2,3], scattering center features [4,5], statistical features [6–8], high-level
features learned from deep networks [9,10] and so on. Typical classifiers applied to HRRP-
based RATR include the template matching method (TMM) [4,5], Bayes’ classifier [6–8],
the hidden Markov model (HMM) [11], etc.

To get good recognition performance, the methods above require complete training
data which are an effective representation of the target’s signature. However, acquisition
of enough target HRRPs is difficult in many real applications. The main reasons are these:
First, the targets of interest may be noncooperative and their echoes can be hard to collect.
Second, due to the aspect-sensitivity of the target HRRP, the complete training data should
involve HRRP samples of all possible orientations, which is unrealistic in practice. When
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the available training data are limited, the RATR system will exhibit unsatisfactory perfor-
mance even though the extracted feature and classifier used are good enough. Therefore,
developing an HRRP-based RATR method with limited training data is important.

Some studies have reported to deal with the RATR task with limited training data.
The support vector machine (SVM) [12] has been widely used for HRRP-based target
recognition [13], since it can get the smallest generalization error and is suitable for small
sample learning. However, the SVM does not consider the overall characteristics of the
target feature, which makes it sensitive to missing data. In [14], the dictionary learning
(DL) method, i.e., the K-SVD algorithm, was employed to classify HRRPs of a target when
training data were limited, for it shares the latent information among samples. Motivated
by [14], reference [15] proposed a robust DL method which overcomes the uncertainty of
sparse representations and is robust to the amplitude variations of adjacent HRRPs. It
achieves good recognition performance with limited training data. In [16], a factor analysis
model was proposed based on multitask learning (MTL), in which the relevant information
among HRRP samples with different target aspects is employed, and the aspect-dependent
parameters are obtained collectively. This method can reduce the number of HRRP samples
required in each target aspect-frame. However, the MTL and robust DL models still require
dozens of HRRP samples in each target aspect-frame to estimate parameters, which may not
be realized in practice. In [17], the discriminant deep autoencoder (DDAE) was proposed
to extract high-level features of HRRPs and train HRRP samples globally, which enhances
the recognition performance with little training data compared to most methods.

The above methods above are supervised learning approaches whose classifiers stay
unchanged during the classification process. They only take advantage of the offline
training data and ignore the useful information from new samples collected during the
classification process. Considering this, Yver [18] proposed a dynamic learning strategy
which updates the classifier using test samples. This strategy requires the RATR system to
accumulate knowledge dynamically, and exploit the knowledge to facilitate future learning
and classification in the update process. Four online learning approaches were presented,
including online self-training label-propagation (LP) [19], self-training LASVM [20], a
combination of LP and LASVM, and online TSVM. Nevertheless, these methods come with
several drawbacks. The self-training method teaches itself using the learned knowledge,
so it cannot reduce the bias caused by the limited training data [21]. LASVM gets the
approximate classification model in one-by-one mode but not in chunk-by-chunk mode,
so its computation is time-consuming. In [22], an updating convolutional neural network
(CNN) was proposed for use with SAR images. The initial CNN model trained by the
seed images was updated using the test images whose pseudolabels were assigned with
the SVM. This method exhibited good recognition performance on the MSTAR dataset.
However, it must store all the test data during the update process, which burdens the
memory resources.

Single-hidden layer feedforward neural networks (SLFNs) have been widely used in
pattern recognition (PR). The reduced kernel extreme learning machine (RKELM) [23] is a
kernel-based learning technique for SLFN in which the mapping samples are selected from
the training dataset and the output weights are analytically determined. In theory, it can
provide good generalization performance at high learning speed. The online sequential
RKELM (OS-RKELM) [24] is a fast online learning algorithm that can process data in
chunk-by-chunk mode and discard data after they have been learned. Hence, it achieves
savings in terms of both processing time and memory resources. However, the OS-RKELM
is a supervised learning method that requires the online received data to be labeled, and it
cannot be applied directly to the HRRP-based RATR task.

In this paper, a novel dynamic learning method based on the SLFN with an assistant
classifier is proposed to enhance the performance of HRRP-based RATR with limited
training data. In the offline training stage, the initial SLFN model is trained with the
RKELM algorithm using the labeled training data. In the classification stage, two steps,
i.e., the pseudolabel assignment and SLFN parameter update steps, are iterated. Once
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a certain number of test samples are collected, their pseudolabels are assigned. Then,
the test samples with reliable pseudolabels are considered as additional training data to
update the SLFN parameters by the OS-RKELM. Particularly, to improve the accuracy of
label estimation for test data, a novel semi-supervised learning method named constraint
propagation-based label propagation (CPLP) was developed as an assistant classifier, in
which the offline training samples are viewed as labeled data and the newly collected test
samples as unlabeled data. The pseudolabel of each test sample is assigned by fusing the
classification results of CPLP and the SLFN. Through the dynamic learning strategy, the
HRRP-based RATR system dynamically accumulates knowledge from both offline training
data and online test data, thereby reinforcing the performance of the RATR system.

Our contributions are summarized as follows:

1. To deal with the HRRP-based RATR task with limited training data, a dynamic
learning strategy is introduced based on the SLFN with an assistant classifier. The
proposed method processes data chunk-by-chunk and discards the test data once
they have been learned, so it requires less memory and processing time.

2. A novel semi-supervised learning method named constraint propagation-based la-
bel propagation (CPLP) is proposed as an assistant classifier to improve the label
estimation accuracy for test data.

In the experiments, the effectiveness of the proposed method was demonstrated
on two datasets, i.e., simulated data of 10 civilian vehicles and measured data of three
military vehicles. In this paper, the superiority of the CPLP algorithm is verified first.
Then, the recognition performance of the proposed SLFN with the CPLP algorithm is
presented along with the update process. By leaning information from the test data, a
performance improvement was achieved when training data were limited. Next, the
comparative experiments are shown, and the proposed method showed very competitive
recognition performance with the state-of-the-art methods on the two datasets. Finally, the
computational complexity is analyzed.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
algorithm in detail. Section 3 provides the experiment results on the simulated HRRP data
of 10 civilian vehicles and the measured data of three military vehicles. Section 4 presents
the conclusions.

2. Methodology

The framework of the proposed recognition method is shown in Figure 1. In the
RKELM and OS-RKELM algorithms, the offline training data have to be stored in order to
compute the kernel matrix in the online classification stage. Consequently, for the proposed
CPLP algorithm, the offline training data are viewed as labeled samples, and the newly
collected test data chunk (TDC) as unlabeled samples. The test samples with reliable
pseudolabels are viewed as additional training data to update the SLFN model. Once a
TDC is learned, it is discarded. The method continues to classify newly collected test data
and exploit them to update the SLFN parameters. In this way, the knowledge of both the
offline training data and the online test data can be accumulated in the SLFN model, and
be used to facilitate future learning and classification alongside the update process.

For simplification purposes, some notation is as follows. XL =
[
x1, · · · , xNl

]
is

the offline training dataset (OTD) containing Nl HRRP samples from C classes. YL =[
y1, · · · , yNl

]T ∈ RNl×C is the label matrix with ync = 1 if the label of sample xn is c; and

ync = 0 otherwise; n = 1, 2, · · · , Nl and c = 1, 2, · · · , C. XU
m =

[
xu

1 , · · · , xu
Nu

]
is the mth

chunk of test HRRP data that is collected in the classification stage. The HRRP samples in
XU

m are processed at a time during the update process.
In what follows, the SLFN classifier, CPLP algorithm, and decision fusion of SLFN

and CPLP classifiers are introduced.



Remote Sens. 2021, 13, 750 4 of 24

Figure 1. Framework of the proposed method.

2.1. Single-Hidden Layer Feedforward Neural Network

In our proposed method, the SLFN has Nl hidden nodes and C output nodes. The
parameters of SLFN are initialized using the OTD XL by the RKELM. Let β ∈ RNl×C denote
the output weights connecting the hidden layer and output layer; then its optimal value
can be derived in closed from [23]

β(0) =

(
I
ξ
+ KT

0 K0

)−1
KT

0 YL (1)

where K0 is the kernel matrix of which the (i, j)th entry is computed by K
(
xi, xj

)
, and the

parameter ξ is used to relax the overfitting issue of the SLFN model.
In the online classification stage, when the HRRP TDC XU

m is collected, the OS-RKELM
updates β(m) as follows: [24]:

Gm = Gm−1 −Gm−1KT
m

(
I + KmGm−1KT

m

)−1
KmGm−1 (2)

β(m) = β(m−1) + GmKT
m

(
Y s

m − Kmβ(m−1)
)

(3)

where Km = K
(
XU

m , XL
)
, G0 =

(
I
ξ + KT

0 K0

)−1
, and Y s

m =
[
ys

1, · · · , ys
Nu

]
is the pseudolabel

matrix of XU
m .

Let xu
n be the nth test sample in XU

m ; its prediction is computed as [24]

tu
n = K(xu

n, XL)β(m−1) (4)

Since the elements in tu
n are not probability values, we define the label probability

vector pu
n = [p1, p2, · · · , pC] of xu

n as

pc =
exp

(
−a‖tu

n − tc‖2
2

)
C
∑

c=1
exp

(
−a‖tu

n − tc‖2
2

) (5)

where pc is the probability of xu
n belonging to the cth class, a is a constant greater than 0,

tc is a C-dimensional row vector of which the cth element is 1 and the other elements are
0. Then

PU
m =

 pu
1
...

pu
Nu

 (6)

is the label probability matrix of XU
m computed by the SLFN.
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2.2. Constraint Propagation-Based Label Propagation

LP is a graph-based semi-supervised learning method which propagates the label in-
formation of labeled data to unlabeled data according to the intrinsic geometrical structure
of the data. The graph construction method plays an important role in label estimation for
unlabeled data.

According to the LP method, the label probability matrix FU
m of XU

m is estimated as [19]:

FU
m =

(
I − W̄UU

)−1W̄ULYL (7)

where the nth row f u
n of FU

m is the probability vector whose element fn,c is the probability
of xu

n belonging to the cth class. W̄UL ∈ RNu×Nl and W̄UU ∈ RNu×Nu are the normalized
probabilistic transition matrices which measure similarities between unlabeled samples
and labeled ones, and similarities between unlabeled samples, respectively. They are
usually constructed in an unsupervised manner, such as using a k-nearest neighbor (k-NN)
graph [25], which ignores the label information of labeled data. Considering this, we exploit
the label information to encode the pairwise constraints [26,27] between labeled samples,
and then construct W̄UL by propagating the constraint information via the similarity. The
motivation for this idea is twofold.

• If samples xk ∈ XU and xi ∈ XL are similar, and xj ∈ XL has the same class as xi, then
xk tends to be similar to xj.

• If samples xk, xi ∈ XU are similar, xk and xj ∈ XL are similar, then both xi and xk are
prone to having the same label as xj.

The proposed CPLP algorithm consists of two steps. In the first step, the traditional
unsupervised graph is constructed. Let WUU ∈ RNu×Nu denote the affinity matrix char-
acterizing the similarities among unlabeled data, and WUL ∈ RNu×Nl denote the affinity
matrix describing the similarities among labeled samples and unlabeled ones. Since HRRP
is in high dimensional space, the k-reciprocal nearest neighbors (k-RNNs) [28,29] is adopted
to compute the (i, j)th entry of WUU and WUL as follows.

wij =

 exp
(
− d(xi ,xj)

2

σ2

)
, xi ∈ N

(
xj
)
∧ xj ∈ N(xi)

0, otherwise
(8)

where N(x) is the k-NN sample set of x. For WUU , we set xi, xj ∈ XU
m . For WUL, we define a

dataset Dk =
[
xk, XU

m
]
, xk ∈ XL, and the entries in the kth column are computed by setting

xi, xj ∈ Dk.
In the second step, we aim to propagate the constraint information of labeled data to

unlabeled data via the affinity matrices WUU and WUL.
First, To incorporate the known label information, the affinity matrix WLL ∈ RNl×Nl

among labeled data is constructed by imposing two kinds of pairwise constraints. If the
samples xi and xj are from the same class, the must-link constraint is imposed. Otherwise,
the cannot-link constraint is set. The entries of WLL are computed as [27]

wij =

{
1, yi = yj
0, yi 6= yj

(9)

Then, the pairwise constraints are propagated to their nearest neighbors by an iterative
process [27,30]. In the tth iteration, the ith row of W (t)

UL is computed as

W (t)
UL,i = (1− α)W (0)

UL,i + α

(
Nl

∑
j=1

MUL,ijW
(t−1)
LL,j +

Nu

∑
k=1

MUU,ikW (t−1)
UL,k

)
(10)
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where t = 0, 1, 2, · · · is the time stamp, W (0)
UL = WUL, W (t)

LL = WLL is clamped, W (t)
UL,i

denotes the ith row of W (t)
UL, α ∈ [0, 1) is the trade-off parameter, MUL,ij is the (i, j)th entry

of MUL, and MUU,ik is the (i, k)th entry of MUU—the final two are calculated by (11) and
(12), respectively.

MUL,ij = WUL,ij

/(
Nl

∑
j=1

WUL,ij +
Nu

∑
k=1

WUU,ik

)
(11)

MUU,ik = WUU,ik

/(
Nl

∑
j=1

WUL,ij +
Nu

∑
k=1

WUU,ik

)
(12)

The matrix form of equation (10) is presented as

W (t)
UL = (1− α)W (0)

UL + αMULWLL + αMUUW (t−1)
UL (13)

When t→ ∞, W (t)
UL reaches a steady state W∗

UL which is calculated as

W∗
UL = (I − αMUU)

−1[(1− α)WUL + αMULWLL] (14)

Let WU =
[
W∗

UL WUU
]
; the normalized probabilistic transition matrices W̄UL and

W̄UU are derived as

W̄UL,ij = W∗
UL,ij

/
Nl+Nu

∑
k=1

WU,ik (15)

W̄UU,ij = WUU,ij

/
Nl+Nu

∑
k=1

WU,ik (16)

Then FU
m is estimated using (7).

The procedure of the proposed CPLP algorithm is depicted in Figure 2.

Figure 2. Flowchart of the proposed constraint propagation-based label propagation (CPLP) algorithm.

2.3. Decision Fusion

To improve the accuracy of label estimation for test data, we fuse the decisions of the
SLFN and CPLP to get the final label probability of test samples. The fused probability
vector zu

n of xu
n is obtained by

zu
n = κn pu

n + (1− κn) f u
n (17)

where κn is a parameter controlling the relative contributions of classification results of the
SLFN and CPLP algorithms for xu

n. The more reliable the classification result of CPLP, the
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smaller the parameter κ. The classifier energy based evaluation [21] that thinks neighbor
samples should have the same labels is used to compute κ as follows.

Let Υ =
[
XL XU

m
]
, E1 =

[
YT

L
(
PU

m
)T
]
, E2 =

[
YT

L
(

FU
m
)T
]
, and KRu

n be the indices of
KRNNs of xu

n in Υ. The energy-based evaluation of classifier for xu
n is defined as

rv(n) =
|KRu

n |

∑
i=1
‖Ev(Nl + n)− Ev(KRu

n(i))‖
2
2, v = 1, 2 (18)

where Ev(Nl + n) is the (Nl + n)th column of Ev, and |KRu
n| is the number of samples in

KRu
n. Then κn is computed as

κn = r2(n)
/
(r1(n) + r2(n)) (19)

Then the pseudolabel of xu
n is assigned as c∗ = arg max

c
zu

n, and the corresponding

label probability is max(zu
n). We select the test samples in the top one percent (p) of label

probability as additional training data to update the SLFN parameters.

3. Experiment Results and Analysis

In this section, the effectiveness of the proposed HRRP-based RATR method is demon-
strated by experiments that used limited training data. Two datasets, the simulated HRRP
dataset of 10 civilian vehicles and the measured HRRP dataset of three military vehicles,
were tested. First, the superiority of the proposed CPLP method is verified. Then, the
recognition performance of the proposed SLFN with CPLP method is presented with
limited training data. Finally, the computational complexity is analyzed.

For the recognition results to be more persuasive, S-fold cross-validation was utilized
in the following experiments. The dataset of each target was divided into S groups, of
which the γth group contained HRRP samples with indexes [γ, γ + S, γ + 2S, · · ·], where
γ = 1, 2, · · · , S. In the γth experiment, the γth group was viewed as a complete training
dataset, and the remaining data as the test dataset. The limited training data were simulated
by uniformly choosing samples from the complete training dataset. The recognition results
were computed by averaging the results of S experiments.

The time-shift sensitivity and amplitude-scale sensitivity are two issues that must be
addressed in HRRP-based RATR. In our experiments, the zero phase sensitivity alignment
method [31] was used to tackle the time-shift sensitivity, and the l2-norm normalization
was performed to deal with the amplitude-scale sensitivity.

All the experiments were performed with MATLAB code on a PC with 16 GB of RAM
and an Intel i7 CPU running at 3.6 GHz.

3.1. Simulated Data of 10 Civilian Vehicles
3.1.1. Dataset Description

The first HRRP dataset was the Air Force Research Laboratory’s (AFRL) publicly
released dataset. The dataset consists of simulated scattering data from 10 civilian vehicles,
including a Toyota Camry, Honda Civic 4dr, 1993 Jeep, 1999 Jeep, Nissan Maxima, Mazda
MPV, Mitsubishi, Nissan Sentra, Toyota Avalon, and Toyota Tacoma. The center frequency
is 9.6 GHz, and 128 frequencies are equally spaced by 10.48 MHz. The azimuth angle
changes from 0◦ to 360◦ with an interval of 0.0625◦. Since the CAD models of targets have
azimuthal symmetry, the data with the azimuth angle of [0◦,180◦] were exploited, resulting
in 2880 samples per target. The detailed description of this dataset can be consulted in [32].
In our experiments, the subdataset with an elevation angle of 30◦ was exploited since
it simulates the HRRP of targets and the ground plane, which is more practical. The
normalized HRRPs of 10 civilian vehicles are shown in Figure 3.

The 8-fold cross-validation was exploited as mentioned before. Consequently, the
complete training dataset of each target contained 360 HRRP samples with an azimuth



Remote Sens. 2021, 13, 750 8 of 24

interval of 0.5◦; and 2520 test samples constituted the test dataset of each target. In each
validation, 30 Monte Carlo experiments were conducted.

Figure 3. Normalized high-resolution range profiles (HRRPs) of 10 civilian vehicles. (a) Camry; (b) Jeep99; (c) Mitsubishi;
(d) MazdaMPV; (e) HondaCivic4dr; (f) Jeep93; (g) Maxima; (h) Sentra; (i) ToyotaAvalon; (j) ToyotaTacoma.

3.1.2. Recognition Performance of the CPLP Algorithm

In this section, the recognition performance of CPLP algorithm is demonstrated on
the simulated data of 10 civilian vehicles. First, the influences of some parameters on
the recognition performance are presented. Then, we study the recognition performance
versus the size of unlabeled dataset and labeled dataset.

(1) Parameter Setup
In this section, the effects of the parameters α, σ2, and k in the k-RNN algorithm for

computing WUL (denoted as k1) and for computing WUU (denoted as k2) on the recognition
performance of the CPLP algorithm are given. The labeled dataset consists of a tenth of the
complete training data, i.e., 36 HRRPs from each target. The unlabeled dataset contains
1000 HRRP samples, i.e., 100 samples randomly selected from the test dataset of each target.
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First, we evaluate the influences of parameters k1 and k2 on the recognition perfor-
mance of the CPLP algorithm. The parameter k1 controls the number of RNNs between
labeled and unlabeled samples, and k2 is related to the number of RNNs between unla-
beled samples. Let the values of k1 and k2 range from 3 to 20 with interval of 1; the results
are shown in Figure 4. We can see that the recognition accuracy first increased and then
decreased with increasing k1 and k2, and the best performance was obtained within the
range of k1 ∈ [4, 9] and k2 ∈ [6, 12]. In the following experiments conducted on the data
of 10 civilian vehicles, we fixed k1 = 6 and k2 = 10.

Figure 4. Recognition results of the CPLP algorithm for 10 civilian vehicles with different values of
k1 and k2. The parameters α and σ2 were searched to get the best recognition results.

Next, we analyzed the recognition accuracy under different values of the parameter
σ2 ranging from 0.01 to 0.2 with interval 0.01; the results are shown in Figure 5. Clearly, the
recognition rates increased when σ2 varied from 0.01 to 0.05, and then reduced gradually.
Hence, σ2 = 0.05 for the following experiments on the data of 10 civilian vehicles.

Figure 5. Recognition results of the CPLP algorithm for 10 civilian vehicles in relation to the parameter
σ2. In the experiments, k1 = 6, and k2 = 10, and α was used to get the best recognition results.

Finally, the effect of the parameter α was evaluated. The other parameters were fixed
as σ2 = 0.05, k1 = 6, and k2 = 10. As shown in Section 2.2, the parameter α affects the value
of W∗

UL. We set α = 0, 0.3, 0.6, 0.99; the computed matrices W∗
UL are shown in Figure 6.

As can be seen, with increased α, more edges are built between labeled samples
and unlabeled ones, and the edge weights become larger. The samples belonging to the
same class may not be connected with small α, whereas the edges between the samples
belonging to different classes may be built when α is large. Both cases above resulted in
unsatisfactory recognition performance. Thus, an appropriate value of α is important for
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the performance of the CPLP algorithm. It should be noted that the matrix W∗
UL degrades

to the unsupervised version WUL when α = 0. Hence, the LP algorithm that computes
W∗

UL in an unsupervised manner can be regarded as a specialization of the proposed
CPLP algorithm.

Figure 7 shows the recognition results when the parameter α varies from 0 to 0.99
with interval 0.01. It can be seen that the recognition accuracy increases gradually when
α ∈ [0, 0.4], then maintains a relatively stable value when α ∈ (0.4, 0.75), and finally
decreases gradually. In the following experiments on the HRRP data of 10 civilian vehicles,
α = 0.6 was chosen.

Figure 6. Matrix W∗
UL computed in the CPLP algorithm when α = 0, 0.3, 0.6, 0.99, respectively. The labeled data and

unlabeled data are arranged in the same target order: Camry, 1999 Jeep, Mitsubishi, Mazda MPV, Honda Civic 4dr, 1993
Jeep, Nissan Maxima, Nissan Sentra, Toyota Avalon, and Toyota Tacoma. (a) α = 0; (b) α = 0.3; (c) α = 0.6; (d) α = 0.99.

Figure 7. Recognition results of the CPLP algorithm for 10 civilian vehicles with different values of α.

(2) Performance Versus Size of Unlabeled Dataset
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The recognition performance of the proposed CPLP algorithm is compared with the
LP algorithm in regard to the size of the unlabeled dataset. The number of unlabeled
samples of each target ranged from 50 to 500 with interval 50; the recognition results are
shown in Figure 8. It can be observed that (1) the recognition accuracy of both methods
increased as the size of the unlabeled dataset increased, because more unlabeled samples
facilitate more accurate descriptions of data structure; (2) the proposed CPLP algorithm
exhibited better performance than the LP algorithm due to the constraint propagation for
computing the matrix W∗

UL.

Figure 8. Recognition results of CPLP and label-propagation (LP) algorithms for 10 civilian vehicles
in relation to the size of unlabeled dataset of each target. In the experiments, labeled dataset consists
of 360 HRRP samples, i.e., 36 HRRP samples from each target. The unlabeled data are randomly
selected from test dataset.

(3) Performance Versus Size of Labeled Dataset
We also conducted experiments to compare the CPLP and LP algorithms under

different sizes of labeled dataset. The recognition results for when the number of labeled
samples of each target ranged from 24 to 72 with an interval of 12 are shown in Figure 9.
We see that the recognition performance became better with the increase in size of the
labeled dataset. The reason is that a small labeled dataset is insufficient for discovering
the data structure of each target. Moreover, the CPLP algorithm outperformed the LP
algorithm, especially for small labeled datasets, because of the constraint propagation for
computing the matrix W∗

UL.

Figure 9. Recognition results of CPLP and LP algorithms for 10 civilian vehicles in relation to the size
of the labeled dataset of each target. In the experiments, we randomly selected 100 HRRP samples
from the test dataset of each target, yielding 1000 HRPPs in the unlabeled dataset.
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3.1.3. Recognition Performance of SLFN with CPLP Method

In this section, the effectiveness of the proposed SLFN with CPLP method is demon-
strated on the simulated data of 10 civilian vehicles. First, the recognition performance of
the proposed method is investigated with varying sizes of OTD and TDC, and values of
parameter p. Then, comparative experiments are shown that were carried out to analyze
the proposed method and state-of-the-art methods, including the self-training OS-RKELM
method, the OS-RKELM with a SVM, the incremental Laplacian regularization extreme
learning machine (ILR-ELM) [33], the SVM, the K-SVD, and the DDAE.

In the following experiments, a Gaussian kernel taking the form of K(x1, x2) =

exp
(
−‖x1 − x2‖2

/
b
)

was selected for Equation (1). The parameter b was set as 0.6, which
is the optimal value according to our observations. The TDC was randomly selected from
the test dataset. After being learned, it was removed from the test dataset.

(1) Performance Versus Size of the OTD
In this section, the recognition performance of the proposed SLFN with CPLP method

is studied with varying sizes of the OTD. The recognition results with learning steps are
shown in Figure 10. As expected, for all the sizes of OTD, the proposed method exhibited
increasing recognition performance along learning steps. This indicates that the proposed
method can improve the recognition performance by exploiting knowledge from test data.
In addition, the larger the size of the OTD, the better the recognition performance, since a
large OTD can describe the target signature in more detail.

Figure 10. Recognition results of the proposed SLFN with CPLP method for 10 civilian vehicles
versus learning steps under different sizes of offline training dataset (OTD). The test data chunk (TDC)
contained 200 HRRP samples from each target, and the parameter p was set as 90 in the experiments.

(2) Performance Versus Size of the TDC
In this section, we study the recognition performance of the proposed method with

different sizes of TDC. The results are shown in Figure 11. The observations obtained were
as follows. First, for all the sizes of TDC, the recognition performance increased in the
update process, which demonstrates the effectiveness of the proposed method. Second,
a large size for the TDC yielded a greater improvement of recognition performance. The
reason is that the CPLP algorithm exhibits better recognition performance with more test
samples, so that the new training data used for updating SLFN parameters contained less
error-labeled samples.
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Figure 11. Recognition results for 10 civilian vehicles with number of learned samples per target
under different sizes of TDC. In the experiments, the size of OTD from each target was fixed as 36,
and the parameter p was set as 100.

(3) Performance Versus Parameter p
In this section, we study the influence of the parameter p on the recognition perfor-

mance of the proposed SLFN with CPLP algorithm. Figure 12 shows the recognition results
with learning steps under different values of p.

We observed that (1) when p ≥ 30, the recognition performance became better and
better with learning steps; (2) when p = 10 and 20, the recognition accuracy first increased
and then decreased with learning steps; (3) the recognition performance gained the largest
improvement when p = 90. The reasons are analyzed in what follows. As illustrated in [34],
in the update process, the samples with true pseudolabels but low confidence carry more
information and contribute more to improving the SLFN performance, whereas employing
the samples with high confidence may result in overfitting of classifiers. When p is small,
the dataset used for updating the SLFN parameters consists only of the samples with high
confidence that match well to the current SLFN and CPLP models, so the SLFN model may
overfit the learned samples with learning steps. When p increases, more samples with low
confidence are used for updating the SLFN parameters, resulting in larger improvement of
recognition performance. However, the number of error-labeled samples also increases
with the increasing p, so the recognition performance with p = 100 is worse than that with
p = 90.

Figure 12. Recognition accuracy of the proposed SLFN with CPLP method for 10 civilian vehicles
with learning steps when p ranged from 10 to 100 with an interval of 10. The OTD consisted of a
tenth of the complete training data, and the size of TDC from each target was 200.

Figure 13 shows the variation of recognition results after the update process with
the parameter p. We can see that when the size of the OTD is fixed, the trends in the



Remote Sens. 2021, 13, 750 14 of 24

performance curves of different sizes of TDC are almost the same as with the parameter p.
This indicates that the size of the TDC has little effect on the optimal value of p. However,
the optimal value of p becomes greater with an increase in the size of the OTD. The reason
is that the greater the size of the OTD, the smaller the number of error-labeled samples
contained in the TDC. When the size of the OTD of each target is 24, the optimal value of p
is 85, so a small number of error-labeled samples were used to update the SLFN parameters.
When the size of the OTD of each target goes up to 72, the optimal value of p is 100. The
number of error-labeled samples contained in the TDC was small enough that all samples
with pseudolabels in TDC were used to update the SLFN parameters.

Figure 13. Recognition results for 10 civilian vehicles after the update process under varying values of parameter p. (a) Size
of OTD from each target = 24; (b) size of OTD from each target = 36; (c) size of OTD from each target = 48; (d) size of OTD
from each target = 60; (e) size of OTD from each target = 72.

(4) Performance Comparison
The proposed SLFN with CPLP algorithm is evaluated through a comparison with

the state-of-the-art methods. Figure 14 shows the recognition results with learning steps
under different sizes of OTD and TDC. In addition, we provide the baseline results as an
upper bound in which all the test data are labeled correctly and were adopted for updating
the SLFN parameters.

We found that the proposed method outperforms the other methods at all sizes of TDC
and OTD. The recognition accuracy of the self-training OS-RKELM method first increased
but then reduced gradually with learning steps. This was because that this method selects
the test data with high confidence annotated by itself, which reinforces the bias of current
encoded model along learning steps. The SLFN with SVM method exhibited the same
trend as the self-training OS-RKELM method on HRRPs of 10 civilian vehicles. The reason
for that may be that the SVM classifier only considers the structure of training data but
ignores the information involved in the test data. Moreover, it views all the learned test
samples as training data for SVM, which accumulates the error-labeled samples and leads
to worse recognition performance. The ILR-ELM depends on the manifold assumption to
utilize the unlabeled test data. However, this assumption does not hold for all samples,
which may actually hurt recognition accuracy. The SVM, K-SVD, and DDAEs algorithms
do not utilize test data, so their recognition rates were unchanged during the classification
process. Since the SVM method did not utilize all the training samples, it exhibited worse
performance than the RKELM algorithm when the training data were not complete. The
K-SVD algorithm was not good in terms of recognition performance due to a lack of latent
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information among training samples for 10 civilian vehicles. For the DDAE algorithm,
the limited training data of 10 civilian vehicles were not enough to get the appropriate
weights of deep networks, so the overfitting problem could occur and the generalization
performance was unsatisfactory.

Figure 14. Recognition performances of the proposed SLFN with CPLP method and other methods for 10 civilian vehicles
with respect to learning steps; (a) size of OTD per target = 36 and size of TDC per target = 100; (b) size of OTD per target =
36 and size of TDC per target = 200; (c) size of OTD per target = 36 and size of TDC per target = 300; (d) size of OTD per
target = 36 and size of TDC per target = 400; (e) size of OTD per target = 72 and size of TDC per target = 200; (f) size of OTD
per target = 24 and size of TDC per target = 200.

3.2. Measured Data of 3 Military Vehicles
3.2.1. Dataset Description

In this section, the effectiveness of the proposed method is demonstrated using the
measured data of three military vehicles with sizes of 5.8× 2.9 m, 5.5× 2.6 m and 6.5× 3 m,
respectively. The measured data were collected in an open field using a radar system placed
on a platform 100 m above the ground plane. A stepped-frequency pulsed waveform was
transmitted with the stepped frequency interval of 5 MHz and the resultant bandwidth of
640 MHz. Figure 15 shows the top views of geometries of the three military vehicles relative
to radar. The first military vehicle was spinning around its center when it was illuminated
by electromagnetic waves, and 1991 HRRP samples were collected. The second military
vehicle moved following an elliptical path during 1398 HRRP samples being acquired. The
echoes of the third vehicle were collected at eight azimuth angles, with 120 HRRP samples
collected at each azimuth angle.

The 4-fold, 3-fold, and 4-fold cross-validations were exploited for the data of three
military vehicles, respectively. As a result, the complete training datasets of the three targets
contain 497, 466, and 240 HRRP samples, respectively; and 1494, 932, and 720 samples
respectively constitute the test dataset of the three vehicles. In the following experiments,
80 Monte Carlo experiments were conducted in each validation.
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Figure 15. Top views of the geometries of the 3 military vehicles relative to radar. (a) Military vehicle 1;
(b) Military vehicle 2; (c) Military vehicle 3.

3.2.2. Recognition Performance of CPLP Algorithm

The recognition performance of the CPLP algorithm was studied on the data of three
military vehicles. First, the effects of some parameters is given. Then, the performance
versus the size of unlabeled dataset and labeled dataset is analyzed.

(1) Parameter Setup
In this section, we present the impact of the parameters α, σ2, k1 and k2, on the

recognition performance using the measured data of three military vehicles. The labeled
dataset consists of a tenth of the complete training data, i.e., 47 HRRPs from the first target,
50 HRRPs from the second target, and 24 HRRPs from the third target. The unlabeled
dataset contains 300 HRRP samples, i.e., 100 samples randomly selected from the test data
of each target.

First, we analyze the effect of the parameters k1 and k2. In the experiments, the
parameter k1 varied from 10 to 100 with interval of 1, and the parameter k2 ranged from
1 to 30 with an interval of 1. The average recognition rates are shown in Figure 16. As
shown, the CPLP algorithm achieved higher performance at k1 ∈ [42, 48] and k2 = 4. In the
following experiments conducted on the measured data of three military vehicles, k1 = 46
and k2 = 4 were chosen.

Figure 16. Recognition results of CPLP algorithm for 3 military vehicles with different values of
k1 and k2. In the experiments, The parameters σ2 and α were searched to provide the best recogni-
tion performance.

The performance of the CPLP algorithm with the parameter σ2 is evaluated next.
Figure 17 shows the recognition results. Clearly, the recognition accuracy first increased and
then decreased. The best performance was achieved at 0.06. In the following experiments
conducted on the measured data of three military vehicles, σ2 = 0.06 was chosen.
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Figure 17. Recognition results of CPLP algorithm for 3 military vehicles with parameter σ2. The
parameter α is searched to acquire the best results in the experiments.

Finally, the impact of the parameter α is analyzed. The constructed matrices W∗
UL are

shown in Figure 18 when α = 0, 0.35, 0.7 and 0.99. We can see that a large α leads to more
edges constructed and larger edge weights, which is the same as what was observed in
Figure 6.

Figure 18. Matrix W∗
UL computed in the CPLP algorithm using the measured data of 3 military vehicles when α = 0, 0.35, 0.7,

and 0.99. The labeled data and unlabeled data are arranged in the same target order. (a) α = 0; (b) α = 0.35; (c) α = 0.7; (d)
α = 0.99.

Figure 19 shows the recognition accuracy when α ranges from 0 to 0.99 with interval
of 0.01. We can see that both large and small values of α result in degradation of recognition
performance. The best recognition performance was achieved when α ∈ [0.26, 0.4]. In the
following experiments conducted on the measured data of three military vehicles, α = 0.32
was chosen.

(2) Performance Versus Size of Unlabeled Dataset
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Figure 19. Recognition results of CPLP algorithm for 3 military vehicles versus parameter α.

The performance of the CPLP and LP algorithms is studied versus the size of unla-
beled dataset. The recognition results are presented in Figure 20 for when the number of
unlabeled samples of each target varied from 50 to 250 with interval of 50. It is shown that
the recognition accuracy of both methods became better with a larger size of unlabeled
dataset. Moreover, because of the constraint propagation for the matrix W∗

UL, the proposed
CPLP algorithm showed greater recognition accuracy than the LP algorithm.

Figure 20. Recognition results of CPLP and LP algorithm for three military vehicles versus size
of unlabeled dataset. In the experiments, a tenth of the complete training data constituted the
labeled dataset.

(3) Performance Versus Size of Labeled Dataset
We compare the recognition performance of the CPLP with LP algorithms versus the

size of labeled dataset. The recognition results are shown in Figure 21 for when the size
of the labeled dataset ranged from 60 to 300 with an interval of 60. It is shown that the
recognition rates become higher when the size of the labeled dataset increases, and the
proposed CPLP algorithm outperformed the LP algorithm at all sizes of the labeled dataset.
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Figure 21. Recognition results of CPLP and LP algorithms for three military vehicles versus size of
labeled dataset. In the experiments, the unlabeled dataset of each target contained 100 HRRP samples
randomly selected from the test dataset.

3.2.3. Recognition Performance of SLFN with CPLP Method

In this section, the superiority of the SLFN with CPLP method is demonstrated on the
measure data from three military vehicles. First, the effects of the size of OTD, size of TDC,
and parameter p on the recognition performance are analyzed. Comparative experiments
were conducted too.

In Equation (1), the optimal parameter b is 0.5 according to our observation. The TDC
contained samples selected randomly from the test dataset. After being learned, they were
removed from the test dataset.

(1) Performance Versus Size of OTD
In this section, the recognition performance of the proposed method for three military

vehicles is studied under different sizes of OTD. Figure 22 plots the recognition results
with learning steps. As can be seen, the performance of the proposed method improves
with learning steps, which indicates its effectiveness. Furthermore, more offline training
samples lead to higher recognition rates, which is in agreement with the previous analysis.

Figure 22. Recognition results of the proposed SLFN with CPLP method for three military vehicles
versus learning steps under different sizes of OTD. In the experiments, The TDC contained a total of
300 samples.

(2) Performance Versus Size of TDC
The recognition performance of the proposed method for three military vehicles under

different sizes of TDC is studied in this section. The recognition results are shown in
Figure 23. As is seen, the recognition rates increase with learning steps for all the sizes
of TDC, which verifies the effectiveness of the proposed method. Moreover, the TDC
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containing more samples yielded better performance, which is consistent with observations
from Figure 11.

Figure 23. Recognition results of the proposed SLFN with CPLP method for 3 military vehicles
versus learning steps under different sizes of TDC. In the experiments, the size of OTD was fixed
as 120.

(3) Performance with Parameter p
In this section, the influence of the parameter p on recognition performance of the

SLFN with CPLP algorithm is studied on the measured data of three military vehicles.
The recognition results with learning steps under different values of p are presented in
Figure 24. We observe that (1) when the size of OTD = 120, the recognition rates increase
with learning steps under all the value of p, and the greatest improvement of recognition
performance is gained at p = 80; (2) when the size of OTD = 240, the recognition rates
increase with learning steps when p ≥ 30, and the recognition performance achieves the
best at p = 90. These phenomena demonstrate the effectiveness of the proposed method,
and the reason is illustrated in Section 3.1.3.

Figure 25 shows the recognition results for three military vehicles after update process
versus the parameter p. As expected, the optimal value of the parameter p is little influenced
by the size of TDC, but is affected by the size of OTD. The more offline training samples,
the greater the parameter p.

Figure 24. Recognition accuracy of the proposed SLFN with CPLP method for 3 military vehicles with learning steps when
p ranges from 10 to 100 with an interval of 10. In the experiments, the size of TDC = 300. (a) Size of OTD = 120; (b) size of
OTD = 240.
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Figure 25. Recognition results for 3 military vehicles after update process under varying values of parameter p. (a) Size of
OTD = 120; (b) size of OTD = 180; (c) size of OTD = 240.

(4) Performance Comparison
The following experiments examined the performances of the proposed method and

other methods on the measured data. Figure 26 presents the recognition results with learning
steps under different sizes of OTD and TDC. Obviously, the proposed method exceeds
the compared methods at all the sizes of OTD and TDC. When the size of OTD = 120, the
DDAEs algorithm exhibits better performance than the proposed method before the update,
but is not competing with the proposed method along the learning process.

Figure 26. Recognition performances of the proposed SLFN with CPLP algorithm and other methods for 3 military vehicles
versus learning steps. (a) Size of OTD = 60 and size of TDC = 300; (b) size of OTD = 120 and size of TDC = 300; (c) size of
OTD = 120 and size of TDC = 500; (d) size of OTD = 180 and size of TDC = 300; (e) size of OTD = 240 and size of TDC = 300;
(f) size of OTD = 300 and size of TDC = 300.

3.3. Computation Analysis

In the online stage, the proposed SLFN with CPLP method comprises two stages,
i.e., the pseudolabel assignment for test data and SLFN parameter update by OS-RKELM
algorithm. For the sake of clarity, we analyze the computational complexity of these
two stages.

The pseudolabel assignment for test data comprises the prediction by the SLFN,
the prediction by the CPLP algorithm, and decision fusion of SLFN and CPLP algo-
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rithms. Let L be the length of HRRP, then the computational complexity of the SLFN
is O(NuNl(L + C)). For the CPLP algorithm, the most time consuming parts are the
KRNN graph construction for computing WUU and WUL, construction for W∗

UL, and
computation for FU

m by equation (7). The KRNN graph construction has the computa-
tional complexity in the order of O

(
N2

u log2Nu
)
. The construction for W∗

UL has the run-
ning time of O

(
N3

u + NuN2
l + N2

u Nl
)
. The time for computing FU

m has the complexity
of O

(
N3

u + N2
u Nl + NuNlC

)
. Thus the CPLP algorithm has the computational complex-

ity in the order of O
(

N3
u + N2

u Nl + NuN2
l + NuNlC + N2

u log2Nu
)
. For the decision fusion of

SLFN and CPLP algorithms, the computational complexity is O
(
(Nu + Nl)

2log2(Nu + Nl)
)

.
For the SLFN parameter update by the OS-RKELM algorithm, the computational

complexity is O
(

Nl
(

N2
l + N2

u + Nl Nu
))

[24].
Tables 1 and 2 show the average computational time of the proposed method and

the compared methods on the simulated HRRP data of 10 civilian vehicles and measured
HRRP data of three military vehicles, respectively. Clearly, the computational time increases
with the increase in the size of TDC and OTD. Due to the SVM training process, the
SLFN with SVM method is the most time-consuming of all the recognition methods. The
proposed SLFN with CPLP method takes less time than the SLFN with SVM method, but
takes more time than the ILR-ELM and self-training OS-RKELM methods due to the CPLP
algorithm. The SVM, K-SVD and DDAEs algorithms only classify samples and do not
update the parameters of classifiers in the test phase, so they take much less time than the
update methods.

Table 1. Average computational times of the proposed SLFN with CPLP method and other methods on the HRRP dataset of
10 civilian vehicles.

Size of
OTD

Size of
TDC

SLFN with
CPLP (s)

ILR-ELM
(s)

SLFN with
SVM (s)

OS-RKELM
Self-Training (s)

SVM
(ms)

K-SVD
(ms)

DDAEs
(ms)

240

1000 0.521 0.221 13.637 0.211

0.906 0.968 5.338
2000 1.398 0.381 13.953 0.351

3000 3.000 0.623 14.543 0.543

4000 5.335 0.931 15.070 0.811

360

1000 0.609 0.276 15.160 0.305

0.968 0.975 7.024
2000 1.570 0.455 15.281 0.520

3000 3.218 0.707 15.702 0.867

4000 5.696 1.036 16.724 1.420

720

1000 0.897 0.477 19.220 0.595

1.106 0.983 7.297
2000 1.953 0.687 19.515 1.244

3000 3.828 0.960 21.021 2.473

4000 6.451 1.373 22.911 4.251

Table 2. Average computational times of the proposed SLFN with CPLP method and other methods on the HRRP dataset of 3 military
vehicles.

Size of
OTD

Size of
TDC

SLFN with
CPLP (s)

ILR-ELM
(s)

SLFN with
SVM (s)

OS-RKELM
Self-Training (s)

SVM
(ms)

K-SVD
(ms)

DDAEs
(ms)

60

200 0.078 0.014 0.344 0.008

0.228 0.300 5.317300 0.100 0.022 0.356 0.012

500 0.154 0.041 0.365 0.020
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Table 2. Cont.

Size of
OTD

Size of
TDC

SLFN with
CPLP (s)

ILR-ELM
(s)

SLFN with
SVM (s)

OS-RKELM
Self-Training (s)

SVM
(ms)

K-SVD
(ms)

DDAEs
(ms)

120

200 0.080 0.015 0.396 0.011

0.294 0.304 6.309300 0.103 0.023 0.397 0.017

500 0.156 0.041 0.405 0.032

240

200 0.082 0.017 0.463 0.018

0.308 0.306 7.077300 0.103 0.025 0.465 0.026

500 0.163 0.047 0.471 0.041

4. Conclusions

A novel dynamic learning strategy based on the SLFN with assistance from the CPLP
algorithm was proposed to tackle the HRRP target recognition task with limited training
data. In the offline training phase, the initial parameters of SLFN are obtained with the
training data. In the classification phase, the collected test data are first labeled by fusing
the recognition results of current SLFN and CPLP algorithms. Then the test samples with
reliable pseudolabels are used as additional training data to update the SLFN parameters
by the OS-RKELM algorithm. The proposed method dynamically accumulates knowledge
from training and test data through online learning, thereby reinforcing the performance
of the RATR system with limited training data. In the experiments, the superiority of the
SLFN with CPLP method was demonstrated on the simulated HRRP data from 10 civilian
vehicles and real HRRP data from three military vehicles.

In the future, more PR methods should be investigated to improve the accuracy of
pseudolabels of test data, and other online learning methods should be studied to deal
with the RATR problem with limited training data. Moreover, we want to extend our work
to the polarimetric HRRP-based RATR.
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