Radar HRRP Target Recognition Based on Dynamic Learning with Limited Training Data
Abstract
:1. Introduction
- To deal with the HRRP-based RATR task with limited training data, a dynamic learning strategy is introduced based on the SLFN with an assistant classifier. The proposed method processes data chunk-by-chunk and discards the test data once they have been learned, so it requires less memory and processing time.
- A novel semi-supervised learning method named constraint propagation-based label propagation (CPLP) is proposed as an assistant classifier to improve the label estimation accuracy for test data.
2. Methodology
2.1. Single-Hidden Layer Feedforward Neural Network
2.2. Constraint Propagation-Based Label Propagation
- If samples and are similar, and has the same class as , then tends to be similar to .
- If samples are similar, and are similar, then both and are prone to having the same label as .
2.3. Decision Fusion
3. Experiment Results and Analysis
3.1. Simulated Data of 10 Civilian Vehicles
3.1.1. Dataset Description
3.1.2. Recognition Performance of the CPLP Algorithm
3.1.3. Recognition Performance of SLFN with CPLP Method
3.2. Measured Data of 3 Military Vehicles
3.2.1. Dataset Description
3.2.2. Recognition Performance of CPLP Algorithm
3.2.3. Recognition Performance of SLFN with CPLP Method
3.3. Computation Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ran, L.; Liu, Z.; Xie, R.; Zhang, L. Focusing high-squint synthetic aperture radar data based on factorized back-projection and precise spectrum fusion. Remote Sens. 2019, 11, 2885. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shi, Y.; Bao, Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Process. 2001, 49, 1875–1885. [Google Scholar] [CrossRef]
- Du, L.; Liu, H.; Bao, Z.; Xing, M. Radar HRRP target recognition based on higher order spectra. IEEE Trans. Signal Process. 2005, 53, 2359–2368. [Google Scholar]
- Wang, J.; Liu, Z.; Li, T.; Ran, L.; Xie, R. Radar HRRP target recognition via statistics-based scattering center set registration. IET Radar Sonar Navig. 2019, 13, 1264–1271. [Google Scholar] [CrossRef]
- Du, L.; He, H.; Zhao, L.; Wang, P. Noise robust radar HRRP target recognition based on scatterer matching algorithm. IEEE Sensors J. 2016, 16, 1743–1753. [Google Scholar] [CrossRef]
- Jacobs, S.P.; O’Sullivan, J.A. Automatic target recognition using sequences of high resolution radar range-profiles. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 364–381. [Google Scholar] [CrossRef]
- Copsey, K.; Webb, A. Bayesian gamma mixture model approach to radar target recognition. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1201–1217. [Google Scholar] [CrossRef]
- Du, L.; Liu, H.; Bao, Z.; Zhang, J. A two-distribution compounded statistical model for radar HRRP target recognition. IEEE Trans. Signal Process. 2006, 54, 2226–2238. [Google Scholar]
- Feng, B.; Chen, B.; Liu, H. Radar HRRP target recognition with deep networks. Pattern Recogn. 2017, 61, 379–393. [Google Scholar] [CrossRef]
- Pan, M.; Jiang, J.; Kong, Q.; Shi, J.; Sheng, Q.; Zhou, T. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1609–1613. [Google Scholar] [CrossRef]
- Liao, X.; Runkle, P.; Carin, L. Identification of ground targets from sequential high-range-resolution radar signatures. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 1230–1242. [Google Scholar] [CrossRef]
- Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z.; Tao, L. Radar high resolution range profile recognition via multi-SV method. J. Syst. Eng. Electron. 2017, 28, 879–889. [Google Scholar] [CrossRef]
- Feng, B.; Du, L.; Liu, H.; Li, F. Radar HRRP target recognition based on K-SVD algorithm. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; pp. 642–645. [Google Scholar]
- Feng, B.; Du, L.; Shao, C.; Wang, P.; Liu, H. Radar HRRP target recognition based on robust dictionary learning with small training data size. In Proceedings of the 2013 IEEE Radar Conference (RadarCon13), Ottawa, ON, Canada, 29 April–3 May 2013; pp. 1–4. [Google Scholar]
- Du, L.; Liu, H.; Wang, P.; Feng, B.; Pan, M.; Bao, Z. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size. IEEE Trans. Signal Process. 2012, 60, 3546–3559. [Google Scholar]
- Pan, M.; Jiang, J.; Li, Z.; Cao, J.; Zhou, T. Radar HRRP recognition based on discriminant deep autoencoders with small training data size. Electron. Lett. 2016, 52, 1725–1727. [Google Scholar]
- Yver, B. Online semi-supervised learning: Application to dynamic learning from RADAR data. In Proceedings of the 2009 International Radar Conference “Surveillance for a Safer World” (RADAR 2009), Bordeaux, France, 12–16 October 2009; pp. 1–6. [Google Scholar]
- Zhu, X.; Ghahramani, Z. Learning from labeled and unlabeled data with label propagation. Tech. Rep. 2002, 3175, 237–244. [Google Scholar]
- Bordes, A.; Ertekin, S.; Weston, J.; Bottou, L. Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. 2005, 6, 1579–1619. [Google Scholar]
- Zhang, R.; Rudnicky, A.I. A new data selection principle for semi-supervised incremental learning. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; pp. 780–783. [Google Scholar]
- Cui, Z.; Tang, C.; Cao, Z.; Dang, S. SAR unlabeled target recognition based on updating CNN with assistant decision. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1585–1589. [Google Scholar] [CrossRef]
- Deng, W.; Ong, Y.-S.; Zhang, Q. A fast reduced kernel extreme learning machine. Neural Netw. 2016, 76, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Ong, Y.-S.; Tan, P.S.; Zheng, Q. Online sequential reduced kernel extreme learning machine. Neurocomputing 2016, 174, 72–84. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhang, T. Bidirectional label propagation over graphs. Int. J. Softw. Inform. 2013, 7, 419–433. [Google Scholar]
- Gong, C.; Fu, K.; Wu, Q.; Tu, E.; Yang, J. Semi-supervised classification with pairwise constraints. Neurocomputing 2014, 139, 130–137. [Google Scholar] [CrossRef]
- Qin, D.; Gammeter, S.; Bossard, L.; Quack, T.; Gool, L.V. Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors. In Proceedings of the 2011 Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 20–25 June 2011; pp. 777–784. [Google Scholar]
- Zhong, Z.; Zheng, L.; Cao, D.; Li, S. Re-ranking person re-identification with k-reciprocal Encoding. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3652–3661. [Google Scholar]
- Liu, W.; Tian, X.; Tao, D.; Liu, J. Constrained metric learning via distance gap maximization. Proc. Nat. Conf. Artif. Intell. (AAAI) 2010, 24, 1. [Google Scholar]
- Chen, B.; Liu, H.; Bao, Z. Analysis of three kinds of classification based on different absolute alignment methods. Mod. Radar 2006, 28, 58–62. [Google Scholar]
- Dungan, K.E.; Austin, C.; Nehrbass, J.; Potter, L.C. Civilian vehicle radar data demos. SPIE Proc. 2010, 7699, 731–739. [Google Scholar] [CrossRef]
- Yang, L.; Yang, S.; Li, S.; Liu, Z.; Jiao, L. Incremental laplacian regularization extreme learning machine for online learning. Appl. Soft Comput. 2017, 59, 546–555. [Google Scholar] [CrossRef]
- Zhang, Y.; Er, M.J. Sequential active learning using meta-cognitive extreme learning machine. Neurocomputing 2016, 173, 835–844. [Google Scholar] [CrossRef]
Size of OTD | Size of TDC | SLFN with CPLP (s) | ILR-ELM (s) | SLFN with SVM (s) | OS-RKELM Self-Training (s) | SVM (ms) | K-SVD (ms) | DDAEs (ms) |
---|---|---|---|---|---|---|---|---|
240 | 1000 | 0.521 | 0.221 | 13.637 | 0.211 | 0.906 | 0.968 | 5.338 |
2000 | 1.398 | 0.381 | 13.953 | 0.351 | ||||
3000 | 3.000 | 0.623 | 14.543 | 0.543 | ||||
4000 | 5.335 | 0.931 | 15.070 | 0.811 | ||||
360 | 1000 | 0.609 | 0.276 | 15.160 | 0.305 | 0.968 | 0.975 | 7.024 |
2000 | 1.570 | 0.455 | 15.281 | 0.520 | ||||
3000 | 3.218 | 0.707 | 15.702 | 0.867 | ||||
4000 | 5.696 | 1.036 | 16.724 | 1.420 | ||||
720 | 1000 | 0.897 | 0.477 | 19.220 | 0.595 | 1.106 | 0.983 | 7.297 |
2000 | 1.953 | 0.687 | 19.515 | 1.244 | ||||
3000 | 3.828 | 0.960 | 21.021 | 2.473 | ||||
4000 | 6.451 | 1.373 | 22.911 | 4.251 |
Size of OTD | Size of TDC | SLFN with CPLP (s) | ILR-ELM (s) | SLFN with SVM (s) | OS-RKELM Self-Training (s) | SVM (ms) | K-SVD (ms) | DDAEs (ms) |
---|---|---|---|---|---|---|---|---|
60 | 200 | 0.078 | 0.014 | 0.344 | 0.008 | 0.228 | 0.300 | 5.317 |
300 | 0.100 | 0.022 | 0.356 | 0.012 | ||||
500 | 0.154 | 0.041 | 0.365 | 0.020 | ||||
120 | 200 | 0.080 | 0.015 | 0.396 | 0.011 | 0.294 | 0.304 | 6.309 |
300 | 0.103 | 0.023 | 0.397 | 0.017 | ||||
500 | 0.156 | 0.041 | 0.405 | 0.032 | ||||
240 | 200 | 0.082 | 0.017 | 0.463 | 0.018 | 0.308 | 0.306 | 7.077 |
300 | 0.103 | 0.025 | 0.465 | 0.026 | ||||
500 | 0.163 | 0.047 | 0.471 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, Z.; Xie, R.; Ran, L. Radar HRRP Target Recognition Based on Dynamic Learning with Limited Training Data. Remote Sens. 2021, 13, 750. https://doi.org/10.3390/rs13040750
Wang J, Liu Z, Xie R, Ran L. Radar HRRP Target Recognition Based on Dynamic Learning with Limited Training Data. Remote Sensing. 2021; 13(4):750. https://doi.org/10.3390/rs13040750
Chicago/Turabian StyleWang, Jingjing, Zheng Liu, Rong Xie, and Lei Ran. 2021. "Radar HRRP Target Recognition Based on Dynamic Learning with Limited Training Data" Remote Sensing 13, no. 4: 750. https://doi.org/10.3390/rs13040750
APA StyleWang, J., Liu, Z., Xie, R., & Ran, L. (2021). Radar HRRP Target Recognition Based on Dynamic Learning with Limited Training Data. Remote Sensing, 13(4), 750. https://doi.org/10.3390/rs13040750