Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (845)

Search Parameters:
Keywords = single-chamber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2425 KiB  
Article
Single-Layer High-Efficiency Metasurface for Multi-User Signal Enhancement
by Hui Jin, Peixuan Zhu, Rongrong Zhu, Bo Yang, Siqi Zhang and Huan Lu
Micromachines 2025, 16(8), 911; https://doi.org/10.3390/mi16080911 (registering DOI) - 6 Aug 2025
Abstract
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. [...] Read more.
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. A high-efficiency metasurface array is fabricated based on PCB technology, which utilizes subwavelength units for wide-range phase modulation to construct a multi-user energy convergence model in the WiFi band. By optimizing phase gradients through the geometric phase principle, the metasurface achieves collaborative wavefront manipulation for multiple target regions with high transmission efficiency, reducing system complexity compared to traditional multi-layer structures. Measurements in a microwave anechoic chamber and tests in an office environment demonstrate that the metasurface can simultaneously create signal enhancement zones for multiple users, featuring stable focusing capability and environmental adaptability. This lightweight design facilitates deployment in dense networks, providing an effective solution for signal optimization in indoor distributed systems and IoT communications. Full article
(This article belongs to the Special Issue Novel Electromagnetic and Acoustic Devices)
Show Figures

Figure 1

5 pages, 995 KiB  
Case Report
Foreign Body Presenting as Golden Hypopyon
by Anas Alkhabaz, Lucie Y. Guo and Charles DeBoer
Surgeries 2025, 6(3), 68; https://doi.org/10.3390/surgeries6030068 - 5 Aug 2025
Abstract
Background/Objectives: Penetrating intraocular foreign bodies (IOFBs) are ocular emergencies, often leading to preventable vision loss. This case report highlights a unique presentation of a work-related penetrating IOFB that mimicked a golden hypopyon. Methods: A 35-year-old male presented to the emergency department [...] Read more.
Background/Objectives: Penetrating intraocular foreign bodies (IOFBs) are ocular emergencies, often leading to preventable vision loss. This case report highlights a unique presentation of a work-related penetrating IOFB that mimicked a golden hypopyon. Methods: A 35-year-old male presented to the emergency department with sudden-onset pain and vision loss in the left eye while he was cutting a tree with metallic scissors. He had a visual acuity of 20/30 in the right eye and counting fingers in the left eye. A dilated slit-lamp examination and CT scan confirmed the presence of a 6–8 mm metallic IOFB in the anterior chamber, with no involvement of the lens or the posterior segment. Surgical removal was performed. Results: The metallic IOFB was removed surgically with IOFB forceps using a single paracentesis. The patient reported resolving pain and regained baseline visual acuity of 20/20 postoperatively, which remained stable at one-month follow-up. Conclusions: This case illustrates the successful surgical management of a penetrating metallic IOFB with a unique presentation mimicking a hypopyon. Emphasis on unique presentations of IOFBs can aid in timely management, ultimately reducing the risk of complications. Full article
Show Figures

Figure 1

15 pages, 2255 KiB  
Article
Nonnormalized Field Statistics in Coupled Reverberation Chambers
by Angelo Gifuni, Anett Kenderes and Giuseppe Grassini
Symmetry 2025, 17(8), 1239; https://doi.org/10.3390/sym17081239 - 5 Aug 2025
Abstract
In this work, we show the probability density functions (PDFs) and cumulative density functions (CDFs) of the nonnormalized field components and the associated powers received inside coupled reverberation chambers (CRCs), considering two canonical cases of single electrically small coupling apertures (ESCAs). These two [...] Read more.
In this work, we show the probability density functions (PDFs) and cumulative density functions (CDFs) of the nonnormalized field components and the associated powers received inside coupled reverberation chambers (CRCs), considering two canonical cases of single electrically small coupling apertures (ESCAs). These two cases involve one-dimensional (1D) and two-dimensional (2D) single electrically small CAs, respectively. We achieve normalized statistics from the nonnormalized ones for both field components and associated powers. We show that the comparison of the mean square values (MSVs) of the nonnormalized PDFs of the field components to the mean values (MVs) of the related nonnormalized PDFs of the powers is a proper method to corroborate the accuracy of the same achieved theoretical distributions, when they are achieved in an independent way. The achieved theoretical results are also validated by measurements. Moreover, for the sake of completeness and rigor of published results, we show two useful cases of the results from the measurements using two electrically large CAs. Full article
Show Figures

Figure 1

3 pages, 468 KiB  
Interesting Images
Fatal Congenital Heart Disease in a Postpartum Woman
by Corina Cinezan, Camelia Bianca Rus, Mihaela Mirela Muresan and Ovidiu Laurean Pop
Diagnostics 2025, 15(15), 1952; https://doi.org/10.3390/diagnostics15151952 - 4 Aug 2025
Viewed by 46
Abstract
The image represents the post-mortem heart of a 28-year-old female patient, diagnosed in childhood with complete common atrioventricular canal defect. At time of diagnosis, the family refused surgery, as did the patient during her adulthood. Despite being advised against pregnancy, she became pregnant. [...] Read more.
The image represents the post-mortem heart of a 28-year-old female patient, diagnosed in childhood with complete common atrioventricular canal defect. At time of diagnosis, the family refused surgery, as did the patient during her adulthood. Despite being advised against pregnancy, she became pregnant. On presentation to hospital, she was cyanotic, with clubbed fingers, and hemodynamically unstable, in sinus rhythm, with Eisenmenger syndrome and respiratory failure partially responsive to oxygen. During pregnancy, owing to systemic vasodilatation, the right-to-left shunt is increased, with more severe cyanosis and low cardiac output. Echocardiography revealed the complete common atrioventricular canal defect, with a single atrioventricular valve with severe regurgitation, right ventricular hypertrophy, pulmonary artery dilatation, severe pulmonary hypertension and a hypoplastic left ventricle. The gestational age at delivery was 38 weeks. She gave birth to a healthy boy, with an Apgar score of 10. The vaginal delivery was chosen by an interdisciplinary team. The cesarean delivery and the anesthesia were considered too risky compared to vaginal delivery. Three days later, the patient died. The autopsy revealed hepatomegaly, a greatly hypertrophied right ventricle with a purplish clot ascending the dilated pulmonary arteries and a hypoplastic left ventricle with a narrowed chamber. A single valve was observed between the atria and ventricles, making all four heart chambers communicate, also insufficiently developed interventricular septum and its congenital absence in the cranial third. These morphological changes indicate the complete common atrioventricular canal defect, with right ventricular dominance, which is a rare and impressive malformation that requires mandatory treatment in early childhood in order for the condition to be solved. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

24 pages, 6757 KiB  
Article
Design and Testing of a Pneumatic Jujube Harvester
by Huaming Hou, Wei Niu, Qixian Wen, Hairui Yang, Jianming Zhang, Rui Zhang, Bing Xv and Qingliang Cui
Agronomy 2025, 15(8), 1881; https://doi.org/10.3390/agronomy15081881 - 3 Aug 2025
Viewed by 111
Abstract
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our [...] Read more.
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our research group conducted a study on mechanical harvesting technology for fresh jujubes. A pneumatic jujube harvester was designed. This harvester is composed of a self-regulating picking mechanism, a telescopic conveying pipe, a negative pressure generator, a cleaning mechanism, a double-chamber collection box, a single-door shell, a control assembly, a generator, a towing mobile chassis, etc. During the harvest, the fresh jujubes on the branches are picked under the combined effect of the flexible squeezing of the picking roller and the suction force of the negative pressure air flow. They then enter the cleaning mechanism through the telescopic conveying pipe. Under the combined effect of the upper and lower baffles of the cleaning mechanism and the negative-pressure air flow, the fresh jujubes are separated from impurities such as jujube leaves and branches. The clean fresh jujubes fall into the collection box. We considered the damage rate of fresh jujubes, impurity rate, leakage rate, and harvesting efficiency as the indexes, and the negative-pressure suction wind speed, picking roller rotational speed, and the inclination angle of the upper and lower baffles of the cleaning and selection machinery as the test factors, and carried out the harvesting test of fresh jujubes. The test results show that when the negative-pressure suction wind speed was 25 m/s, the picking roller rotational speed was 31 r/min, and the inclination angles of the upper and lower baffle plates for cleaning and selecting were −19° and 19.5°, respectively, the breakage rate of fresh jujube harvesting was 0.90%, the rate of impurity was 1.54%, the rate of leakage was 2.59%, and the efficiency of harvesting was 73.37 kg/h, realizing the high-efficiency and low-loss harvesting of fresh jujubes. This study provides a reference for the research and development of fresh jujube mechanical harvesting technology and equipment. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

12 pages, 1041 KiB  
Article
Investigating the Influence of Conventional vs. Ultra-High Dose Rate Proton Irradiation Under Normoxic or Hypoxic Conditions on Multiple Developmental Endpoints in Zebrafish Embryos
by Alessia Faggian, Gaia Pucci, Enrico Verroi, Alberto Fasolini, Stefano Lorentini, Sara Citter, Maria Caterina Mione, Marco Calvaruso, Giorgio Russo, Emanuele Scifoni, Giusi Irma Forte, Francesco Tommasino and Alessandra Bisio
Cancers 2025, 17(15), 2564; https://doi.org/10.3390/cancers17152564 - 3 Aug 2025
Viewed by 174
Abstract
Objectives: To investigate how the FLASH effect modulates radiation response on multiple developmental endpoints of zebrafish embryos under normoxic and hypoxic conditions, after irradiation with proton beams at a conventional and an ultra-high dose rate (UHDR). Methods: Embryos were obtained from adult zebrafish [...] Read more.
Objectives: To investigate how the FLASH effect modulates radiation response on multiple developmental endpoints of zebrafish embryos under normoxic and hypoxic conditions, after irradiation with proton beams at a conventional and an ultra-high dose rate (UHDR). Methods: Embryos were obtained from adult zebrafish and irradiated with a 228 MeV proton beam 24 h post-fertilization (hpf) at a dose rate of 0.6 and 317 Gy/s. For the hypoxic group, samples were kept inside a hypoxic chamber prior to irradiation, while standard incubation was adopted for the normoxic group. After irradiation, images of single embryos were acquired, and radiation effects on larval length, yolk absorption, pericardial edema, head size, eye size, and spinal curvature were assessed at specific time points. Results: Data indicate a general trend of significantly reduced toxicity after exposure to a UHDR compared to conventional regimes, which is maintained under both normoxic and hypoxic conditions. Differences are significant for the levels of pericardial edema induced by a UHDR versus conventional irradiation in normoxic conditions, and for eye and head size in hypoxic conditions. The toxicity scoring analysis shows a tendency toward a protective effect of the UHDR, which appears to be associated with a lower percentage of embryos in the high score categories. Conclusions: A radioprotective effect at a UHDR is observed both for normoxic (pericardial edema) and hypoxic (head and eye size) conditions. These results suggest that while the UHDR may preserve a potential to reduce radiation-induced damage, its protective effects are endpoint-dependent; the role of oxygenation might also be dependent on the tissue involved. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

20 pages, 6273 KiB  
Article
Seeding Status Monitoring System for Toothed-Disk Cotton Seeders Based on Modular Optoelectronic Sensors
by Tao Jiang, Xuejun Zhang, Zenglu Shi, Jingyi Liu, Wei Jin, Jinshan Yan, Duijin Wang and Jian Chen
Agriculture 2025, 15(15), 1594; https://doi.org/10.3390/agriculture15151594 - 24 Jul 2025
Viewed by 189
Abstract
In precision cotton seeding, the toothed-disk precision seeder often experiences issues with missed seeding and multiple seeding. To promptly detect and address these abnormal seeding conditions, this study develops a modular photoelectric sensing monitoring system. Initially, the monitoring time window is divided using [...] Read more.
In precision cotton seeding, the toothed-disk precision seeder often experiences issues with missed seeding and multiple seeding. To promptly detect and address these abnormal seeding conditions, this study develops a modular photoelectric sensing monitoring system. Initially, the monitoring time window is divided using the capacitance sensing signal between two seed drop ports. Concurrently, a photoelectric monitoring circuit is designed to convert the time when seeds block the sensor into a level signal. Subsequently, threshold segmentation is performed on the time when seeds block the photoelectric path under different seeding states. The proposed spatiotemporal joint counting algorithm identifies, in real time, the threshold type of the photoelectric sensor’s output signal within the current monitoring time window, enabling the differentiation of seeding states and the recording of data. Additionally, an STM32 micro-controller serves as the core of the signal acquisition circuit, sending collected data to the PC terminal via serial port communication. The graphical display interface, designed with LVGL (Light and Versatile Graphics Library), updates the seeding monitoring information in real time. Compared to photoelectric monitoring algorithms that detect seed pickup at the seed metering disc, the monitoring node in this study is positioned posteriorly within the seed guide chamber. Consequently, the differentiation between single seeding and multiple seeding is achieved with greater accuracy by the spatiotemporal joint counting algorithm, thereby enhancing the monitoring precision of the system. Field test results indicate that the system’s average accuracy for single-seeding monitoring is 97.30%, for missed-seeding monitoring is 96.48%, and for multiple-seeding monitoring is 96.47%. The average probability of system misjudgment is 3.25%. These outcomes suggest that the proposed modular photoelectric sensing monitoring system can meet the monitoring requirements of precision cotton seeding at various seeding speeds. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 5257 KiB  
Article
Research on Draft Control Optimization of Ship Passing a Lock Based on CFD Method
by Yuan Zhuang, Yu Ding, Jialun Liu and Song Zhang
J. Mar. Sci. Eng. 2025, 13(8), 1406; https://doi.org/10.3390/jmse13081406 - 23 Jul 2025
Viewed by 206
Abstract
Waterborne transportation serves as a critical pillar of trunk-line freight systems, offering unparalleled advantages in transport capacity, energy efficiency, and cost-effectiveness. As cargo throughput demands escalate, optimizing lock capacity becomes imperative. This study investigates ship sinkage dynamics through computational fluid dynamics (CFD) simulations [...] Read more.
Waterborne transportation serves as a critical pillar of trunk-line freight systems, offering unparalleled advantages in transport capacity, energy efficiency, and cost-effectiveness. As cargo throughput demands escalate, optimizing lock capacity becomes imperative. This study investigates ship sinkage dynamics through computational fluid dynamics (CFD) simulations for a representative inland cargo vessel navigating the Three Gorges on the Yangtze River. We develop a predictive sinkage model that integrates four key hydrodynamic parameters: ship velocity, draft, water depth, and bank clearance, applicable to both open shallow water and lockage conditions. The model enables determination of maximum safe drafts for lock transit by analyzing upstream/downstream water levels and corresponding chamber depths. Our results demonstrate the technical feasibility of enhancing single-lock cargo capacity while maintaining safety margins. These findings provide (1) a scientifically grounded framework for draft control optimization, and (2) actionable insights for lock operation management. The study establishes a methodological foundation for balancing navigational safety with growing throughput requirements in constrained waterways. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 5055 KiB  
Article
Physical–Mathematical Modeling and Simulations for a Feasible Oscillating Water Column Plant
by Fabio Caldarola, Manuela Carini, Alessandro Costarella, Gioia De Raffele and Mario Maiolo
Mathematics 2025, 13(14), 2219; https://doi.org/10.3390/math13142219 - 8 Jul 2025
Viewed by 302
Abstract
The focus of this paper is placed on Oscillating Water Column (OWC) systems. The primary aim is to analyze, through both mathematical modeling and numerical simulations, a single module (chamber) of an OWC plant which, in addition to energy production, offers the dual [...] Read more.
The focus of this paper is placed on Oscillating Water Column (OWC) systems. The primary aim is to analyze, through both mathematical modeling and numerical simulations, a single module (chamber) of an OWC plant which, in addition to energy production, offers the dual advantage of large-scale integration into port infrastructures or coastal defense structures such as breakwaters, etc. The core challenge lies in optimizing the geometry of the OWC chamber and its associated ducts. A trapezoidal cross-section is adopted, with various front wall inclinations ranging from 90° to 45°. This geometric parameter significantly affects both the internal compression ratio and the hydrodynamic behavior of incoming and outgoing waves. Certain inclinations revealed increased turbulence and notable interference with waves reflected from the chamber bottom which determined an unexpected drop in efficiency. The optimal performance occurred at an inclination of approximately 55°, yielding an efficiency of around 12.8%, because it represents the most advantageous and balanced compromise between counter-trend phenomena. A detailed analysis is carried out on several key parameters for the different configurations (e.g., internal and external wave elevations, crest phase shifts, pressures, hydraulic loads, efficiency, etc.) to reach the most in-depth analysis possible of the complex phenomena that come into play. Lastly, the study also discusses the additional structural and functional benefits of inclined walls over traditional parallelepiped-shaped chambers, both from a structural and construction point of view, and for the possible use for coastal defense. Full article
Show Figures

Figure 1

20 pages, 3465 KiB  
Article
Phase-Controlled Closing Strategy for UHV Circuit Breakers with Arc-Chamber Insulation Deterioration Consideration
by Hao Li, Qi Long, Xu Yang, Xiang Ju, Haitao Li, Zhongming Liu, Dehua Xiong, Xiongying Duan and Minfu Liao
Energies 2025, 18(13), 3558; https://doi.org/10.3390/en18133558 - 5 Jul 2025
Viewed by 423
Abstract
To address the impact of insulation medium degradation in the arc quenching chambers of ultra-high-voltage SF6 circuit breakers on phase-controlled switching accuracy caused by multiple operations throughout the service life, this paper proposes an adaptive switching algorithm. First, a modified formula for [...] Read more.
To address the impact of insulation medium degradation in the arc quenching chambers of ultra-high-voltage SF6 circuit breakers on phase-controlled switching accuracy caused by multiple operations throughout the service life, this paper proposes an adaptive switching algorithm. First, a modified formula for the breakdown voltage of mixed gases is derived based on the synergistic effect. Considering the influence of contact gap on electric field distortion, an adaptive switching strategy is designed to quantify the dynamic relationship among operation times, insulation strength degradation, and electric field distortion. Then, multi-round switching-on and switching-off tests are carried out under the condition of fixed single-arc ablation amount, and the laws of voltage–current, gas decomposition products, and pre-breakdown time are obtained. The test data are processed by the least squares method, adaptive switching algorithm, and machine learning method. The results show that the coincidence degree of the pre-breakdown time obtained by the adaptive switching algorithm and the test value reaches 90%. Compared with the least squares fitting, this algorithm achieves a reasonable balance between goodness of fit and complexity, with prediction deviations tending to be randomly distributed, no obvious systematic offset, and low dispersion degree. It can also explain the physical mechanism of the decay of insulation degradation rate with the number of operations. Compared with the machine learning method, this algorithm has stronger generalization ability, effectively overcoming the defects of difficult interpretation of physical causes and the poor engineering adaptability of the black box model. Full article
Show Figures

Figure 1

13 pages, 2392 KiB  
Article
A Novel Single-Layer Microfluidic Device for Dynamic Stimulation, Culture, and Imaging of Mammalian Cells
by Adil Mustafa, Antonella La Regina, Elisa Pedone, Ahmet Erten and Lucia Marucci
Biosensors 2025, 15(7), 427; https://doi.org/10.3390/bios15070427 - 3 Jul 2025
Viewed by 494
Abstract
The possibility of tightly controlling the cellular microenvironment within microfluidic devices represents an important step toward precision analysis of cellular phenotypes in vitro. Microfluidic platforms that allow both long-term mammalian cell culture and dynamic modulation of the culture environment can support quantitative studies [...] Read more.
The possibility of tightly controlling the cellular microenvironment within microfluidic devices represents an important step toward precision analysis of cellular phenotypes in vitro. Microfluidic platforms that allow both long-term mammalian cell culture and dynamic modulation of the culture environment can support quantitative studies of cells’ responses to drugs. Here, we report the design and testing of a novel microfluidic device of simple production (single Polydimethylsiloxane layer), which integrates a micromixer with vacuum-assisted cell loading for long-term mammalian cell culture and dynamic mixing of four different culture media. Finite element modeling was used to predict flow rates and device dimensions to achieve diffusion-based fluid mixing. The device showed efficient mixing and dynamic exchange of media in the cell-trapping chambers, and viability of mammalian cells cultured for long-term in the device. This work represents the first attempt to integrate single-layer microfluidic mixing devices with vacuum-assisted cell-loading systems for mammalian cell culture and dynamic stimulation. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

19 pages, 4761 KiB  
Article
An Open-Type Crossflow Microfluidic Chip for Deformable Droplet Separation Driven by a Centrifugal Field
by Zekun Li, Yongchao Cai, Xiangfu Wei, Cuimin Sun, Wenshen Luo and Hui You
Micromachines 2025, 16(7), 774; https://doi.org/10.3390/mi16070774 - 30 Jun 2025
Viewed by 306
Abstract
This study presents an innovative wedge-shaped inlet weir-type microfluidic chip designed to address common issues of clogging and inefficiency in microfiltration processes. Driven solely by centrifugal force, the chip integrates a crossflow separation mechanism and enables selective droplet sorting based on size, without [...] Read more.
This study presents an innovative wedge-shaped inlet weir-type microfluidic chip designed to address common issues of clogging and inefficiency in microfiltration processes. Driven solely by centrifugal force, the chip integrates a crossflow separation mechanism and enables selective droplet sorting based on size, without the need for external pumps. Fabricated from PMMA, the device features a central elliptical chamber, a wedge-shaped inlet, and spiral microchannels. These structures leverage shear stress and Dean vortices under centrifugal fields to achieve high-throughput separation of droplets with different diameters. Using water-in-oil emulsions as a model system, we systematically investigated the effects of geometric parameters and rotational speed on separation performance. A theoretical model was developed to derive the critical droplet size based on force balance, accounting for centrifugal force, viscous drag, pressure differentials, and surface tension. Experimental results demonstrate that the chip can effectively separate droplets ranging from 0 to 400 μm in diameter at 200 rpm, achieving a sorting efficiency of up to 72% and a separation threshold (cutoff accuracy) of 98.2%. Fluorescence analysis confirmed the absence of cross-contamination during single-chip operation. This work offers a structure-guided, efficient, and contamination-free droplet sorting strategy with broad potential applications in biomedical diagnostics and drug screening. Full article
Show Figures

Figure 1

20 pages, 3506 KiB  
Article
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer’s Biomarkers Detection
by Pengcheng Zhao, Jieyu Wang, Hongju Mao, Lin Zhou, Zhenhua Wu, Yunxing Lu, Teng Sun, Jianan Hui and Guowu Ma
Sensors 2025, 25(13), 4088; https://doi.org/10.3390/s25134088 - 30 Jun 2025
Viewed by 641
Abstract
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42 [...] Read more.
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42), on a single reusable electrode. The sensor features a three-electrode system fabricated by sputter-coating a quartz substrate with gold (Au) sensing electrodes, which are further modified with gold nanoparticles (AuNPs) to form 3D dendritic structures that enhance surface area and electron transfer. To improve specificity, immunomagnetic beads (MBs) are employed to selectively capture and isolate target biomarkers from saliva samples. These MB–biomarker complexes are introduced into a polydimethylsiloxane chamber aligned with Au sensing electrodes, where a detachable magnet localizes the complexes onto the electrode surface to amplify redox signals. The AuNPs/MBs sensor achieves detection limits of 2 μg/mL for Lf and 0.1 pg/mL for Aβ1-42, outperforming commercial ELISA kits (37.5 pg/mL for Aβ1-42) and covering physiological salivary concentrations. After the MBs capture the biomarkers, the sensor can output the result within one minute. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements confirm enhanced electron transfer kinetics on AuNP-decorated surfaces, while linear correlations (R2 > 0.95) validate quantitative accuracy across biomarker ranges. The compact and integrated design eliminates reliance on bulky instrumentation and enables user-friendly operation, establishing a promising platform for portable, cost-effective AD screening and monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 11727 KiB  
Article
Experimental Evaluation of Residual Oil Saturation in Solvent-Assisted SAGD Using Single-Component Solvents
by Fernando Rengifo Barbosa, Amin Kordestany and Brij Maini
Energies 2025, 18(13), 3362; https://doi.org/10.3390/en18133362 - 26 Jun 2025
Viewed by 318
Abstract
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large [...] Read more.
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large energy input requirement. Large water and natural gas quantities needed for steam generation imply sizable greenhouse gas (GHG) emissions and extensive post-production water treatment. Several methods to make SAGD more energy-efficient and environmentally sustainable have been attempted. Their main goal is to reduce steam consumption whilst maintaining favourable oil production rates and ultimate oil recovery. Oil saturation within the steam chamber plays a critical role in determining both the economic viability and resource efficiency of SAGD operations. However, accurately quantifying the residual oil saturation left behind by SAGD remains a challenge. In this experimental research, sand pack Expanding Solvent SAGD (ES-SAGD) coinjection experiments are reported in which Pentane -C5H12, and Hexane -C6H14 were utilised as an additive to steam to produce Long Lake bitumen. Each solvent is assessed at three different constant concentrations through time using experiments simulating SAGD to quantify their impact. The benefits of single-component solvent coinjection gradually diminish as the SAGD process approaches its later stages. ES-SAGD pentane coinjection offers a smaller improvement in recovery factor (RF) (4% approx.) compared to hexane (8% approx.). Between these two single-component solvents, 15 vol% hexane offered the fastest recovery. The obtained data in this research provided compelling evidence that the coinjection of solvent under carefully controlled operating conditions, reduced overall steam requirement, energy consumption, and residual oil saturation allowing proper adjustment of oil and water relative permeability curve endpoints for field pilot reservoir simulations. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

13 pages, 1113 KiB  
Article
Implantation of Sutureless Scleral-Fixated Carlevale Intraocular Lens (IOL) in Patients with Insufficient Capsular Bag Support: A Retrospective Analysis of 100 Cases at a Single Center
by Jan Strathmann, Sami Dalbah, Tobias Kiefer, Nikolaos E. Bechrakis, Theodora Tsimpaki and Miltiadis Fiorentzis
J. Clin. Med. 2025, 14(12), 4378; https://doi.org/10.3390/jcm14124378 - 19 Jun 2025
Viewed by 422
Abstract
Background/Objectives: Different surgical techniques are available in cases of missing or insufficient capsular bag support. Next to the anterior chamber or iris-fixated intraocular lenses (IOL), the implantation of the Carlevale IOL provides a sutureless and scleral fixated treatment method. Methods: In [...] Read more.
Background/Objectives: Different surgical techniques are available in cases of missing or insufficient capsular bag support. Next to the anterior chamber or iris-fixated intraocular lenses (IOL), the implantation of the Carlevale IOL provides a sutureless and scleral fixated treatment method. Methods: In a retrospective single-center study, the perioperative data of 100 patients who consecutively received a scleral fixated Carlevale IOL combined with a 25 gauge (G) pars plana vitrectomy between September 2021 and June 2024 were investigated. The intraoperative and postoperative results were analyzed in terms of complication rates and refractive outcomes. Results: IOL dislocation was the most common surgical indication (50%) for sutureless Carlevale IOL implantation, followed by postoperative aphakia in 35 patients (35%). Nearly every fourth patient (24%) had a preoperative traumatic event, and 21% had pseudoexfoliation (PEX) syndrome. The average surgery time was 60.2 (±20.1) min. Intraoperative intraocular hemorrhage occurred in seven cases, and IOL haptic breakage in two patients. Temporary intraocular pressure fluctuations represented the most common postoperative complications (28%). Severe complications such as endophthalmitis or retinal detachment were not observed in our cohort. The mean refractive prediction error was determined in 67 patients and amounted to an average of −0.7 ± 2.0 diopters. The best corrected visual acuity (BCVA) at the last postoperative follow-up showed an improvement of 0.2 ± 0.5 logMAR (n = 76) compared to the preoperative BCVA (p = 0.0002). The postoperative examination was performed in 72% of the patients, and the mean follow-up period amounted to 7.2 ± 6.4 months. Conclusions: Overall, sutureless and scleral fixated implantation of the Carlevale IOL represents a valuable therapeutic option in the treatment of aphakia and lens as well as IOL dislocation in the absence of capsular bag support with minor postoperative complications and positive refractive outcomes. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

Back to TopTop