Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = single crystal (SX)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4169 KiB  
Article
An Anisotropic Failure Characteristic- and Damage-Coupled Constitutive Model
by Ruiqing Chen, Jieyu Dai, Shuning Gu, Lang Yang, Laohu Long and Jundong Wang
Modelling 2025, 6(3), 75; https://doi.org/10.3390/modelling6030075 - 1 Aug 2025
Viewed by 168
Abstract
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage [...] Read more.
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage creep curves, macroscopic fracture morphologies, and microstructural features under uniaxial tensile creep for specimens with different crystallographic orientations. Creep behavior of SX superalloys was simulated under multiple orientations and various temperature-stress conditions using the proposed model. The resulting creep curves aligned well with experimental observations, thereby validating the model’s feasibility and accuracy. Furthermore, a finite element model of cylindrical specimens was established, and simulations of the macroscopic fracture morphology were performed using a user-defined material subroutine. By integrating the rafting theory governed by interfacial energy density, the model successfully predicts the rafting morphology of the microstructure at the fracture surface for different crystallographic orientations. The proposed model maintains low programming complexity and computational cost while effectively predicting the creep life and deformation behavior of anisotropic materials. The model accurately captures the three-stage creep deformation behavior of SX specimens and provides reliable predictions of stress fields and microstructural changes at critical cross-sections. The model demonstrates high accuracy in life prediction, with all predicted results falling within a ±1.5× error band and an average error of 14.6%. Full article
Show Figures

Graphical abstract

24 pages, 5129 KiB  
Article
On the Solidification and Phase Stability of Re-Bearing High-Entropy Superalloys with Hierarchical Microstructures
by Wei-Che Hsu, Takuma Saito, Mainak Saha, Hideyuki Murakami, Taisuke Sasaki and An-Chou Yeh
Metals 2025, 15(8), 820; https://doi.org/10.3390/met15080820 - 22 Jul 2025
Viewed by 422
Abstract
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with [...] Read more.
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with the suppression of detrimental topologically close-packed (TCP) phases. To elucidate solidification behavior and phase stability, Scheil–Gulliver and TC-PRISMA simulations were conducted alongside SEM and XRD analyses. Near-atomic scale analysis in 3D using Atom Probe Tomography (APT) revealed pronounced elemental partitioning, with Re strongly segregating to the γ matrix, while Al and Ti were preferentially enriched in the γ′ phase. Notably, Re demonstrated a unique partitioning behavior compared to conventional superalloys, facilitating the formation and stabilization of γ nanoparticles during two-step aging (Ag-2). These γ nanoparticles significantly contribute to improved mechanical properties. Long-term aging (up to 200 h) at 750–850 °C confirmed exceptional phase stability, with minimal coarsening of γ′ and retention of γ nanoparticles. The coarsening rate constant K of γ′ at 750 °C was significantly lower than that of Re-free HESA, confirming the diffusion-suppressing effect of Re. These findings highlight critical roles of Re in enhancing microstructural stability by reducing atomic mobility, enabling the development of next-generation HESAs with superior thermal and mechanical properties for high-temperature applications. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys (2nd Edition))
Show Figures

Figure 1

13 pages, 10253 KiB  
Article
Application of Serial Crystallography for Merging Incomplete Macromolecular Crystallography Datasets
by Ki Hyun Nam
Crystals 2024, 14(12), 1012; https://doi.org/10.3390/cryst14121012 - 22 Nov 2024
Cited by 1 | Viewed by 921
Abstract
In macromolecular crystallography (MX), a complete diffraction dataset is essential for determining the three-dimensional structure. However, collecting a complete experimental dataset using a single crystal is frequently unsuccessful due to poor crystal quality or radiation damage, resulting in the collection of multiple incomplete [...] Read more.
In macromolecular crystallography (MX), a complete diffraction dataset is essential for determining the three-dimensional structure. However, collecting a complete experimental dataset using a single crystal is frequently unsuccessful due to poor crystal quality or radiation damage, resulting in the collection of multiple incomplete datasets. This issue can be solved by merging incomplete diffraction datasets to generate a complete dataset. This study introduced a new approach for merging incomplete datasets from MX to generate a complete dataset using serial crystallography (SX). Six incomplete diffraction datasets of β-glucosidase from Thermoanaerobacterium saccharolyticum (TsaBgl) were processed using CrystFEL, an SX program. The statistics of the merged data, such as completeness, CC, CC*, Rsplit, Rwork, and Rfree, demonstrated a complete dataset, indicating improved quality compared with the incomplete datasets and enabling structural determination. Also, the merging of the incomplete datasets was processed using four different indexing algorithms, and their statistics were compared. In conclusion, this approach for generating a complete dataset using SX will provide a new opportunity for determining the crystal structure of macromolecules using multiple incomplete MX datasets. Full article
(This article belongs to the Special Issue Advanced Research on Macromolecular Crystals (2nd Edition))
Show Figures

Figure 1

15 pages, 8875 KiB  
Article
The Customized Heat Treatment for Enhancing the High-Temperature Durability of Laser-Directed Energy Deposition-Repaired Single-Crystal Superalloys
by Yimo Guo, Nannan Lu, Pengfei Yang, Jingjing Liang, Guangrui Zhang, Chuanyong Cui, Ting-An Zhang, Yizhou Zhou, Xiaofeng Sun and Jinguo Li
Materials 2024, 17(22), 5665; https://doi.org/10.3390/ma17225665 - 20 Nov 2024
Cited by 2 | Viewed by 982
Abstract
The high-temperature durability performance plays a crucial role in the applications of single-crystal (SX) superalloys repaired by laser-directed energy deposition (L-DED). A specialized heat treatment process for L-DED-repaired SX superalloys was developed in this study. The effect of the newly customized heat treatment [...] Read more.
The high-temperature durability performance plays a crucial role in the applications of single-crystal (SX) superalloys repaired by laser-directed energy deposition (L-DED). A specialized heat treatment process for L-DED-repaired SX superalloys was developed in this study. The effect of the newly customized heat treatment on the microstructure and high-temperature mechanical properties of DD32 SX superalloy repaired by L-DED was investigated. Results indicate that the repaired area of the newly customized heat treatment specimen still maintained a SX structure, the average size of the γ′ phase was 236 nm, and the volume fraction was 69%. Obviously recrystallized grains were formed in the repair area of the standard heat treatment specimens, and carbide precipitated along the grain boundary. The size of the γ′ phase was about 535 nm. The high-temperature durable life of the newly custom heat treatment specimen was about 19.09 h at 1000 °C/280 MPa, the fracture mode was microporous aggregation fracture, and the fracture location was in the repair area. The durable life of the standard heat treatment specimen was about 8.70 h, the fracture mode was cleavage fracture, and the fracture location was in the matrix area. The crack source of both specimens was interdendrite carbide. Full article
Show Figures

Figure 1

11 pages, 2689 KiB  
Article
Selective Laser Melting of Non-Weldable Nickel Superalloy: Microstructure, Cracks and Texture
by Kirill Starikov, Igor Polozov, Evgenii Borisov, Artem Kim, Daniil Voevodenko, Anna Gracheva, Alexey Shamshurin and Anatoly Popovich
Metals 2023, 13(11), 1886; https://doi.org/10.3390/met13111886 - 13 Nov 2023
Cited by 3 | Viewed by 2126
Abstract
Additive manufacturing, particularly selective laser melting, presents exciting possibilities for fabricating components from high-temperature nickel-based superalloys. Controlling microstructural features and minimizing defects in fabricated specimens are critical challenges. This study explores the influence of process parameters on microstructure and defect formation in directionally [...] Read more.
Additive manufacturing, particularly selective laser melting, presents exciting possibilities for fabricating components from high-temperature nickel-based superalloys. Controlling microstructural features and minimizing defects in fabricated specimens are critical challenges. This study explores the influence of process parameters on microstructure and defect formation in directionally solidified nickel-based superalloy specimens. We conducted a comprehensive analysis of selective laser melting process variables, including interdendritic spacing, crystallization times, and volumetric energy density. Electron backscatter diffraction analysis was employed to assess the feasibility of obtaining a directional structure in single-crystal nickel-based heat-resistant alloy specimens using selective laser melting. The study shows a significant correlation between reduced interdendritic spacing and increased defect formation. Longer crystallization times and higher volumetric energy density lead to decreased defect volumes and sizes. Electron backscatter diffraction analysis confirms the maintenance of preferential growth direction across subsequent layers. Our research underscores the importance of optimizing selective laser melting parameters, balancing refractory elements in alloy composition, and adopting strategies for enhancing crystallization times to minimize structural defects. This comprehensive approach ensures both heat resistance and minimal defects, facilitating the production of high-quality components. These findings contribute to advancing selective laser melting applications in critical industries like aerospace and power generation, where heat-resistant materials are paramount. Full article
(This article belongs to the Special Issue Feature Papers in Structural Integrity of Metals)
Show Figures

Figure 1

19 pages, 3969 KiB  
Article
Preparation, Chemical Composition, and Optical Properties of (β–Ga2O3 Composite Thin Films)/(GaSxSe1−x Lamellar Solid Solutions) Nanostructures
by Veaceslav Sprincean, Liviu Leontie, Iuliana Caraman, Oleg Lupan, Rainer Adeling, Silviu Gurlui, Aurelian Carlescu, Corneliu Doroftei and Mihail Caraman
Nanomaterials 2023, 13(14), 2052; https://doi.org/10.3390/nano13142052 - 11 Jul 2023
Cited by 2 | Viewed by 2487
Abstract
GaSxSe1−x solid solutions are layered semiconductors with a band gap between 2.0 and 2.6 eV. Their single crystals are formed by planar packings of S/Se-Ga-Ga-S/Se type, with weak polarization bonds between them, which allows obtaining, by splitting, plan-parallel lamellae with [...] Read more.
GaSxSe1−x solid solutions are layered semiconductors with a band gap between 2.0 and 2.6 eV. Their single crystals are formed by planar packings of S/Se-Ga-Ga-S/Se type, with weak polarization bonds between them, which allows obtaining, by splitting, plan-parallel lamellae with atomically smooth surfaces. By heat treatment in a normal or water vapor-enriched atmosphere, their plates are covered with a layer consisting of β–Ga2O3 nanowires/nanoribbons. In this work, the elemental and chemical composition, surface morphology, as well as optical, photoluminescent, and photoelectric properties of β–Ga2O3 layer formed on GaSxSe1−x (0 ≤ x ≤ 1) solid solutions (as substrate) are studied. The correlation is made between the composition (x) of the primary material, technological preparation conditions of the oxide-semiconducting layer, and the optical, photoelectric, and photoluminescent properties of β–Ga2O3 (nanosized layers)/GaSxSe1−x structures. From the analysis of the fundamental absorption edge, photoluminescence, and photoconductivity, the character of the optical transitions and the optical band gap in the range of 4.5–4.8 eV were determined, as well as the mechanisms behind blue-green photoluminescence and photoconductivity in the fundamental absorption band region. The photoluminescence bands in the blue-green region are characteristic of β–Ga2O3 nanowires/nanolamellae structures. The photoconductivity of β–Ga2O3 structures on GaSxSe1−x solid solution substrate is determined by their strong fundamental absorption. As synthesized structures hold promise for potential applications in UV receivers, UV-C sources, gas sensors, as well as photocatalytic decomposition of water and organic pollutants. Full article
Show Figures

Figure 1

20 pages, 9160 KiB  
Review
Review of Single Crystal Synthesis of 11 Iron-Based Superconductors
by Qiang Hou, Longfei Sun, Yue Sun and Zhixiang Shi
Materials 2023, 16(14), 4895; https://doi.org/10.3390/ma16144895 - 8 Jul 2023
Cited by 4 | Viewed by 2943
Abstract
The 11 system in the iron-based superconducting family has become one of the most extensively studied materials in the research of high-temperature superconductivity, due to their simple structure and rich physical properties. Many exotic properties, such as multiband electronic structure, electronic nematicity, topology [...] Read more.
The 11 system in the iron-based superconducting family has become one of the most extensively studied materials in the research of high-temperature superconductivity, due to their simple structure and rich physical properties. Many exotic properties, such as multiband electronic structure, electronic nematicity, topology and antiferromagnetic order, provide strong support for the theory of high-temperature superconductivity, and have been at the forefront of condensed matter physics in the past decade. One noteworthy aspect is that a high upper critical magnetic field, large critical current density and lower toxicity give the 11 system good application prospects. However, the research on 11 iron-based superconductors faces numerous obstacles, mainly stemming from the challenges associated with producing high-quality single crystals. Since the discovery of FeSe superconductivity in 2008, researchers have made significant progress in crystal growth, overcoming the hurdles that initially impeded their studies. Consequently, they have successfully established the complete phase diagrams of 11 iron-based superconductors, including FeSe1−xTex, FeSe1−xSx and FeTe1−xSx. In this paper, we aim to provide a comprehensive summary of the preparation methods employed for 11 iron-based single crystals over the past decade. Specifically, we will focus on hydrothermal, chemical vapor transport (CVT), self-flux and annealing methods. Additionally, we will discuss the quality, size, and superconductivity properties exhibited by single crystals obtained through different preparation methods. By exploring these aspects, we can gain a better understanding of the advantages and limitations associated with each technique. High-quality single crystals serve as invaluable tools for advancing both the theoretical understanding and practical utilization of high-temperature superconductivity. Full article
(This article belongs to the Special Issue Physics and Application of Superconductivity)
Show Figures

Figure 1

14 pages, 132864 KiB  
Article
Effect of Withdrawal Rate on Solidification Microstructures of DD9 Single Crystal Turbine Blade
by Yanpeng Xue, Xiaoguang Wang, Jinqian Zhao, Zhenxue Shi, Shizhong Liu and Jiarong Li
Materials 2023, 16(9), 3409; https://doi.org/10.3390/ma16093409 - 27 Apr 2023
Cited by 2 | Viewed by 1919
Abstract
Single crystal superalloys are widely used in the manufacturing of turbine blades for aero-engines due to their superior performance at high temperatures. The directional solidification process is a key technology for producing single crystal turbine blades with excellent properties. In the directional solidification [...] Read more.
Single crystal superalloys are widely used in the manufacturing of turbine blades for aero-engines due to their superior performance at high temperatures. The directional solidification process is a key technology for producing single crystal turbine blades with excellent properties. In the directional solidification process, withdrawal rate is one of the critical parameters for microstructure formation and will ultimately determine the blade’s properties. In this paper, the as-cast microstructures in the typical sections of a DD9 single crystal (SX) superalloy turbine blade were investigated with 3 mm/min and 5 mm/min withdrawal rates during the directional solidification process. With increased withdrawal rate, the dendrite morphologies tended to become more refined, and the secondary dendritic arms tended to be highly developed. The dendrite in the blade aerofoil section was more refined than that in the tenon section, given the same withdrawal rate. Additionally, with increasing withdrawal rates, the size and dispersity of the γ′ precipitates in the inter-dendritic (ID) regions and dendritic core (DC) tended to decrease; furthermore, the size distributions of the γ′ precipitates followed a normal distribution law. Compared with the ID regions, an almost 62% reduction in the average γ′ sizes was measured in the DC. Meanwhile, given the same withdrawal rate, at the blade’s leading edge closest to the heater, the γ′ sizes in the aerofoil section (AS) were more refined than those in the tenon section (TS). As compared with the decreasing cross-sectional areas, the increased withdrawal rates clearly brought down the γ′ sizes. The sizes of the γ–γ′ eutectics decreased with increasing withdrawal rates, with the γ–γ′ eutectics showing both lamellar and rosette shapes. Full article
Show Figures

Figure 1

13 pages, 15815 KiB  
Article
Microstructure, Mechanical Properties and Thermal Stability of Ni-Based Single Crystal Superalloys with Low Specific Weight
by Dengyu Liu, Qingqing Ding, Qian Zhou, Dingxin Zhou, Xiao Wei, Xinbao Zhao, Ze Zhang and Hongbin Bei
Crystals 2023, 13(4), 610; https://doi.org/10.3390/cryst13040610 - 2 Apr 2023
Cited by 9 | Viewed by 4341
Abstract
Ni-based single crystal (SX) superalloy with low specific weight is vital for developing aero engines with a high strength-to-weight ratio. Based on an alloy system with 3 wt.% Re but without W, namely Ni-Co-Cr-Mo-Ta-Re-Al-Ti, a specific weight below 8.4 g/cm3 has been [...] Read more.
Ni-based single crystal (SX) superalloy with low specific weight is vital for developing aero engines with a high strength-to-weight ratio. Based on an alloy system with 3 wt.% Re but without W, namely Ni-Co-Cr-Mo-Ta-Re-Al-Ti, a specific weight below 8.4 g/cm3 has been achieved. To reveal the relationship among the composition, mechanical properties, and thermal stability of Ni-based SX superalloys, SXs with desirable microstructures are fabricated. Tensile tests revealed that the SX alloys have comparable strength to commercial second-generation SX CMSX-4 (3 wt.% Re and 6 wt.% W) and Rene′ N5 alloys (3 wt.% Re and 5 wt.% W) above 800 °C. Moreover, the elongation to fracture (EF) below 850 °C (>20%) is better than that of those two commercial SX superalloys. During thermal exposure at 1050 °C for up to 500 h, the topological close-packed (TCP) phase does not appear, indicating excellent phase stability. Decreasing Al concentration increases the resistance of γ′ rafting and replacing 1 wt.% Ti with 3 wt.% Ta is beneficial to the stability of the shape and size of γ′ phase during thermal exposure. The current work might provide scientific insights for developing Ni-based SX superalloys with low specific weight. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials)
Show Figures

Figure 1

18 pages, 27334 KiB  
Review
An Overview of Thermal Exposure on Microstructural Degradation and Mechanical Properties in Ni-Based Single Crystal Superalloys
by Jian Zhang, Fan Lu and Longfei Li
Materials 2023, 16(5), 1787; https://doi.org/10.3390/ma16051787 - 22 Feb 2023
Cited by 5 | Viewed by 2672
Abstract
Microstructural stability at elevated temperatures is one of the main concerns for the service reliability of aero-engine turbine blades. Thermal exposure, as an important approach to examine the microstructural degradation, has been widely studied in Ni-based single crystal (SX) superalloys for decades. This [...] Read more.
Microstructural stability at elevated temperatures is one of the main concerns for the service reliability of aero-engine turbine blades. Thermal exposure, as an important approach to examine the microstructural degradation, has been widely studied in Ni-based single crystal (SX) superalloys for decades. This paper presents a review on the microstructural degradation induced by high-temperature thermal exposure and the associated damage in mechanical properties in some typical Ni-based SX superalloys. The main factors affecting the microstructural evolution during thermal exposure and the influencing factors in the degradation of mechanical properties are also summarized. Insights into the quantitative estimation of the thermal exposure-affected microstructural evolution and the mechanical properties will be beneficial for the understanding and improvement of reliable service in Ni-based SX superalloys. Full article
(This article belongs to the Special Issue Heat Treatments and Performance of Alloy and Metal)
Show Figures

Figure 1

14 pages, 2056 KiB  
Article
Experimental Study of As-Cast and Heat-Treated Single-Crystal Ni-Based Superalloy Interface Using TEM
by Runjun He, Miao Li, Xiao Han, Wei Feng, Hongye Zhang, Huimin Xie and Zhanwei Liu
Nanomaterials 2023, 13(3), 608; https://doi.org/10.3390/nano13030608 - 2 Feb 2023
Cited by 3 | Viewed by 2321
Abstract
The interface plays an important role in determining strength and toughness in multiphase systems and the accurate measurement of the interface structure in single crystal (SX) Ni-based superalloy is also essential. In this work, the γ and γ′ lattice constant, γ/γ′ interface width [...] Read more.
The interface plays an important role in determining strength and toughness in multiphase systems and the accurate measurement of the interface structure in single crystal (SX) Ni-based superalloy is also essential. In this work, the γ and γ′ lattice constant, γ/γ′ interface width at dendritic and interdendritic region of casting and solution treatment SX Ni-based superalloy is measured. Various advanced equipment is used to characterize γ/γ′ interface nanostructure. A typical correlation between interface width and γ/γ′ misfit is also summarized. The interface width in the dendritic region of the as-cast sample is larger than that in the interdendritic region. The misfit in the dendritic region is larger than that in the interdendritic region, which has a trend of negative development. There is a common law of the as-cast interdendritic and dendrite interface sample, where the absolute value of the misfit between the two phases is increasing with the phase interface broadening. The comparison of the as-cast and heat-treated interdendritic sample shows that after heat treatment, the phase interface width increases, the misfit decreases, the lattice constant of γ phase increases, and the lattice constant of the γ′ phase decreases. By comparing the as-cast and heat treated dendrites, the absolute value of the misfit of the as-cast dendrite sample is significantly smaller than that of the heat-treated sample, and the misfit increases with the interface broadening. The comparison between interdendritic and dendritic heat-treated samples shows that the absolute value of the misfit between the two phases is smaller than that of the dendritic as-cast samples, and the absolute value of the misfit also increases with the phase interface broadening. In conclusion, property heat treatment can significantly increase the lattice constants of the γ and γ’ phases, reduce the lattice mismatch at the interface of the two phases, and improve the high temperature stability of the alloy. A better understanding of the microstructure of Ni-based single crystal superalloys will provide guidance for the subsequent design of more advanced nickel-based single-crystal superalloys. Full article
(This article belongs to the Special Issue Research on Nano-Lattice)
Show Figures

Figure 1

13 pages, 3517 KiB  
Article
Microstructure Evolution and Formation of Gradient Structures in Single Crystal Nickel-Based Superalloy by Surface Mechanical Creep-Feed Grinding Treatment
by Qing Miao, Wenfeng Ding, Weijie Kuang, Bijin Zhou, Ting Hao, Chenwei Dai and Zhen Yin
Materials 2023, 16(1), 321; https://doi.org/10.3390/ma16010321 - 29 Dec 2022
Cited by 5 | Viewed by 1996
Abstract
Gradient structures have been created in single crystal nickel-based superalloys (SX alloys) via surface mechanical creep-feed grinding treatment (SMCGT). It has been found that these gradient structures are mainly composed of nano-sized grains, sub-micron-sized grains, dislocation structures, and the matrix material of single [...] Read more.
Gradient structures have been created in single crystal nickel-based superalloys (SX alloys) via surface mechanical creep-feed grinding treatment (SMCGT). It has been found that these gradient structures are mainly composed of nano-sized grains, sub-micron-sized grains, dislocation structures, and the matrix material of single crystals along the depth from the treated surface. In addition, the evolution of such structures is found to be dominated by the dislocation movements which run through both γ channels and γ’ precipitates, subdividing the two types of microstructures into various dislocation structures, and eventually introducing the refined grains into the surface layer. Furthermore, the evolution process of gradient structures primarily originates from the mechanical effect between abrasive grits and workpiece material, owing to the large grinding force (up to 529 N) and low grinding temperature (less than 150 °C) during the unique creep-feed grinding treatment in the present investigation. Due to the typical grain refinement, the hardness of the nanostructures exhibits the largest value of around 10 GPa in the surface layer, approximately 26% higher than that of the matrix material. This study further enhances the understanding of the microstructure–property relationship of SX alloys subjected to creep-feed grinding treatment and contributes to achievement of high-performance components. Full article
Show Figures

Graphical abstract

9 pages, 1629 KiB  
Article
Phase Formation Behavior and Thermoelectric Transport Properties of S-Doped FeSe2−xSx Polycrystalline Alloys
by Okmin Park, Se Woong Lee, Sang Jeong Park and Sang-il Kim
Micromachines 2022, 13(12), 2066; https://doi.org/10.3390/mi13122066 - 25 Nov 2022
Cited by 8 | Viewed by 1950
Abstract
Some transition-metal dichalcogenides have been actively studied recently owing to their potential for use as thermoelectric materials due to their superior electronic transport properties. Iron-based chalcogenides, FeTe2, FeSe2 and FeS2, are narrow bandgap (~1 eV) semiconductors that could [...] Read more.
Some transition-metal dichalcogenides have been actively studied recently owing to their potential for use as thermoelectric materials due to their superior electronic transport properties. Iron-based chalcogenides, FeTe2, FeSe2 and FeS2, are narrow bandgap (~1 eV) semiconductors that could be considered as cost-effective thermoelectric materials. Herein, the thermoelectric and electrical transport properties FeSe2–FeS2 system are investigated. A series of polycrystalline samples of the nominal composition of FeSe2−xSx (x = 0, 0.2, 0.4, 0.6, and 0.8) samples are synthesized by a conventional solid-state reaction. A single orthorhombic phase of FeSe2 is successfully synthesized for x = 0, 0.2, and 0.4, while secondary phases (Fe7S8 or FeS2) are identified as well for x = 0.6 and 0.8. The lattice parameters gradually decrease gradually with S content increase to x = 0.6, suggesting that S atoms are successfully substituted at the Se sites in the FeSe2 orthorhombic crystal structure. The electrical conductivity increases gradually with the S content, whereas the positive Seebeck coefficient decreases gradually with the S content at 300 K. The maximum power factor of 0.55 mW/mK2 at 600 K was seen for x = 0.2, which is a 10% increase compared to the pristine FeSe2 sample. Interestingly, the total thermal conductivity at 300 K of 7.96 W/mK (x = 0) decreases gradually and significantly to 2.58 W/mK for x = 0.6 owing to the point-defect phonon scattering by the partial substitution of S atoms at the Se site. As a result, a maximum thermoelectric figure of merit of 0.079 is obtained for the FeSe1.8S0.2 (x = 0.2) sample at 600 K, which is 18% higher than that of the pristine FeSe2 sample. Full article
Show Figures

Figure 1

13 pages, 3446 KiB  
Article
A Systematic Study of Compositionally Dependent Dielectric Tensors of SnSxSe1-x Alloys by Spectroscopic Ellipsometry
by Xuan Au Nguyen, Thi Minh Hai Nguyen, Tae Jung Kim, Long Van Le, Tung Hoang Nguyen, Bogyu Kim, Kyujin Kim, Wonjun Lee, Sunglae Cho and Young Dong Kim
Crystals 2021, 11(5), 548; https://doi.org/10.3390/cryst11050548 - 14 May 2021
Cited by 6 | Viewed by 2827
Abstract
We report the dielectric tensors on the cleavage plane of biaxial SnSxSe1-x alloys in the spectral energy region from 0.74 to 6.42 eV obtained by spectroscopic ellipsometry. Single-crystal SnSxSe1-x alloys were grown by the temperature-gradient [...] Read more.
We report the dielectric tensors on the cleavage plane of biaxial SnSxSe1-x alloys in the spectral energy region from 0.74 to 6.42 eV obtained by spectroscopic ellipsometry. Single-crystal SnSxSe1-x alloys were grown by the temperature-gradient method. Strongly anisotropic optical responses are observed along the different principal axes. An approximate solution yields the anisotropic dielectric functions along the zigzag (a-axis) and armchair (b-axis) directions. The critical point (CP) energies of SnSxSe1-x alloys are obtained by analyzing numerically calculated second derivatives, and their physical origins are identified by energy band structure. Blue shifts of the CPs are observed with increasing S composition. The fundamental bandgap for Se = 0.8 and 1 in the armchair axis arises from band-to-band transitions at the M0 minimum point instead of the M1 saddle point as in SnS. These optical data will be useful for designing optoelectronic devices based on SnSxSe1-x alloys. Full article
Show Figures

Figure 1

15 pages, 3046 KiB  
Article
Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin
by Tatsuya Arai, Akari Yamauchi, Ai Miura, Hidemasa Kondo, Yoshiyuki Nishimiya, Yuji C. Sasaki and Sakae Tsuda
Int. J. Mol. Sci. 2021, 22(7), 3637; https://doi.org/10.3390/ijms22073637 - 31 Mar 2021
Cited by 13 | Viewed by 4706
Abstract
Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 [...] Read more.
Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 isoforms of hyperactive AFP (DhbAFP). Cold-acclimated Dhb larvae tolerated −5 °C chilled storage for 24 h and fully recovered after warming, suggesting that DhbAFP facilitates overwintering of this beetle. A DhbAFP isoform (~10 kDa) appeared to consist of 6−8 tandem repeats of a 12-residue consensus sequence (TCTxSxNCxxAx), which exhibited 3 °C of high freezing point depression and the ability of binding to an entire surface of a single ice crystal. Significantly, these properties as well as DNA sequences including the untranslated region, signal peptide region, and an AFP-encoding region of Dhb are highly similar to those identified for a known hyperactive AFP (TmAFP) from the beetle Tenebrio molitor (Tm). Progenitor of Dhb and Tm was branched off approximately 300 million years ago, so no known evolution mechanism hardly explains the retainment of the DNA sequence for such a lo­ng divergence period. Existence of unrevealed gene transfer mechanism will be hypothesized between these two phylogenetically distant beetles to acquire this type of hyperactive AFP. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

Back to TopTop