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Abstract: Microstructural stability at elevated temperatures is one of the main concerns for the
service reliability of aero-engine turbine blades. Thermal exposure, as an important approach to
examine the microstructural degradation, has been widely studied in Ni-based single crystal (SX)
superalloys for decades. This paper presents a review on the microstructural degradation induced by
high-temperature thermal exposure and the associated damage in mechanical properties in some
typical Ni-based SX superalloys. The main factors affecting the microstructural evolution during
thermal exposure and the influencing factors in the degradation of mechanical properties are also
summarized. Insights into the quantitative estimation of the thermal exposure-affected microstructural
evolution and the mechanical properties will be beneficial for the understanding and improvement
of reliable service in Ni-based SX superalloys.

Keywords: Ni-based single crystal superalloys; thermal exposure; microstructural evolution; TCP
phases; mechanical property

1. Introduction

Ni-based single crystal (SX) superalloys are the materials of choice for the manufac-
turing of turbine blades in aero-engine and power-generation applications due to their
unique high temperature performance [1]. During service, the turbine blades are sub-
jected to extreme conditions such as high temperature, changeable mechanical stresses
and environmental corrosion. Hence, the initial microstructures undergo an inevitable
degradation process at high temperature, which contributes much to the decline in com-
ponent performance and even the premature failure of the gas turbine blades [2,3]. The
strength of a given Ni-based SX superalloy mainly refers to its mechanical properties as
well as microstructural stability [4]. As the direct approach to estimate microstructural
stability, knowledge of thermal exposure on microstructural evolution and the related
mechanical properties is extremely essential to further optimize the alloying design and
achieve superior performance during service of Ni-based SX superalloys.

The outstanding properties of Ni-based SX superalloys can be attributed to the mi-
crostructures combining the ordered (L12) intermetallic γ’-Ni3Al precipitates, coherently
embedded in disordered (fcc) γ-Al matrix [5,6]. The γ’ phases with a high volume fraction
provide high rigidity and low dislocation tolerance, limiting the dislocation movements
in the γ channels, which contribute to the high temperature property by the precipitate
strengthening effect [7]. Thus, the volume fraction, size, morphology and distribution of
the γ’ precipitates become the primary concerns in the microstructural evolution when
serving under harsh conditions [8–10].
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To meet the requirements in high-temperature capabilities, modern Ni-based SX su-
peralloys are always alloyed with amounts of refractory elements, such as W, Mo and, most
importantly, Re [5,11,12]. The introduction of these elements, however, can also promote
the rapid formation of refractory-rich topologically-close-packed (TCP) precipitates be-
longing to brittle inclusions at elevated temperatures, which may significantly damage
the endurance life of Ni-based SX superalloys [13–16]. Thus, another great concern in
evaluating microstructural degradation is the precipitate of TCP phases [17–19].

Obviously, the microstructure degradation induced by thermal exposure, including
the changes in the volume fraction, size, morphology and distribution of the γ’ precipitates
as well as the formation of TCP phases, is critical to the mechanical properties [20,21].
Since different alloys present microstructure degradation at different extents when sub-
jected to different conditions, or even the same conditions, it is important to summarize
the microstructural degradation in different aspects for a better understanding of the mi-
crostructural stability of modern Ni-based SX superalloys. Therefore, the alloying design
can be further optimized when comprehensively considering the microstructural stability
of the characterized Ni-based SX superalloys. The purpose of this paper is to review the
high temperature characteristics and evolution of γ/γ’ phases and the formation of TCP
phases as well as the influencing factors and their effect on related mechanical properties
based on published experimental results of several modern Ni-based SX superalloys.

2. Microstructural Stability during Thermal Exposure
2.1. γ/γ’ Microstructure Evolution

The most remarkable microstructural evolution in Ni-based SX superalloys exposed
to high temperature is the growth of the γ’ phases, or so-called coarsening [22,23]. In the
two-phase mixed system, a large amount of γ/γ’ interfacial area is the direct consequence
of the polydisperse nature. During thermal exposure, the total energy of the system should
be decreased to reach the equilibrium state. Thus, by decreasing the amount of interfacial
area, the system tends to have a thermodynamic preference, resulting in the growth of the
precipitate size [24]. Figure 1 shows the typical γ/γ′ microstructure of a commercial Ni-
based SX superalloy CMSX-4 after heat treatments (referring to initial state) and after related
thermal exposure at 950 ◦C for different durations [25]. In the initial state, γ′ precipitates
exhibit square morphology on each {001} crystallographic plane, illustrating the cuboidal
morphology before thermal exposure. During thermal exposure, the γ′ precipitates increase
their average sizes accompanied by some elongated precipitates, although most of the
precipitates still maintain their straight edges and sharp corners. This represents the most
common microstructural evolution of γ′ precipitates when subjected to high-temperature
thermal exposure, indicating the shrink of small particles and the growth of large particles,
followed by the well-known Ostwald ripening theory [22,26].

More serious γ′ evolution may occur from an initial cuboidal shape into a plate-like
morphology aligned along the <100> direction during a stress-free thermal exposure pro-
cess, or so-called spontaneous rafting. Figure 2a shows the morphology of the spontaneous
rafting in a DD11 alloy when subjected to 1070 ◦C and 300 h [27]. It is confirmed that this
phenomenon is closely associated with a higher γ′ volume fraction, which leads to the
easier interconnection of the growing γ′ phases in the coarsening process [28]. Furthermore,
the addition of a large amount of refractory elements into Ni-based SX superalloys causes
considerable negative lattice misfit, which acts as the driving force for the directional
diffusion flow and the formation of γ′ rafts aligned along the <100>, despite the absence of
applied stress [29]. Meanwhile, the elevate temperature also contributes to the elemental
diffusion process and further promotes the faster developed γ′ rafts [30,31]. For the modern
Ni-based SX superalloys, designed with a considerable addition of refractory elements, the
spontaneous rafting is also a representative feature in microstructural instability in many
published works [32–34].

It is well-known that in superalloys with extremely high γ′ volume fraction, the
γ′ phases tend to be seriously interconnected and can even become the topological matrix
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phase instead of the γ matrix during creep, wherein this process can be called topological
phase inversion [35]. Recent research also displayed a similar phenomenon in the inter-
dendritic regions of specimens after thermal exposure, as shown in Figure 2b [36]. This
strongly confirmed the effect of the higher γ′ volume fraction as responsible for the serious
microstructural evolution, since the γ′ volume fraction in the interdendritic regions is over
65%, which is much higher than that in the dendrite core.
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1070 ◦C/300 h [27] and (b) topological phase inversion in interdendritic areas in ERBO/1 alloy
after thermal exposure of 1100 ◦C/250 h [36].

Figure 3 shows the quantitative microstructural parameters (including the γ′ volume
fraction and γ′ and γ phases’ dimensions) of the DD11 alloy after thermal exposure at
1070 ◦C for different durations. It is suggested that all the microstructural parameters
changed gradually until 500 h, after which they tend to approach a constant value under
the specific temperature. Here, the dissolution of γ’ is a diffusion-controlled process,
following a model from Johnson–Mehl–Avrami–Kolmogorov (JMAK), which predicts the
real-time γ′ volume fraction as a function of the time [37,38]. Above all, the decreasing
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γ′ volume fraction and increasing γ and γ′ sizes constituted the important features of
γ/γ′ microstructural degradation during the thermal exposure process.
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2.2. γ’ Coarsening Mechanisms

To quantitatively describe the precipitate coarsening kinetics, a theory was first pro-
posed by Lifshitz and Slyozof [23] and then by Wagner [26], which is widely known as the
LSW theory. The remarkable feature of the developed theory is characterized by the time
exponents in the kinetics of precipitate coarsening, which is essential to diffusion-controlled
coarsening. Based on the Gibbs–Thomson equation, the LSW theory provided an analytical
equation: 〈rn〉 = Kt, with the exponent of n = 3, where 〈r〉 is the average precipitates radius,
K is the coarsening constant and t is the related time. Figure 4b gives the plot of

〈
r3〉 versus

t of a Ni-Al binary alloy at different temperatures, indicating the accepted goodness-of-fit
in the presumed linear behaviors. However, the LSW theory was developed based on
binary systems and assumed a dilute system with small volume fraction of precipitates.
Thus, some followed models were developed with the consideration of high precipitate
volume fraction, such as Modified LSW (MLSW) [9], Davies–Nash–Stevens (LSEM) [39],
Brailsford–Wynblatt (BW) [40], etc. More recently, a new model was proposed by Philippe
and Voorhees (P-V), taking into account the multi-component effect as well as the precip-
itate volume fraction [41]. Nevertheless, the LSW theory is still the most well-accepted
theory to describe the coarsening behavior, and a large number of studies have successfully
expanded the LSW theory to multi-component superalloys.
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Another coarsening model was established which considered that the diffusion
through the interface controlled the coarsening process, called the trans-interface diffusion-
controlled (TIDC) model. This model excludes the effect of volume fraction while taking
the interfacial width into account and the exponent of n = 2 in the mentioned power-law
function. Figure 4a outlines the relationship between

〈
r2〉 versus t, also suggesting good

linear behavior, which adapted to the TIDC theory. Recently, the TIDC theory has also been
successfully applied for multi-component superalloys [43–45].

The two coarsening controlled mechanisms, referring to matrix-diffusion controlled
and interfacial-diffusion controlled, usually emerge simultaneously and compete in a
single coarsening process [46]. By the analysis of the particle size distributions (PSDs)
within different coarsening stages, the underlying coarsening-controlled mechanism can be
determined. Figure 5 shows the experimentally measured PSDs as well as the predictions
of PSDs for LSW and TIDC theory in a Ni-Al-Cr-Re alloy, firstly with lower temperature,
which is similar to the stage before heat treatment of the experimental alloy, followed by a
Re-containing alloy with higher temperature and longer aging time [44]. It is indicated that, in
the heat treatment process, the coarsening is mainly controlled by matrix diffusion, since the
PSDs are much closer to the prediction in LSW theory while, at a longer thermal exposure time,
the coarsening gradually tends to be controlled by interfacial-diffusion. More recent research
also confirmed the transition of the coarsening-controlled mechanism from matrix-diffusion
to interfacial-diffusion in the long-term coarsening process of a single alloying system, where
the decreasing interfacial width acts as the driving force for that transition [45].
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2.3. Precipitation Behavior of TCP Phases

Excessive addition of refractory elements promotes the precipitate of the topologically
close-packed (TCP) phases, such as σ-, µ-, P- or R-phase, during high-temperature thermal
exposure in Ni-based SX superalloys [19]. These TCP phases can display a wide variety
of different morphologies, as shown in Figure 6 [47,48]. In 2D characterization, σ phases
and P phases mainly exist in sheet-like and needle-like morphology (Figure 6a), while in
3D characterization, the P phases present a basket-weave-like morphology, showing the
possibility of growing from σ phase after thermal exposure (Figure 6c). The different mor-
phology of TCP phase depends on the different crystallography structures. Furthermore,
both of the σ and P phases show a consistent orientation relationship with the matrix, with
different thermal exposure conditions.

The needle-like µ phases and Lath-like R phases are shown in Figure 6b,d. In 3D
characterization, the basket-weave-like R phases consist of the intersected needle-like µ phase.
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The R phases serve as the thermodynamic equilibrium phase, which can precipitate from the
matrix as well as µ phases, while it has no direct orientation relationship with the matrix.
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Figure 6. PSDs for Ni-A Typical TCP phases in Ni-based SX superalloys. (a) σ phase and P phase
(2D-characterization); (b) µ phase and R phase (2D-characterization); (c) σ phase and P phase
(3D-characterization); (d) µ phase and R phase (3D-characterization) [47,48].

The TCP phases basically contain a large number of γ-stabilizers, such as Re, W, Mo,
Cr and Co, as shown in the APT characterization in Figure 7. Thus, the TCP phases are
always surrounded by γ′ phases. While there are still some differences in chemistry among
the TCP phases, usually, P and σ phases are very similar in high Re content, µ phases are
high in Mo and/or W and low in Re content, and Co content in µ phases is much higher
than that in σ phases [49]. Since the precipitates of TCP phases depend on a thermodynamic
process, they can be qualitatively determined in CALPHAD calculations.
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Figure 7. An APT elemental map of a plate-like σ precipitate surrounded by a γ’ envelope (only Al, Re
and Ru atoms are shown) and corresponding concentration profiles across γ/γ’ and γ’/γ interfaces
for the annealed Astra1-21 alloy. Accumulation of Cr, Mo, W and Re in the σ phase is visible. Ru
concentrations in the σ phase and γ matrix are nearly identical. No elemental segregation at phase
boundaries can be observed [50].
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Figure 8a shows the differentiation within TCP phases’ formation between the den-
dritic and interdendritic region after thermal exposure of ERBO/1C alloy [51]. It indicated
the pronounced formation of TCP phases in dendrite cores rather than the interdendrite
region, which can be explained by the strong segregation of the refractory elements to
dendrite cores after heat treatment of the alloy, especially Re. A threshold Re concentration
is necessary for the formation of the TCP phase. The evolution of the TCP phase in Figure 8b
also shows the sharp increase in the TCP area fraction in dendrite cores during thermal
exposure. Thus, a compatible homogenous process is beneficial for decreasing the driving
force for the TCP formation. However, the density of the TCP phases still decreases from
the dendrite cores to the interdendritic regions due to the micro-segregation of refractory
elements to the dendrite cores retained even after heat treatment [49,52].
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Figure 8. (a) Microstructure of the ERBO/1C alloy after thermal exposure at 1050 ◦C for 120 h and
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2.4. Influencing Factors on Microstructural Stability
2.4.1. Temperature and Time

Figure 9a shows the dependence of average size of the γ’ precipitates on the thermal
exposure time of the CMSX-4 alloy. The average precipitate size increases with the thermal
exposure time as well as temperature. Detailed analysis on the growing cuboidal γ’ precip-
itates showed that the coarsening kinetics follow a cube rate law, and higher temperature
promotes the spontaneous rafts, as shown in Figure 9b. Figure 9c shows the temperature
dependence of the experimental and calculated coarsening rate of CMSX-4 alloy, indicating
the significantly increasing coarsening rate as a function of temperature. The active promo-
tion of the coarsening rate by temperature can be attributed to the increasing diffusion rate
at higher temperature [25].
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The formation of TCP phases is also closely associated with the temperature and
time. In the thermal exposure process of a Re-free alloy, the area fraction of the TCP
phase increases with time, together with the decreasing incubation time and the increasing
formation rate with the increasing temperature, as shown in Figure 10 [14]. This is mainly
due to the higher diffusion rate of TCP formation elements suggested by higher temperature.
However, the opposite conclusion has been obtained, indicating the restrained formation of
TCP phases induced by increasing temperature, as shown in Figure 11a [54]. Here, although
the TCP phases form much earlier with a shorter incubation time in higher temperature
(1050 ◦C), the equilibrium content of TCP phases is obviously lower. Matuszewski et al. [52]
presented CALPHAD calculations to predict the driving force for TCP precipitation at
different temperatures, also indicating the decreasing driving force for promoting any
type of TCP phase formation with the increasing temperature. This can be attributed to
the following reasons: one is that the entropy term increases along with the increased
temperature, which stabilizes the solid solution strength of the γ matrix, and another is
that the γ volume fraction increases with the increased temperature, which restrains the
supersaturation of refractory elements.
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1–21 at 950 ◦C and 1050 ◦C [54] and (b) the driving force for the precipitation of distinct phases within
the alloy Astra 1–20 containing 2 at% Re with varying temperatures [52].

2.4.2. Lattice Misfit and Interfacial Energy

It is widely known that the γ′ phases undergo the coarsening process when subjected
to elevated temperature, with the reduction in total interfacial energy as the driving force.
Previously, many researchers have been devoted to quantitatively estimating the interfacial
energy of the alloys. The most accepted approach is to calculate it from the coarsening rate,
with the function provided by LSW theory or the more recent P-V model [41,55]. Another
available approach is to calculate it by the interfacial width and interfacial gradient with
advanced characterization in Ardell’s method [56]. As the significant element in Ni-based
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SX superalloy, Re has received much attention in the calculation of the interfacial energy.
Zhang et al. [57] summarized the interfacial energy of the alloys with Re addition and
without Re, showing the obvious decrease in the interfacial energy induced by Re, as shown
in Figure 12. This becomes the primary factor in the stabilized microstructural evolution by
the addition of Re.
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Another great concern is the lattice misfit. The alloy should be designed to a compatible
composition leading to a reliable lattice misfit for suppressing γ′ coarsening. Although
there is still no quantitative relationship between the lattice misfit and the interfacial
energy, it can be concluded that interfacial energy may decrease with the decreasing lattice
misfit (approach to zero), which has been clarified by a different alloying system [45,58].
Additionally, in Figure 12, there is a supportive tendency of the increasing interfacial energy
along with the increasing value of the lattice misfit.

Liang et al. [59] conducted predictions of the interfacial energy induced by temperature
using the CALPHAD method. In Figure 13a, the interfacial energy decreases by the
increasing driving force, which restrains the driving force for γ′ coarsening, as shown
in Figure 13b. Despite the decreasing interfacial energy by the increasing temperature, the
elemental diffusion can be simultaneously promoted at higher temperature, which can,
on the other hand, boost the coarsening behavior. Thus, the actual real-time coarsening
behavior should consider both the interfacial energy and the elemental diffusion.
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2.4.3. Role of the Alloying Elements

The coarsening behavior as well as the TCP formation are all seriously affected by the
alloying elements. Zhang et al. [57] summarized the coarsening rate as a function of Re
content at various temperatures, as shown in Figure 14. The addition of Re can effectively
reduce the γ′ coarsening rate at high temperatures, especially when the Re content increases
from 0 to 4 wt.%.
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The volume fraction of the TCP phase after thermal exposure of different alloys at 1000 ◦C
for 1000 h has been summarized in Figure 15, which presents the effect of alloying elements
on the TCP phase formation [60]. The addition of Mo and Re can sharply promote TCP
precipitation, and Cr also plays a significant promoted effect. The TCP phase increases slightly
by the increased W content. However, the addition of Co can effectively restrain the TCP
formation. Interestingly, the commercial Ni-based SX superalloy CMSX-4 is always stable
with respect to the TCP precipitate at elevated temperatures, although it has a considerable
content of Re, W and Cr. This can be attributed to the lower content of Mo addition [12].
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3. Effect of Thermal Exposure on Mechanical Properties
3.1. High-Temperature Tensile Strength and Room-Temperature Hardness

An examination of the related mechanical properties of the unexposed and exposed
samples can be a valuable approach to determine the extent of the microstructural degra-
dation. Figure 16a provides the typical strain–stress curves of CMSX-4 alloy after thermal
exposure for different times [61]. The yield strength decreases along with the increased
time. However, both UTS and the total elongation first increase firstly and then continuously
decrease with the increasing time, as shown in Figure 16b. Another concern is the Vickers
hardness. It can be seen that a continuous decrease in the Vickers hardness occurs along with
the increased thermal exposure time in CMSX-4 alloy, indicating that all studied samples were
overaged with respect to expected mechanical property, as shown in Figure 17 [61].
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3.2. Creep Property

Since the evolution in volume fraction, size, morphology and distribution of γ′ phases
as well as the TCP formation induced by thermal exposure mainly contribute to the degra-
dation of creep resistance, another great estimation of the microstructural degradation is the
related creep property. Figure 18 shows the creep lifetime of DD6 alloy at 1070 ◦C/140 MPa
after thermal exposure at 980 ◦C or 1070 ◦C for different durations [34]. Note that no TCP
phases formed in each specimen in this research. The microstructures with the longest
thermal exposure time of 1000 h at different temperatures are shown in the corresponding
figure, indicating the obvious rafting structure at 1070 ◦C/1000 h instead of the nearly
cuboidal morphology at 980 ◦C/1000 h. In Figure 18a, obvious decreasing creep life occurs
with the extended thermal exposure time until 400 h, which is then followed by the slight
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increase in creep life with the prolonged thermal exposure time. This is mainly due to the
thermal exposure time (over 400 h) acting as the appropriate heat treatment process for
the more proper growth of the γ′ phase to obtain the over-estimated property. However,
after thermal exposure at 1070 ◦C for different durations, the related creep life exhibits a
continuous decrease due to the serious degradation of γ/γ′ phases.
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Cheng et al. [62] conducted a series of creep tests on the exposed specimens with
TCP phases of CMSX-4 alloy, as shown in Figure 19. Here, more TCP phases formed at
1050 ◦C/2000 h than that at 950 ◦C/2000 h. This indicates the decreasing creep properties
with increasing thermal exposure temperature or time. Obviously, when conducting
thermal exposure at higher temperatures, the creep life exhibits wider separation between
the thermal exposure time at 1000 h and 2000 h, which is mainly attributed to the significant
increase in the TCP formation at 1050 ◦C/2000 h.
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3.3. Influencing Factors on the Degradation of Mechanical Properties

Since the γ′ and γ phases play the leading role in the strengthening effect, which refers
to the precipitate strengthening effect and solid solution effect, the γ/γ′ degradation should
take the primary responsibility for the degradation of mechanical properties. From the
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microstructural aspect, the decreasing γ′ volume fraction and coarsening γ′ average size
contribute to the decrease in Vickers hardness and tensile property [61]. Another deleterious
factor is the increasing γ channel width during thermal exposure, which provides a decrease
in Orowan resistance and leads to the increased dislocation slipping rate in the matrix [27].

The TCP phases are brittle inclusions which are composed of various refractory el-
ements and have higher hardness than γ and γ′ phases. Hence, TCP phases are always
seen to be greatly harmful for mechanical property. This is mainly due to two aspects:
(1) TCP phases deplete the solid solution strengtheners (Re, W, Mo, Cr and Co) from the
γ matrix, leading to the impaired solid solution strengthening effect of the alloy. (2) The
loss of coherency at the TCP/γ′ phases becomes the initiating site of the micro-pores or
even cracks. However, some controversies still remain concerning the second point. In
Figure 20a, after creep within the exposed samples, the TCP phase showed good coherency
with the surrounding γ′ phase, remaining free of crack but with only slight twist. In
Figure 20b, although some micro-pores or crack initiation were found near the γ′ phase,
they still did not propagate into macro-cracks [62].
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Figure 20. Microstructures in the crept specimens of CMSX-4 alloy after thermal exposure showing
(a) rotated (white arrow) and coarsened (black arrow) µ particles free of crack and (b) crack initiation
from the needle-like µ particle but without propagation [62].

Here, when the TCP phases remain in a low volume fraction, they may have no obvious
effect on the failure in the creep tests except for depleting the solid solution elements. Sun
et al. [63] also found that the deformation pores (D-pores) with small sizes have almost
no clear relationship with the TCP phases. Even near the creep fracture, most fatal cracks
are produced by initial pores in the interdendritic regions, rather than the TCP phases, as
shown in Figure 21.
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and all of them marked by a yellow square dotted line, and (b) the crack distribution near the fracture
surface, illustrating that the TCP phase does not cause crack directly [63].
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However, Zhang et al. [64] demonstrated the microcracks generating and propagating
near the TCP phases with a direct angle of approximately 70◦ between the growth direction
of the TCP phase and the microcrack, as shown in Figure 22a. This angle refers to the
angle of the slip plane between (111) and (−1–11) as well as the angle of the slip direction
between (−1–12) and (112). It is suggested that TCP phases promote the crack initiation at
elevated creep temperature. Moreover, in the real tenon of a SX turbine blade, presented in
Figure 22b, the macrocrack was propagated with a zigzag morphology, as predicted. The
TCP phases, as the obstacles of the dislocation movements leading to the local pile-up of
dislocations, also contribute to the crack initiation and propagation near the TCP phases.
Although it is widely accepted that the effect of TCP phases on the deteriorated creep
property mainly depends on the depleted solid solution elements, the promotion of crack
initiation and propagation still cannot be excluded.
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Ni-based SX superalloys are designed to exclude the effect of a weak grain boundary,
and recent research has mainly focused on the microstructural evolution on γ/γ′ phases
and TCP formation. However, it has been increasingly acknowledged that the γ/γ′ phases
exhibit a different evolution tendency when suffering thermal exposure; thus, the mi-
crostructural evolution in the interdendrite region cannot be ignored [30,65]. Furthermore,
the inevitable carbides in the interdendrite region may change and affect the mechanical
properties. Huang et al. [32] found that the carbides can affect TCP formation where TCP
phases precipitate preferentially within the vicinity of MC carbides. An et al. [66] also found
changes in the type of the carbides during creep. The last concern is that the micro-pores
formed after heat treatment exhibit growth during the following creep tests [67]. These
factors can pose an even more serious effect on the creep property, to which significant
attention should be paid in the study of the thermal exposure or creep of the superalloys.

Additionally, the formation of a rafting structure may also play an enhanced role
in the mechanical properties. It has been recognized that the plate-like rafting structure
can provide a longer distance for dislocations to climb, so as to impede the dislocation
movements and enhanced creep property. During creep at high temperatures, the formation
of a N-type rafting structure has always appeared at the minimum creep rate after the
decreasing creep rate stage [68]. Although M.V. Nathal et al. [69] found that the pre-rafted
structure would cause damage to the creep property, U. Tetzlaff et al. [70] conversely found
that when achieving the P-type pre-rafted structure in compression, the iso-thermal fatigue
strength and tensile creep property would be further enhanced. The enhanced ability
depended on the applied stress, which determines the time available for the formation of
the rafting structure introduced by the prior compressive creep strain.

Ni-based SX superalloys are still the materials of choice for the components serving at
elevated temperatures and under load, where several modern Ni-based SX superalloys are
usually considered, such as CMSX-4, René N5, DD6, et al. These alloys always contain a
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certain content of Re to improve the mechanical properties at high temperature. Thus far,
the manufacturing technology of the SX superalloys has gradually matured and advanced,
and many researchers have worked on these types of alloys and achieved lots of data,
ensuring the safety of these alloys in real service. It can be deduced that the Ni-based
SX superalloys will still be the primary choice in aero-engine blades, although the alloying
design should be further optimized.

In summation, the γ/γ′ microstructural degradation and the formation of TCP phases
are the primary aspects in influencing the microstructural stability of the Ni-based superal-
loys. Since the γ/γ′ microstructural degradation is driven by the interfacial energy, lower
interfacial energy should be considered in optimizing the alloying design or, more directly,
the lower lattice misfit approaching to zero. Another concern is the alloying additions,
where a lower content of refractory elements induces lower driving force for the formation
of TCP phases. Additionally, a lower content of refractory elements can also promote
lower lattice misfit of the alloy. Generally, limiting the content of refractory elements is
necessary to balance the microstructural stability and the mechanical properties of Ni-based
SX superalloys.

4. Conclusions

In order to estimate the deterioration of microstructure in service, stress-free thermal
exposure tests have become the most widely used approach in Ni-based single crystal
(SX) superalloys. During high-temperature thermal exposure, γ/γ′ phases exhibit obvious
degradation, displaying, as the γ′ volume fraction decreases, increasing γ′ sizes and a
broadening γ matrix. A higher γ′ volume fraction can promote serious microstructural
evolution, such as directional rafting and topological inversion. The growth in γ′ sizes
driven by interfacial energy follows the traditional LSW theory as well as the newly
developed TIDC theory, where the coarsening process is controlled by matrix-diffusion,
at first followed by interfacial-diffusion at longer times. Due to the addition of refractory
elements, the TCP phases may precipitate basically from dendrite cores in a variety of
types, such as σ-, µ-, P- or R-phase. They usually contain a large number of γ-stabilizers
such as Re, W, Mo, Cr and Co, and they can be distinguished by different morphologies
and structures. The temperature, time, interfacial energy (and the associated lattice misfit)
and alloying elements can pose different effects on the microstructural degradation during
thermal exposure.

Microstructural degradation can lead to damage of the related mechanical properties,
including tensile property, Vickers hardness and creep property. This is mainly due to the
deteriorated precipitate strengthening and solid solution strengthening effect induced by
the decreasing γ′ volume fraction, coarsening γ′ average size as well as the broadening
γ channel. The formation of TCP phases can also result in a decrease in mechanical property
along with the depleted solid solution elements, while the promotion of crack initiation
and propagation still cannot be ignored. Further, the γ/γ′ microstructural evolution in the
interdendrite region, the evolution of carbides and the formation and growth of micropores
should also be carefully considered in the investigations of thermal exposure.

On this basis, in order to achieve better microstructural stability and the related
mechanical properties of Ni-based SX superalloys, lower interfacial energy (as well as the
lattice misfit approaching to zero) and a lower content of refractory elements should be
considered for optimizing the alloying design.
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