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Abstract: The 11 system in the iron-based superconducting family has become one of the most
extensively studied materials in the research of high-temperature superconductivity, due to their
simple structure and rich physical properties. Many exotic properties, such as multiband electronic
structure, electronic nematicity, topology and antiferromagnetic order, provide strong support for the
theory of high-temperature superconductivity, and have been at the forefront of condensed matter
physics in the past decade. One noteworthy aspect is that a high upper critical magnetic field, large
critical current density and lower toxicity give the 11 system good application prospects. However,
the research on 11 iron-based superconductors faces numerous obstacles, mainly stemming from
the challenges associated with producing high-quality single crystals. Since the discovery of FeSe
superconductivity in 2008, researchers have made significant progress in crystal growth, overcoming
the hurdles that initially impeded their studies. Consequently, they have successfully established
the complete phase diagrams of 11 iron-based superconductors, including FeSe1−xTex, FeSe1−xSx

and FeTe1−xSx. In this paper, we aim to provide a comprehensive summary of the preparation
methods employed for 11 iron-based single crystals over the past decade. Specifically, we will focus
on hydrothermal, chemical vapor transport (CVT), self-flux and annealing methods. Additionally,
we will discuss the quality, size, and superconductivity properties exhibited by single crystals
obtained through different preparation methods. By exploring these aspects, we can gain a better
understanding of the advantages and limitations associated with each technique. High-quality single
crystals serve as invaluable tools for advancing both the theoretical understanding and practical
utilization of high-temperature superconductivity.

Keywords: single crystal; hydrothermal; CVT; self-flux; annealing; 11 iron-based superconductors;
superconductivity

1. Introduction

The discovery of iron-based superconductivity represents a significant breakthrough
in the field of condensed matter physics, with a profound impact on the study of high-
temperature superconductivity [1,2]. According to the different types and ratios of elements
in the parent compositions, it can be divided into several different types, such as 111, 122
and 1111 of the iron-pnictide superconductors and 11 and 122 of the iron-chalcogenide
superconductors. These materials exhibit a wide range of fascinating physical phenomena,
including a multi-band structure, an extremely small Fermi energy, and the presence of ne-
matic and antiferromagnetic (AFM) ordered states. These unconventional superconducting
properties make them prime candidates for exploring high-temperature superconductivity
and its related properties [3–5]. Importantly, the unconventional superconductivity ob-
served in iron-based materials cannot be explained by the conventional electron–phonon
pairing mechanism. This breakthrough challenges the notion that cuprates are the sole
class of high-temperature superconductors, thereby stimulating further research into the
pairing mechanisms underlying high-temperature superconductivity [6–8].
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Compared with FeAs-based superconductors, the 11 iron-based superconductors in
iron-chalcogenide compounds have the advantages of a simple crystal structure and non-
toxicity. FeSe consists solely of edge-sharing tetrahedral FeSe4 layers stacked along the
c-axis, without a charge storage layer [9–11]. A structural transition from tetragonal to
orthorhombic occurs at about Ts ~ 90 K accompanied by the nematic phase [12–15]. Despite
having a relatively low superconducting critical temperature (Tc) of approximately 9 K,
high tunability and nematicity without magnetic order have garnered significant attention
and research interest. Under high pressure, the Tc of FeSe can be elevated to approximately
38 K, and a new magnetic order emerges within a specific pressure range once the nematic
phase is suppressed [16–19]. Chemical methods, such as intercalation [20,21], ionic liquid
gating [22–24] and potassium deposition [25,26], have been employed to raise the Tc to
over 40 K. Remarkably, monolayer FeSe films on doped SrTiO3 substrates have exhib-
ited superconductivity with the Tc surpassing 65 K [27,28]. These materials offer various
pathways to achieve a high Tc and exhibit unconventional superconducting behavior. Con-
sequently, they have become pivotal in advancing research in the field of high-temperature
superconductivity, playing a vital role similar to that of copper-based superconductors.

The substitution of isovalent sulfur (S) in FeSe, equivalent to applying positive chemi-
cal pressure, has proven to be an effective method for tuning superconductivity and nematic
order. With S doping, the nematic transition temperature Ts gradually decreases until it
vanishes at x ~ 0.17, marking a nonmagnetic nematic quantum critical point (QCP) [29–32].
Nuclear magnetic resonance (NMR) measurements indicate a strong suppression of AFM
fluctuations with S substitution, resulting in negligible AFM fluctuations near the QCP [31].
Within the nematic regions, the Tc exhibits a small superconducting dome, reaching a
maximum of 11 K at x ~ 0.11. Beyond the nematic regions, superconductivity is grad-
ually suppressed, reaching a minimum at x ~ 0.45, after which the Tc slowly increases
until x = 1 [33]. Notably, unlike when external pressure is applied, no new magnetic order
emerges after the nematic phase [33–35].

Similarly, the substitution of isovalent tellurium (Te) in FeSe, equivalent to applying
negative chemical pressure, is an effective method for tuning the superconductivity and
various ordered states. In FeSe1−xTex single crystals phase diagram, Ts linearly decreases
until it disappears at x = 0.5 with Te doping [36–38]. The Tc initially decreases to a minimum
at x ~ 0.3 and then increases to a maximum at x ~ 0.6; subsequently, the Tc is gradually
suppressed and antiferromagnetic behavior emerges when x > 0.9 [36,37,39–42]. FeTe
undergoes a tetragonal-to-monoclinic structural transition at around 70 K, exhibiting AFM
behavior without superconductivity, reminiscent of the emergence of superconductivity
from AFM in the cuprate superconductors [43–47]. The unique phase diagram of 11 iron-
based superconductors, with its interplay of competing orders, nematic phase, magnetic
order and superconductivity, provides important insights for exploring the mechanism of
high-temperature superconductivity.

Unfortunately, preparing high-quality single crystals is one of the challenges in the
study of the 11 iron-based superconducting system, particularly FeSe1−xTex and FeSe1−xSx.
This difficulty is also commonly encountered in the study of other iron-based supercon-
ducting families. On the one hand, the low chemical stability of FeSe1−xSx and the issue
of phase separation in FeSe1−xTex (0 < x < 0.5) make it arduous to obtain single crystals
or single-phase samples using traditional solid-state reactions [48–52]. On the other hand,
even though the preparation of single crystals of FeSe1−xTex (0.5 ≤ x ≤ 1) is relatively
straightforward using the self-flux method, the presence of excess Fe significantly affects the
investigation of their intrinsic properties, such as the localization of charge carriers [53–55],
spin glass phase [56] and incoherent electronic states [54,57]. It is difficult to prepare high-
quality single crystals of the 11 system using traditional solid-state reaction methods, and
new methods are gradually developed.

To synthesize high quality single crystals across the entire doping range, different
methods need to be employed. In this review, we provide an overview of the common
synthesis methods for the 11 iron-based system, focusing on the optimal method for
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different doping regions, along with a relevant phase diagram of the entire region. Initially,
we discuss the conventional methods of obtaining FeSe single crystals, namely the flux
method and chemical vapor transport (CVT). In Section 3, we describe the preparation of
FeSe1−xSx single crystals using CVT for range 0 ≤ x ≤ 0.29 and the hydrothermal method for
the entire region. In Section 4, we explain how high quality FeSe1−xTex (0 ≤ x ≤ 0.5) single
crystals can be directly synthesized via CVT. For the Te-high doping region (0.5 < x ≤ 1),
it becomes necessary to anneal the as-grown single crystals in O2 or Te vapor. Finally, we
conclude the review with a summary and outlook in Section 6.

2. Single Crystal Growth and Superconductivity of FeSe

FeSe stands out as one of the most extensively studied materials within the realm of
iron-based superconductors, owing to its array of unique properties. Notably, FeSe exhibits
a multiband electronic structure, a nematic phase, a BCS-BEC crossover, and spin-density
wave (SDW) behavior, all of which benefit from the use of high-quality single crystals. FeSe
is considered a multiband compensated semimetal with a Fermi surface consisting of dxy,
dyz, and dxz orbitals, forming well-separated electron and hole pockets [58]. Because the
extremely small Fermi energy is comparable to the superconducting energy gap, the super-
conductivity in FeSe is believed to be situated near the BCS-BEC crossover [59]. Another
advantage of FeSe is its non-magnetic properties under normal pressure, making it an ideal
platform for investigating the nematic phase and superconductivity [60]. Additionally,
SDW in high-quality FeSe single crystals under high-pressure was revealed for the first
time [17], which was not observed in previous studies using impure phase samples [16].
Numerous studies have demonstrated that probing the intrinsic properties of FeSe heavily
relies on the quality of the single crystals. Consequently, conducting a comprehensive re-
view of FeSe single crystal growth is not only valuable in summarizing existing knowledge,
but also offers significant guidance for future FeSe research endeavors.

2.1. Flux Method for Growing FeSe Single Crystals

Maw-Kuen Wu’s group reported the observation of superconductivity with zero-
resistance transition temperature at 8 K in the FeSe polycrystalline bulk for the first time [9].
The crystal of FeSe is composed of a stack of edge-sharing FeSe4-tetrahedra layer-by-layer,
as shown schematically in Figure 1. An FeSe single crystal with a size about 500 µm was
firstly synthesized using the flux method employing a NaCl/KCl mixed eutectic [61]. The
preparation process can be divided into two stages. Firstly, Fe1.2Se polycrystalline with
nominal stoichiometry was prepared through a traditional solid-state reaction using high
purity Fe and Se powders as the raw materials. Then, the obtained Fe1.2Se polycrystal
powder and NaCl/KCl mixed eutectic with mole ratio 1:1 were ground and sealed in
an evacuated quartz tube. The quartz tube was slowly heated to 850 ◦C and kept two
hours for sufficient solution of the raw materials and flux. Afterward, the temperature was
gradually reduced at a rate of 3 ◦C/h down to 600 ◦C, followed by furnace cooling. FeSe
single crystals were separated from the flux by dissolving the NaCl/KCl mixed eutectic in
deionized water.
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Figure 2 illustrates the basic physical properties of the obtained single crystals. In
Figure 2a, the optical image of FeSe reveals two different shapes present in all the grown
single crystals: rectangular and hexagonal, both with a size of approximately 500 µm. The
X-ray diffraction (XRD) pattern in Figure 2b shows two sets of peaks corresponding to two
distinct crystal structures: tetragonal (with space groups P4/nmm) and hexagonal (with
space groups P63/mmc). This indicates the presence of non-superconducting impurities in
the single crystals. The temperature dependence of resistance and magnetic susceptibility
is presented in Figure 2c,d, respectively. The large superconducting transition width
(∆Tc) and the small superconducting volume fraction observed suggest a low-quality
superconducting tetragonal phase.
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resistance for FeSe single crystal in the ab plane, the inset is a magnified plot in the low temperature
region; (d) Temperature dependence of magnetic susceptibility for FeSe single crystal at 10 Oe, the
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Subsequently, several research groups successfully synthesized FeSe single crystals
using similar methods [62–66]. While superconductivity has improved, the presence of
impurities remains a significant concern. Impurities such as hexagonal FeSe, Fe7Se8 and
Fe3O4 exist in all as-grown single crystals, posing a major obstacle in understanding the
intrinsic properties of FeSe. The strong magnetism of these impurities often results in a
prominent ferromagnetic background in the superconducting magnetization-field (M-H)
loop [63]. FeSe single crystals with no impurity have been synthesized using the LiCl/CsCl
flux method where the ferromagnetic background in M-H loop is nearly absent below the
Tc [67]. However, even with this method, the superconducting volume fraction remains
below 60%, indicating the need for further improvements.

2.2. Chemical Vapor Transport (CVT) Method for Growing FeSe Single Crystals

Despite the successful growth of large-sized FeSe single crystals using the flux method,
the quality of the crystals and the presence of impurities hindered related research. The
iodine vapor transport method did not effectively improve the crystal quality [64]. How-
ever, a breakthrough was achieved through the preparation of high-quality FeSe single
crystals using the CVT method with a KCl/AlCl3 transport agent [13,68]. A distinct kink at
approximately 90 K was observed in the temperature dependence of resistance R(T) and
was confirmed to be a structural(nematic) transition from the tetragonal to orthorhombic
phase [12,68–72]. The temperature dependence of resistance and magnetic susceptibility
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confirmed the presence of a superconducting transition around 9.4 K. The superconduct-
ing transition width of about 1.5 K and a nearly 100% superconducting volume fraction
demonstrated good superconductivity [68].

The synthesis process is as follows: High-purity Fe and Se powders were sealed
in an evacuated quartz tube along with KCl and AlCl3 powders. The quartz tube was
horizontally placed in a tube furnace with a double-temperature zone. The hot part of
the tube containing the raw materials was heated to 390 ◦C while the cold part for single
crystal growth was kept at 240 ◦C. After approximately 30 days of transport growth, a
large number of single crystals with tetragonal morphology could be observed in the
cold part. Similarly to the flux method, FeSe single crystals need to be separated from
the flux by dissolving the KCl/AlCl3 mixed eutectic in deionized water. The schematic
representation of the typical CVT growth assembly is shown in Figure 3a. The scanning
electron microscope image in Figure 3b displays the clear layered structure of a tetragonal
FeSe single crystal [68]. The temperature dependence of resistivity (ρ-T) and magnetization
(M-T), shown in Figure 3c and inset, indicate high-quality crystallization and good bulk
superconductivity [73].
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Figure 3. (a) Schematic image of the typical CVT growth assembly. (b) The scanning electron micro-
scope image of the layered structure of a tetragonal FeSe single crystal. Reprinted with permission
from Ref. [68]. Copyright 2013, copyright the Royal Society of Chemistry. (c) Temperature depen-
dence of resistivity for FeSe single crystal. The inset shows the magnetic susceptibility measured
under H = 5 Oe external magnetic field. Reprinted with permission from Ref. [73]. Copyright 2015,
copyright the American Physical Society.

Since then, the preparation of FeSe single crystals using similar methods has become
more prevalent, leading to a flourishing research landscape, due to the availability of high-
quality single crystals. However, the quality of these single crystals is highly sensitive to
the preparation conditions, primarily influenced by the complex binary Fe-Se composition–
temperature phase diagram [74].

A study conducted by A. E. Böhmer et al. explored the relationship between transition
temperatures and residual resistivity ratio (RRR) in vapor-grown FeSe [75]. Their findings
revealed that the inclusion of some excess Fe, with an Fe:Se ratio of 1.1:1 as nominal compo-
sitions, effectively suppressed the formation of the hexagonal Fe7Se8 phase. Additionally,
the temperature conditions during growth strongly influenced the single crystal quality,
with an optimal temperature gradient of 350–390 ◦C observed in their work. In addition,
the tilt angle of the quartz tube can also have some impact on the growth. Figure 4a
shows the single crystals under the optimal growth conditions and the schematic picture.
Figure 4b,c provides a summary of the correlation between RRR (ratio of resistance at 250 K
to resistance just above the Tc), Ts and Tc. Both the Ts and Tc decrease as the RRR increases.
Composition analysis using wavelength dispersive X-ray spectroscopy (WDS) indicated
no correlation between the Tc and sample composition. Extrapolating the linear relation
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between the Ts and Tc suggests that superconductivity would be completely suppressed
when the Ts reaches 64 K.

Materials 2023, 16, x FOR PEER REVIEW 6 of 20 
 

 

A study conducted by A. E. Böhmer et al. explored the relationship between transi-
tion temperatures and residual resistivity ratio (RRR) in vapor-grown FeSe [75]. Their 
findings revealed that the inclusion of some excess Fe, with an Fe:Se ratio of 1.1:1 as nom-
inal compositions, effectively suppressed the formation of the hexagonal Fe7Se8 phase. 
Additionally, the temperature conditions during growth strongly influenced the single 
crystal quality, with an optimal temperature gradient of 350–390 °C observed in their 
work. In addition, the tilt angle of the quartz tube can also have some impact on the 
growth. Figure 4a shows the single crystals under the optimal growth conditions and the 
schematic picture. Figure 4b,c provides a summary of the correlation between RRR (ratio 
of resistance at 250 K to resistance just above the Tc), Ts and Tc. Both the Ts and Tc decrease 
as the RRR increases. Composition analysis using wavelength dispersive X-ray spectros-
copy (WDS) indicated no correlation between the Tc and sample composition. Extrapolat-
ing the linear relation between the Ts and Tc suggests that superconductivity would be 
completely suppressed when the Ts reaches 64 K. 

 
Figure 4. (a) Photograph of tetragonal FeSe single crystals under optimal growth conditions and the 
schematic picture. (b) Structural transition temperature Ts and superconducting transition temper-
ature Tc as a function of residual resistivity ratio (ratio of resistance at 250 K to resistance just above 
Tc) for different samples. The inset shows the transition temperature as a function of the inverse 
residual resistivity ratio. (c) Tc as a function of Ts for various samples, Red squares show data from 
panel (b), and Orange squares represent data on samples grown as part of earlier studies in ref. [13]. 
Reprinted with permission from Ref. [75]. Copyright 2016, copyright the American Physical Society. 

3. Single Crystal Growth and Superconductivity of FeSe1−xSx  
The nematicity in FeSe1−xSx is significantly suppressed with S doping, which com-

pletely disappears at x = 0.17. As the S content increases, the nematic fluctuations are 
strongly enhanced, and the nematic susceptibility diverges as it approaches T = 0, indicat-
ing the presence of a nematic QCP at x = 0.17 [76]. Notably, no AFM fluctuations are ob-
served at the nematic QCP, suggesting a distinct separation between the nematicity and 
magnetic order. Consequently, the FeSe1−xSx system proves to be an excellent platform for 
studying the relationship between the nematicity and superconductivity. Furthermore, 
the non-Fermi liquid behavior at QCP indicates that nematic critical fluctuations have a 
significant influence on the normal-state electronic properties [32]. Magnetotransport be-
havior deviates significantly from the Fermi liquid and linear resistivity at low tempera-
tures within the nematic phase suggest the presence of scattering from low-energy spin 
fluctuations [31,77,78]. These phenomena provide compelling evidence for the intrinsic 
connection between quantum criticality, strange metal state, and unconventional super-
conductivity in the FeSe1−xSx system. 

3.1. CVT Growth of FeSe1−xSx Single Crystals with Low S Doping 
FeSe1−xSx single crystals are typically grown by CVT from FeSe up to x ~ 0.4, using 

similar preparation methods as FeSe [31,76,77,79,80]. Figure 5a displays the temperature 

Figure 4. (a) Photograph of tetragonal FeSe single crystals under optimal growth conditions and
the schematic picture. (b) Structural transition temperature Ts and superconducting transition
temperature Tc as a function of residual resistivity ratio (ratio of resistance at 250 K to resistance
just above Tc) for different samples. The inset shows the transition temperature as a function of the
inverse residual resistivity ratio. (c) Tc as a function of Ts for various samples, Red squares show data
from panel (b), and Orange squares represent data on samples grown as part of earlier studies in
Ref. [13]. Reprinted with permission from Ref. [75]. Copyright 2016, copyright the American Physical
Society.

3. Single Crystal Growth and Superconductivity of FeSe1−xSx

The nematicity in FeSe1−xSx is significantly suppressed with S doping, which com-
pletely disappears at x = 0.17. As the S content increases, the nematic fluctuations are
strongly enhanced, and the nematic susceptibility diverges as it approaches T = 0, indi-
cating the presence of a nematic QCP at x = 0.17 [76]. Notably, no AFM fluctuations are
observed at the nematic QCP, suggesting a distinct separation between the nematicity and
magnetic order. Consequently, the FeSe1−xSx system proves to be an excellent platform
for studying the relationship between the nematicity and superconductivity. Furthermore,
the non-Fermi liquid behavior at QCP indicates that nematic critical fluctuations have
a significant influence on the normal-state electronic properties [32]. Magnetotransport
behavior deviates significantly from the Fermi liquid and linear resistivity at low tem-
peratures within the nematic phase suggest the presence of scattering from low-energy
spin fluctuations [31,77,78]. These phenomena provide compelling evidence for the in-
trinsic connection between quantum criticality, strange metal state, and unconventional
superconductivity in the FeSe1−xSx system.

3.1. CVT Growth of FeSe1−xSx Single Crystals with Low S Doping

FeSe1−xSx single crystals are typically grown by CVT from FeSe up to x ~ 0.4, using
similar preparation methods as FeSe [31,76,77,79,80]. Figure 5a displays the temperature
dependence of the resistivity normalized to the value at 300 K value for x = 0 to 0.25. With S
doping, a clear kink in resistivity gradually decreases to lower temperatures and disappears
at a nonmagnetic nematic QCP, x = 0.17, as shown more clearly in Figure 5b, depicting
the temperature dependence of the first derivative dρ/dT. The discovery of QCP with
nonmagnetic nematicity in the 11 system has raised the prospect of investigating the role of
the relationship between nematicity and superconductivity [32,81].
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3.2. Hydrothermal Method for Growing FeSe1−xSx Single Crystals across the Entire Doping Range

While the CVT method allows the synthesis of FeSe1−xSx single crystals with x ≤ 0.29,
the hydrothermal method has been employed to overcome this limitation. Xiaofang Lai
et al. successfully synthesized tetragonal FeS through the hydrothermal reaction of Fe
powder with a sulfide solution and observed bulk superconductivity for the first time at
5 K [34]. Subsequently, a hydrothermal ion release/introduction technique involving the
de-intercalation of K ions from K0.8Fe1.6Se2−xSx precursors has been widely utilized for the
preparation of FeS and FeSe1−xSx single crystals [33,82–88], as schematically depicted in
Figure 6a. The process involves the growth of K0.8Fe1.6Se2−xSx precursors using the self-flux
method, followed by the addition of Fe powder, selenourea, thiourea, and K0.8Fe1.6Se2−xSx
single crystals pieces to a solution containing dissolved NaOH in deionized water within a
Teflon-linked stainless-steel autoclave (25 mL). The autoclave is then sealed and heated to
130–150 ◦C for 50–70 h resulting in the formation of FeSe1−xSx single crystals, as shown in
Figure 6b.
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synthesis of FeSe1−xSx single crystals. (b) Optical image of select FeSe1−xSx single crystals. Reprinted
with permission from Ref. [33]. Copyright 2021, copyright the American Physical Society.

Figure 7 presents a comprehensive phase diagram of FeSe1−xSx single crystals, en-
compassing the entire region obtained from the hydrothermal method [33] and a partial
region (0 ≤ x ≤ 0.29) obtained from the CVT method [31,76,77]. The values of the Ts and
Tc obtained from the hydrothermal method are slightly lower than those from the CVT
method, possibly due to disorder effects in the crystals [75]. The exponent “n” in the con-
tour plot corresponds to the power law, ρ (T) = ρ0 + ATn, where ρ0 represents the residual
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resistivity. In the nematic phase, the resistivity exhibits a non-Fermi liquid behavior charac-
terized by sublinear temperature dependence. Outside the nematic phase, the resistivity
at low temperatures follows a prefect Fermi liquid behavior, i.e., T2 dependence. In the
Fermi liquid region, the coefficient A decreases monotonically with S doping, indicating a
reduction in effective mass, since A is proportional to the carrier effective mass according
to the Landau Fermi liquid theory. Below the characteristic temperature T*, the resistivity
displays an anomalous upturn just before the superconducting transition. The origin of
this anomaly may be attributed to local magnetic impurity scattering or inelastic scattering
due to crystallographic disorder.
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copyright the American Physical Society.

4. Single Crystal Growth and Superconductivity of FeSe1−xTex

Similar to S doping, the nematicity in FeSe1−xTex is gradually suppressed with Te
doping and disappears at x = 0.5 [36,37]. The presence of nematic QCP accompanied
by the superconducting dome is supported by the behavior of the nematic susceptibility
in FeSe1−xTex single crystals [89]. The magnetic order disappears under high pressure
when x > 0.1, while the superconducting dome persists, suggesting that the enhancement
of superconductivity in FeSe1−xTex is not attributed to magnetism but rather to the ne-
matic fluctuations [37]. In the case of higher Te content, FeSe1−xTex exhibits topological
surface superconductivity and the presence of Majorana fermions, making it the first high-
temperature topological superconductor to be discovered [90,91]. In the region near FeTe,
a competition between magnetism and superconductivity is also observed [40,42]. The
magnetism in FeSe1−xTex exhibits a bi-collinear antiferromagnetism, which is distinct from
the collinear antiferromagnetism observed in iron-pnictides [43]. Additionally, FeSe1−xTex
displays an excellent high upper critical field and low anisotropy, which significantly
reduce the challenges associated with applications [92]. Researchers have successfully
overcome the effects of excess iron and, more recently, phase separation, and the intrinsic
properties of FeSe1−xTex are gradually being unveiled.

4.1. CVT Growth of FeSe1−xTex (0 ≤ x ≤ 0.5) Single Crystals

While high-quality single crystals of FeSe1−xSx have been successfully obtained,
achieving homogenous Te-doping single crystals remains challenging due to strict prepara-
tion conditions and the phase separation in the region of 0.1 ≤ x ≤ 0.4 [38,51,52]. In recent
years, significant efforts have been made in crystal growth, leading to several studies on
phase separation regions. The synthesis of FeSe1−xTex (0 ≤ x ≤ 0.41) single crystals using
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the flux method with a temperature gradient, including the phase separation regions, has
been reported for the first time [36].

Figure 8a illustrates the schematic diagram of the growth setup, where a horizontal
quartz tube is placed in a two-temperature zone tube furnace. The mixture of high-purity
Fe, Se and Te powders, pre-sintered at 450 ◦C, along with a flux mixture of AlCl3/KCl
was placed in high-temperature zone of quartz tube. After 20–30 days, flake-like single
crystals were obtained in the low-temperature zone and the residual flux was removed by
dissolving it in distilled water, as shown in Figure 8b. Then, a FeSe0.67Te0.33 single crystal
was grown using a flux method with a single-temperature zone in a box furnace [38].
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The results of these two works are summarized in a phase diagram, shown in Figure 8c.
The Tc exhibits a minimum around x ~ 0.2, which is attributed to the effect of sample
disorder, as indicated by the relatively small RRR value [36,75]. The Ts decreases linearly
with increasing Te doping and disappears at approximately x ~ 0.5. The Tc exhibits a
maximum around x ~ 0.6, and the Néel temperature (TN) starts to appear when x > 0.9,
accompanied by the suppression of superconductivity [93]. The breakthrough in the phase
separation region provides a promising approach for the preparation of high-quality single
crystals, particularly in the phase separation region, enabling the investigation of the
evolution of the intrinsic properties of FeSe1−xTex with Te doping.

Recently, significant progress has been made in the growth of high-quality FeSe1−xTex
(0 ≤ x ≤ 0.5) single crystals using the CVT method, and the temperature–composition
phase diagrams have been established, as shown in Figure 9 [37]. Similar to the flux method
with a two-temperature zone described earlier, the mixture of Fe, Se, and Te powders was
sealed in a quartz ampoule with transport agents AlCl3/KCl and the growth time was
1–2 weeks. The temperatures of the hot and cold sides were controlled at 420 and 250 ◦C
for 0 ≤ x ≤ 0.25 (620 and 450 ◦C for 0.25 ≤ x ≤ 0.55), respectively, which play a significant
role in the crystal growth process.

Despite the similar synthesis methods employed by different research groups, there
is considerable variation in the quality of the obtained single crystals, including RRR, the
superconducting transition temperature Tc and transition width ∆T. In this systematic
study, a comprehensive analysis of RRR with a large number of data points, represented
by ρ(200 K)/ρ(15 K), reveals a monotonous decrease with increasing Te concentration, as
shown in Figure 9c. This suggests an intrinsic origin of the minimum Tc observed at x = 0.3.
Additionally, when considering the temperature–pressure–composition phase diagrams of



Materials 2023, 16, 4895 10 of 20

FeSe1−xTex (0 ≤ x ≤ 0.5) single crystals, it is proposed that nematic fluctuations play a role
in enhancing the Tc above x = 0.3 and contribute to the formation of the observed Tc-dip.
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4.2. Self-Flux Plus Annealing Method for Growing FeSe1−xTex (0.5 < x ≤ 1) Single Crystals

FeSe1−xTex (0.5 < x ≤ 1) single crystals can be grown using standard melting methods,
such as the Bridgeman method [50], self-flux method (a modified Bridgeman method,
similar to each other) [94,95] and optical zone melting [96]. In the self-flux method, high-
purity Fe, Se and Te powders with nominal ratios were loaded into a quartz tube, which wa
then evacuated and sealed. To prevent cracking during the growth process, it is necessary
to seal the quartz tube into a lager quartz tube. The assembly was slowly heated to 1050 ◦C
and sustained for 24 h, followed by cooling down to 710 ◦C at a rate of 3 ◦C/h and furnace
cooling. The obtained single crystals have a mirror-like surface and can reach the centimeter
scale sizes, as shown in Figure 10a [97].
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Figure 10. (a) Photograph of the as-grown FeTe0.6Se0.4 single crystal. Reprinted with permission from
Ref. [97]. Copyright 2015, copyright the IOP Publishing, Ltd. (b) Crystal structure of FeSe1−xTex. The
green ball represents the Fe(1) in tetragonal lattice, and the orange ball represents the excess Fe(2) [98].
Reprinted with permission from Ref. [41]. Copyright 2019, copyright the IOP Publishing, Ltd.

The position of excess iron in the crystal structure is shown in Figure 10b, marked
by the orange ball. Excess Fe in the crystal structure of FeSe1−xTex significantly affects its
intrinsic properties, such as localization of the charge carriers [53–55], spin glass phase [56]
and incoherent electronic states [54,57]. Annealing processes have been developed to
effectively remove excess Fe. FeTe0.61Se0.39 single crystals were successfully annealed in
a vacuum environment for the first time at 400 ◦C for more than 10 days, resulting a
sharp superconducting transition at around 14 K [99]. Subsequently, vacuum annealing
techniques have been applied to remove excess Fe from FeSe1−xTex (0.5 < x ≤ 1) single
crystals [93,100]. It was reported that N2 annealing can also effectively remove excess
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Fe [101]. However, it was later discovered that vacuum and N2 annealing have no effect
on the excess Fe, and the observed improvement was actually due to the action of a
small amount of residual O2 present during the annealing process [102]. Apart from O2
annealing, elements such as Te, Se, S, P, As, I, and Sb have been proven to effectively remove
excess Fe through vapor annealing for FeSe1−xTex (0.5 < x ≤ 1) single crystals [103–108].
For efficiency and nontoxicity, we focus on providing a detailed introduction using O2
annealing to remove excess Fe.

Figure 11 shows the schematic picture of the annealing system used for O2 [41]. To
perform the O2 annealing, as-grown single crystals were cut and cleaved into thin slices
with dimensions of about 2.0 × 1.0 × 0.05 mm3. These slices were then weighed and
loaded into a quartz tube with an inner diameter of 10 mm. The quartz tube was carefully
evacuated using a diffusion pump, and the pressure in the tube was detected using a
diaphragm-type manometer with an accuracy greater than 1 mTorr. Once the gas was fully
removed, the quartz tube was filled with Ar/O2 (1% Ar) mixed gas and sealed to a length of
100 mm. The pressure in the system is continuously monitored during the sealing process
to prevent gas leakage and control the O2 pressure in the quartz tube. The crystals were
then annealed at 400 ◦C for various periods of time and subsequently quenched in water.
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controlled amount of O2. Reprinted with permission from Ref. [41]. Copyright 2019, copyright the
IOP Publishing, Ltd.

The doping–temperature phase diagram for the as-grown and annealed Fe1+yTe1−xSex
(0 ≤ x ≤ 0.43, y represents excess Fe) were established based on the magnetization, magnetic
susceptibility, resistivity, and Hall effects, as shown in Figure 12a,b, respectively [39]. In
the as-grown, there is a clear spin glass state originating from excess Fe in the interstitial
site before the onset of superconductivity. The superconductivity observed in the as-grown
crystals is not of bulk nature and can only be obviously detected through the temperature
dependence of resistivity. After annealing, significant changes in superconductivity and
magnetic order are observed. The AFM phase is suppressed into a very narrow regions for
x (Se) < 0.05, and the spin glass state completely disappears. This confirms the effective
removal of excess Fe through annealing. The superconducting state exhibits a clear bulk
effect and can be easily detected by magnetic measurements.

In our recent work, we have successfully prepared high-quality full-range FeSe1−xTex
single crystals, with varying Te doping levels (0 ≤ x ≤ 0.5 by CVT and 0.5 < x ≤ 1 by the
flux method plus annealing). The corresponding phase diagram is illustrated in Figure 13.
Notably, Te doping gradually suppresses the nematic phase until it completely disappears
at x = 0.5. Our results also reveal that the Tc reaches its minimum at x = 0.3, which aligns
with the findings of Mukasa et al. [37], further supporting the intrinsic nature of the Tc-
dip phenomenon observed in FeSe1−xTex. Subsequently, the Tc increases and reaches a
maximum at x = 0.6 but gradually decreases upon further Te doping, eventually leading to
a transition into a non-superconducting antiferromagnetic state.
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The high chemical stability, high Tc, and strong upper critical field exhibited by
FeSe1−xTex single crystals make them excellent candidates for investigating the pairing
mechanism underlying high-temperature superconductivity. Consequently, the compre-
hensive phase diagram we have established for FeSe1−xTex provides valuable support for
the ongoing exploration of the superconducting pairing mechanism in high-temperature
superconductors.
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4.3. Optical Zone-Melting Technique for Growing FeSe1−xTex Single Crystals

FeSe1−xTex single crystals also can be grown using the optical zone-melting tech-
nique [96,109]. This method allows for real-time observation of single crystal growth and
precise control of the growth rate by visualizing the melting zone. Figure 14 illustrates the
schematic picture of a single crystal growth and shows a large-sized single crystal obtained
using this technique. The growth process is as follows:
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Figure 14. (a) Schematic diagram of apparatus setup of the optical zone-melting method. The red
arrows represent the light path of the light source, and the black arrow represents the direction of
single crystal growth. (b) Single crystal boule of as-grown FeTe0.7Se0.3 single crystal on a 1 mm
grid. The shiny surface is the a–b plane. (c) The crystal flakes with the (001) face. Crystals from A–F
represent FeSexTe1−x single crystals of x = 0.3, 0.5, 0.6, 0.7, 0.9, and 1.0, respectively. Reprinted with
permission from Ref. [96]. Copyright 2009, copyright the American Chemical Society.

High-purity powders of Fe, Se and Te with a nominal ratio were mixed in a ball mill
for 4 h. The mixed powders were cold pressed into discs under a uniaxial pressure of
400 kg·cm−2, and then heated at 600 ◦C for 20 h under a vacuum. The reacted bulk material
was reground into a fine powder and loaded into a double quartz tube. The tube was
loaded in an optical zone-melting furnace equipped with two 1500 W halogen lamps as
infrared radiation sources, as shown in Figure 14. The tube was rotated at a rate of 20 rpm
and moved at a rate of 1–2 mm·h−1. After the growth, the as-grown crystals undergo an
annealing process: ramping to 700–800 ◦C in 7 h, holding for 48 h; cool to 420 ◦C in 4 h,
hold for 30 h; and finally shutting down the furnace and cooling to room temperature.

Despite obtaining large-sized and well-crystallized single crystals using the optical
zone-melting technique, the upwarping behavior of the R(T) curves before superconducting
transition is still apparent, indicating the presence of excess Fe in the crystals [96]. Moreover,
due to the complexity of the preparation process and the more established self-flux method,
the optical zone-melting method is not commonly used for the growth of FeSe1−xTex
single crystals.

5. Single Crystal Growth and Superconductivity of FeTe1−xSx

FeTe1−xSx system also exhibits superconductivity. Yoshikazu Mizuguchi et al. first
reported the superconductivity in the FeTe1−xSx system and found that the Tc can reach
10 K when x is 0.2 [110]. FeTe1−xSx single crystals with low S doping were grown using the
self-flux method, similar to FeSe1−xTex (0.5 < x ≤ 1) single crystals [111–115]. Annealing
treatment is also necessary to improve superconductivity for FeTe1−xSx single crystals,
although the excess Fe cannot be completely removed [116–121]. The solubility limit of
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S in FeTe is about 12% and Chiheng Dong et al. provided the phase diagram in this
region [119,122]. With S doping, AFM is suppressed and superconductivity is enhanced.

Caiye Zhao et al. successfully synthesized a series of FeS1−xTex (0 ≤ x ≤ 0.15) single
crystals by a hydrothermal method for the first time and provided a phase diagram of
FeS1−xTex single crystals, shown in Figure 15 [123]. The Tc is rapidly suppressed with the
Te doping for FeS1−xTex (0 ≤ x ≤ 0.15) single crystals and finally disappears when x > 0.1.
Due to the large solution limited region, only a small amount of doping can be applied at
both ends of the phase diagram. The complete phase diagram needs further exploration.
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6. Conclusions

In conclusion, significant progress has been made in the preparation of 11 system
single crystals, including FeSe1−xTex and FeSe1−xSx, through various methods. A compre-
hensive phase diagram has been constructed, as depicted in Figure 16, summarizing the
superconducting transition temperatures (Tc), the onset of nematic phase (Ts), and the Néel
temperature (TN) for the single crystals prepared using the optimal techniques in different
intervals.
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Figure 16. The entire phase diagram of FeSe1−xTex and FeSe1−xSx single crystals synthesized by
the optimal methods, hydrothermal for FeSe1−xSx (0.29 ≤ x ≤ 1) [33], CVT for FeSe1−xSx (0 ≤ x
≤ 0.29) [31,76,77] and FeSe1−xTex (0 ≤ x ≤ 0.55) [37] and self-flux plus annealing for FeSe1−xTex

(0.55 ≤ x ≤ 1) [39].
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High quality FeSe1−xSx (0 ≤ x ≤ 0.29) and FeSe1−xTex (0 ≤ x ≤ 0.55) single crystals are
typically grown using CVT method with AlCl3/KCl transport agent. It is fortuitous that
the range encompassing these single crystals includes the nematic phase without magnetic
order. The exceptional quality of these crystals serves as an excellent platform for investi-
gating the interplay between nematicity and superconductivity. FeSe1−xSx (0.29 ≤ x ≤ 1)
single crystals, however, can only be synthesized using hydrothermal method. Although
the quality of single crystals using hydrothermal is slightly inferior to those grown us-
ing CVT, they still hold great significance for studying the complete phase diagram of
FeSe1−xSx. By utilizing the self-flux plus annealing technique, single crystals without excess
Fe in the highly Te doping region can be obtained. In this particular region, the Tc reaches
maximum of the entire phase diagram, approximately 15 K, occurring around x (Te) ~ 0.6.
Furthermore, AFM state is observed within a narrow region around FeTe.

The connection between the ordered states and superconductivity have not been
well resolved, and the relationship between nematicity and SDW has been described
as a “chicken-egg” problem [10]. Understanding the interplay between these states is
complex and challenging. Furthermore, the behavior of superconductivity throughout
the entire phase diagram presents intricate twists and turns, adding to the puzzle. In
summary, the establishments of the comprehensive phase diagram for the 11 iron-based
system is of utmost importance for unraveling the mechanism behind high-temperature
superconductivity and for discovering novel superconducting materials.
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