Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = single cavitation bubble

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3329 KB  
Article
A Model for the Dynamics of Stable Gas Bubbles in Viscoelastic Fluids Based on Bubble Volume Variation
by Elena V. Carreras-Casanova and Christian Vanhille
Acoustics 2025, 7(4), 67; https://doi.org/10.3390/acoustics7040067 - 16 Oct 2025
Viewed by 1330
Abstract
We present a novel formulation of the Rayleigh–Plesset equation to describe stable gas bubble dynamics in viscoelastic media, using bubble volume variation, rather than radius, as the primary variable of the resulting nonlinear ordinary differential equation. This formulation incorporates the linear Kelvin–Voigt model [...] Read more.
We present a novel formulation of the Rayleigh–Plesset equation to describe stable gas bubble dynamics in viscoelastic media, using bubble volume variation, rather than radius, as the primary variable of the resulting nonlinear ordinary differential equation. This formulation incorporates the linear Kelvin–Voigt model as the constitutive relation for the surrounding fluid, capturing both viscous and elastic contributions, to track the oscillations of a gas bubble subjected to an ultrasonic field over time. The proposed model is solved numerically, subjected to a convergence analysis, and validated by comparisons with theoretical and experimental results from the literature. We systematically investigate the nonlinear oscillations of a single spherical gas bubble in various viscoelastic environments, each modeled with varying levels of rheological complexity. The influence of medium properties, specifically shear elasticity and viscosity, is examined in detail across both linear and nonlinear regimes. This work improves our understanding of stable cavitation dynamics by emphasizing key differences from Newtonian fluid behavior, resonance frequency, phase shifts, and oscillation damping. Elasticity has a pronounced effect in low-viscosity media, whereas viscosity emerges as the dominant factor modulating the amplitude of oscillations in both the linear and nonlinear regimes. The model equation developed here provides a robust tool for analyzing how viscoelastic properties affect bubble dynamics, contributing to improved the prediction and control of stable cavitation phenomena in complex media. Full article
Show Figures

Figure 1

14 pages, 1533 KB  
Article
Cascaded Cavitation Bubble Excited by a Train of Microsecond Laser Pulses
by Nadezhda A. Kudasheva, Nikita P. Kryuchkov, Arsen K. Zotov, Polina V. Aleksandrova, Oleg I. Pokhodyaev, Kseniya A. Feklisova, Yurii A. Suchkov, Anatoly L. Bondarenko, Ivan V. Simkin, Vladislav A. Samsonov, Sergey G. Ivakhnenko, Irina N. Dolganova, Stanislav O. Yurchenko, Sergey V. Garnov, Kirill I. Zaytsev, David G. Kochiev and Egor V. Yakovlev
Photonics 2025, 12(9), 927; https://doi.org/10.3390/photonics12090927 - 18 Sep 2025
Viewed by 983
Abstract
Although laser cavitation was discovered half a century ago, novel geometries and regimes to excite this effect have been vigorously explored during the past few decades. This research is driven by a variety of applications of laser cavitation in demanding branches of science [...] Read more.
Although laser cavitation was discovered half a century ago, novel geometries and regimes to excite this effect have been vigorously explored during the past few decades. This research is driven by a variety of applications of laser cavitation in demanding branches of science and technology, such as microfabrication, synthesis of nanoparticles, manipulation of cells, surgery, and lithotripsy. In this work, we combine experimental studies using high-repetition-rate imaging and numerical simulations to uncover a novel regime of the laser cavitation observed upon excitation of a liquid by a train of laser pulses with the pulse energy of 140 mJ and duration of 1.2 μs delivered through a quartz optical fiber. Once the lifetime of the initial cavitation bubble (excited by the first laser pulse) is larger than the period between pulses, which is 34.3 μs, the secondary pulses in the train pass the gas in a bubble and evaporate additional liquid. This results in the formation of a cascaded cavitation bubble of larger volume and elongated shape of 4.6 mm length compared to 3.8 mm in case of excitation by a single laser pulse. In addition, the results of acoustic measurements confirm the presence of shock waves in the applied liquid. Finally, potential applications of the uncovered laser cavitation regime are discussed. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

16 pages, 1942 KB  
Article
Ultrasonic Inactivation of Escherichia coli with Multi-Walled Carbon Nanotubes: Effects of Solution Chemistry
by Dong Chen and Elisa I. Chen
Water 2025, 17(16), 2472; https://doi.org/10.3390/w17162472 - 20 Aug 2025
Viewed by 1204
Abstract
Disinfection by ultrasound and carbon nanotubes (CNTs) provides attractive alternatives to conventional methods for water and wastewater treatment. This study explored the inactivation of Escherichia coli (E. coli) by 5 mg/L pristine short and long multi-walled CNTs (MWCNTs) and 20 kHz [...] Read more.
Disinfection by ultrasound and carbon nanotubes (CNTs) provides attractive alternatives to conventional methods for water and wastewater treatment. This study explored the inactivation of Escherichia coli (E. coli) by 5 mg/L pristine short and long multi-walled CNTs (MWCNTs) and 20 kHz ultrasound individually or in combinations in DI water, Suwannee River natural organic matter (SRNOM), and sodium dodecyl sulfate (SDS) solution, respectively. The results indicated that the dispersity of MWCNTs was the single most important factor determining the inactivation rate of E. coli. The dispersity of short MWCNTs in solutions increased in the order of DI water <10 mgC/L SRNOM < 2 mM SDS. Correspondingly, the greatest log inactivation of E. coli was achieved in SDS when short MWCNTs were used alone (0.67 ± 0.12) and combined with ultrasound (1.80 ± 0.02) for 10 min. Short MWCNTs alone had a slightly greater inactivation (0.29 ± 0.07) in SRNOM solution than in DI water (0.18 ± 0.05). However, long MWCNTs had a slightly higher inactivation in DI water (0.24 ± 0.03) than short ones (0.18 ± 0.05), because of better dispersity in DI. The observed synergistic inactivation when ultrasound and short MWCNTs were used together in 2 mM SDS shows that ultrasound energized the MWCNTs more effectively when they were well dispersed, although SDS and MWCNTs can occupy the reaction sites at the cavitational bubble–water interfacial regions and scavenge •OH radicals. The results suggest that sonophysical effects are more important to inactivate E. coli than sonochemical effects. Ultrasound inactivates E. coli and/or energizes MWCNTs through the mechanisms of acoustic streaming, microstreaming, microstreamers, transient cavitation collapse-generated shock waves and microjets (transitional forms), and localized hot temperatures. The results of this study indicate that the cytotoxicity of CNTs includes impinging bacterial cells and/or direct contact with the bacteria. Full article
Show Figures

Figure 1

15 pages, 5142 KB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 838
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

27 pages, 14383 KB  
Article
Experimental Study on Preparation of Nano ZnO by Hydrodynamic Cavitation-Enhanced Carbonization Method and Response Surface Optimization
by Jinyuan Guo, Honglei Yu, Dexi Wang, Gong Chen, Lin Fan and Hanshuo Yang
Processes 2024, 12(11), 2601; https://doi.org/10.3390/pr12112601 - 19 Nov 2024
Cited by 2 | Viewed by 1736
Abstract
The carbonization method for preparing Nano ZnO is characterized by its simplicity, ease of reaction control, high product purity, environmental friendliness, and potential for CO2 recycling. However, traditional carbonization processes suffer from poor heat and mass transfer, leading to in situ growth [...] Read more.
The carbonization method for preparing Nano ZnO is characterized by its simplicity, ease of reaction control, high product purity, environmental friendliness, and potential for CO2 recycling. However, traditional carbonization processes suffer from poor heat and mass transfer, leading to in situ growth and agglomeration, resulting in low carbonization efficiency, small specific surface area, and inferior product performance. To enhance micro-mixing and mass transfer efficiency, ZnO derived from zinc ash calcination was used as the raw material, and hydrodynamic cavitation technology was employed to intensify the carbonization reaction process. The reaction mechanism of hydrodynamic cavitation was analyzed, and a single-factor experimental study investigated the effects of reaction time, reaction temperature, solid–liquid ratio, calcination temperature, incident angle, cavitation number, and position height on the specific surface area and carbonization rate of Nano ZnO. The response surface method was utilized to explore the significance of the three most influential factors—solid–liquid ratio, cavitation number, and position height—on the carbonization rate and specific surface area. The products were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), laser particle size analysis, and specific surface area analysis. The results showed that the optimal process parameters were a reaction temperature of 80 °C, a reaction time of 120 min, a solid–liquid ratio of 5.011:100, a calcination temperature of 500 °C for 1 h, an incident angle of 60°, a cavitation number of 0.366, and a position height of 301.128 mm. The interaction between solid–liquid ratio and position height significantly influenced the process parameter variations. Under these conditions, the specific surface area and carbonization rate were 63.190 m2/g and 94.623%, respectively. The carbonized product was flaky Nano ZnO with good dispersion and small particle size. Compared to traditional mechanical stirring and bubbling methods, the specific surface area increased by 1.5 times, the carbonization rate improved by 10%, and the particle size decreased by half, significantly enhancing the product performance. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

36 pages, 37451 KB  
Review
Non-Spherical Cavitation Bubbles: A Review
by Boxin Jia and Hitoshi Soyama
Fluids 2024, 9(11), 249; https://doi.org/10.3390/fluids9110249 - 25 Oct 2024
Cited by 8 | Viewed by 4020
Abstract
Cavitation is a phase-change phenomenon from the liquid to the gas phase due to an increased flow velocity. As it causes severe erosion and noise, it is harmful to hydraulic machinery such as pumps, valves, and screw propellers. However, it can be utilized [...] Read more.
Cavitation is a phase-change phenomenon from the liquid to the gas phase due to an increased flow velocity. As it causes severe erosion and noise, it is harmful to hydraulic machinery such as pumps, valves, and screw propellers. However, it can be utilized for water treatment, in chemical reactors, and as a mechanical surface treatment, as radicals and impacts at the point of cavitation bubble collapse can be utilized. Mechanical surface treatment using cavitation impacts is called “cavitation peening”. Cavitation peening causes less pollution because it uses water to treat the mechanical surface. In addition, cavitation peening improves on traditional methods in terms of fatigue strength and the working life of parts in the automobile, aerospace, and medical fields. As cavitation bubbles are utilized in cavitation peening, the study of cavitation bubbles has significant value in improving this new technique. To achieve this, many numerical analyses combined with field experiments have been carried out to measure the stress caused by bubble collapse and rebound, especially when collapse occurs near a solid boundary. Understanding the mechanics of bubble collapse can help to avoid unnecessary surface damage, enabling more accurate surface preparation, and improving the stability of cavitation peening. The present study introduces three cavitation bubble types: single, cloud, and vortex cavitation bubbles. In addition, the critical parameters, governing equations, and high-speed camera images of these three cavitation bubble types are introduced to support a broader understanding of the collapse mechanism and characteristics of cavitation bubbles. Then, the results of the numerical and experimental analyses of non-spherical cavitation bubbles are summarized. Full article
(This article belongs to the Special Issue Cavitation and Bubble Dynamics)
Show Figures

Figure 1

20 pages, 8894 KB  
Article
Impact of Double-Suction Pump Eye Diameter Variation on Cavitation Phenomena
by Kyungseok Oh and Junho Kim
Machines 2024, 12(9), 633; https://doi.org/10.3390/machines12090633 - 10 Sep 2024
Viewed by 1808
Abstract
Cavitation phenomena in pumps are major determinants of the lifespan of both the impeller and the pump itself, causing significant vibration and noise, which are critical concerns for pump designers. This study focuses on the influence of various geometric factors of the impeller, [...] Read more.
Cavitation phenomena in pumps are major determinants of the lifespan of both the impeller and the pump itself, causing significant vibration and noise, which are critical concerns for pump designers. This study focuses on the influence of various geometric factors of the impeller, including the shape of the blade leading edge, blade inlet angle, number and thickness of blades, surface roughness, wrap angle, impeller outlet width, inlet hub diameter, and tip clearance. The pump analyzed in this study, which exhibited issues of vibration and noise in actual industrial settings, was evaluated by varying only the shroud diameter based on Gulich’s theory, while keeping other parameters constant, to assess the effects on cavitation phenomena across five different impellers. Single-phase analysis was initially conducted to evaluate the performance of each pump model, with the reliability of the numerical analysis methods validated by comparison with experimental data. Furthermore, to analyze cavitation phenomena, a multiphase flow analysis was performed using the Rayleigh–Plesset model within a computational fluid dynamics framework. Quantitative analysis of cavitation occurrence, NPSH3% head-drop performance, and bubble volume was conducted. The results confirmed that the M1 model, featuring a shroud diameter of 560 mm, exhibited superior cavitation resistance. Variations in cavitation occurrence observed under three different flow conditions demonstrated a nonlinear trend, but overall, improvements were noted within a specific diameter range. This study offers valuable insights and data for pump design applicable in real-world industrial settings. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

17 pages, 6251 KB  
Article
Effects of Materials and Riblets on Erosion Mitigation Induced by Multiple Collapses of Cavitation Bubbles
by Ebrahim Kadivar, Sasan Rezaee, Udo Löschner and Ould el Moctar
Appl. Sci. 2024, 14(15), 6452; https://doi.org/10.3390/app14156452 - 24 Jul 2024
Cited by 2 | Viewed by 1913
Abstract
The current research investigates the effects of materials and riblets on cavitation-induced erosion morphology, depth, and cross-sectional area through experimental approaches. To achieve these aims, the erosion of pure aluminum (1xxxAl or Al) and alpha brass (CuZn37 or CZ108), in the presence and [...] Read more.
The current research investigates the effects of materials and riblets on cavitation-induced erosion morphology, depth, and cross-sectional area through experimental approaches. To achieve these aims, the erosion of pure aluminum (1xxxAl or Al) and alpha brass (CuZn37 or CZ108), in the presence and absence of bio-inspired sawtooth riblets, was examined after exposure to multiple collapses of single cavitation bubbles with a wall distance of 1.8 (dimensionless). The results indicate that the erosion morphology resembles a rounded cone with a circular cross-section. Brass provides 21.6% more erosion resistance compared to that of Al in terms of material properties. Furthermore, the erosion for both Al (depth by 3.8% and width by 18.3%) and brass (depth by 7.9% and width by 27.4%) decreases in the presence of riblets compared to the results for flat surfaces. The greater erosion resistance of brass compared to Al is attributed to the superior mechanical stability of brass, making it a potentially suitable alloy for use in propellers and hulls in the shipping industry. In summary, the results reveal that riblet-equipped materials with high mechanical durability are promising erosion-resistant materials for the shipping industry. However, the potential for chemical reactions in a cathodic environment should be addressed to provide a comprehensive perspective in regards to reducing corrosion intensity. Full article
(This article belongs to the Special Issue Advances in Active and Passive Techniques for Fluid Flow Manipulation)
Show Figures

Figure 1

19 pages, 16296 KB  
Article
Numerical Investigations on the Jet Dynamics during Cavitation Bubble Collapsing between Dual Particles
by Zhifeng Wang, Zhengyang Feng, Jinsen Hu, Yuning Zhang and Yuning Zhang
Symmetry 2024, 16(5), 535; https://doi.org/10.3390/sym16050535 - 29 Apr 2024
Viewed by 1507
Abstract
The jet dynamics during cavitation bubble collapsing between unequal-sized dual particles are investigated utilizing a numerical model that combines the finite volume approach alongside the volume of fluid approach. The model incorporates the compressibility of the two-phase fluid and accounts for mass and [...] Read more.
The jet dynamics during cavitation bubble collapsing between unequal-sized dual particles are investigated utilizing a numerical model that combines the finite volume approach alongside the volume of fluid approach. The model incorporates the compressibility of the two-phase fluid and accounts for mass and heat transfer between two phases. The computational model utilizes an axisymmetric model, where the axis of symmetry is defined as the line that connects the centers of the particles and the bubble. A comprehensive analysis is presented on the influence of the particle radius and bubble–particle distance on the jet behavior. Furthermore, the variations of surface pressure on the particles induced by jet impingement are quantitatively analyzed. Four distinct jet behaviors are categorized, depending on the formation mechanism, as well as the number and the direction of the jets. For case 1, the bubble produces a single jet directed toward a small particle; for case 2, the bubble fragments produces double jets receding from each other; for case 3, the bubble produces double jets approaching each other; and for case 4, the bubble produces a single jet directed toward a large particle. The pressure perturbations induced by jet impingement upon the particles exceed those caused by shock wave impacts. The larger the bubble volume at the moment of jet formation, the longer the duration of the pressure variation caused by the jet impinging on the particles. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 4861 KB  
Article
Study on the Dynamic Characteristics of Single Cavitation Bubble Motion near the Wall Based on the Keller–Miksis Model
by Wei Han, Zhenye Gu, Rennian Li, Jiandong Mi, Lu Bai and Wanquan Deng
Processes 2024, 12(4), 826; https://doi.org/10.3390/pr12040826 - 19 Apr 2024
Cited by 4 | Viewed by 3174
Abstract
The dynamic model of cavitation bubbles serves as the foundation for the study of all cavitation phenomena. Solving the cavitation bubble dynamics equation can better elucidate the physical principles of bubble dynamics, assisting with the design of hydraulic machinery and fluid control. This [...] Read more.
The dynamic model of cavitation bubbles serves as the foundation for the study of all cavitation phenomena. Solving the cavitation bubble dynamics equation can better elucidate the physical principles of bubble dynamics, assisting with the design of hydraulic machinery and fluid control. This paper employs a fourth-order explicit Runge–Kutta numerical method to solve the translational Keller–Miksis model for cavitation bubbles. It analyzes the collapse time, velocity, as well as the motion and force characteristics of bubbles under different wall distances γ values. The results indicate that as the distance between the cavitation bubble and the wall decreases, the cavitation bubble collapse time increases, the displacement of the center of mass and the amplitude of translational velocity of the cavitation bubble increase, and the minimum radius of the cavitation bubble gradually decreases linearly. During the stage when the cavitation bubble collapses to its minimum radius, the Bjerknes force and resistance experienced by the bubble also increase as the distance to the wall decreases. Especially in the cases where γ = 1.3 and 1.5, during the rebound stage of the bubble, the Bjerknes force and resistance increase, causing the bubble to move away from the wall. Meanwhile, this study proposes a radiation pressure coefficient to characterize the radial vibration behavior of cavitation bubbles when analyzing the radiation sound pressure. It is found that the wall distance has a relatively minor effect on the radiation pressure coefficient, providing an important basis for future research on the effects of different scale bubbles and multiple bubbles. The overall idea of this paper is to numerically solve the bubble dynamics equation, explore the characteristics of bubble dynamics, and elucidate the specific manifestations of physical quantities that affect bubble motion. This provides theoretical references for further engineering applications and flow analysis. Full article
(This article belongs to the Special Issue Advances in Numerical Analysis of Heat Transfer and Fluid Flow)
Show Figures

Figure 1

16 pages, 6385 KB  
Article
Underwater Shock Wave-Enhanced Cavitation to Induce Morphological Changes and Cell Permeabilization in Microscopic Fungi
by Miguel A. Martínez-Maldonado, Blanca E. Millán-Chiu, Francisco Fernández, Daniel Larrañaga, Miguel A. Gómez-Lim and Achim M. Loske
Fluids 2024, 9(4), 81; https://doi.org/10.3390/fluids9040081 - 22 Mar 2024
Cited by 2 | Viewed by 2988
Abstract
Since the discovery of extracorporeal lithotripsy, there has been an increased interest in studying shock wave-induced cavitation, both to improve this technique and to explore novel biotechnological applications. As shock waves propagate through fluids, pre-existing microbubbles undergo expansion and collapse, emitting high-speed microjets. [...] Read more.
Since the discovery of extracorporeal lithotripsy, there has been an increased interest in studying shock wave-induced cavitation, both to improve this technique and to explore novel biotechnological applications. As shock waves propagate through fluids, pre-existing microbubbles undergo expansion and collapse, emitting high-speed microjets. These microjets play a crucial role in the pulverization of urinary stones during lithotripsy and have been utilized in the delivery of drugs and genetic materials into cells. Their intensity can be amplified using tandem shock waves, generated so that the second wave reaches the bubbles, expanded by the first wave, during their collapse. Nevertheless, there is little information regarding the control of microjet emissions. This study aimed to demonstrate that specific effects can be obtained by tuning the delay between the first and second shock waves. Suspensions containing Aspergillus niger, a microscopic fungus that produces metabolites with high commercial value, were exposed to single-pulse and tandem shock waves. Morphological changes were analyzed by scanning and transmission electron microscopy. Proteins released into the medium after shock wave exposure were also studied. Our findings suggest that, with enhanced control over cavitation, the detachment of proteins using conventional methods could be significantly optimized in future studies. Full article
(This article belongs to the Special Issue Cavitation and Bubble Dynamics)
Show Figures

Figure 1

13 pages, 10832 KB  
Article
Study on Non-Spherical Deformation Velocity of a Single Cavitation Bubble
by Qingmiao Ding, Xiaoman Li, Yanyu Cui, Junda Lv, Yunlong Shan and Yongqiang Liu
Processes 2024, 12(3), 553; https://doi.org/10.3390/pr12030553 - 12 Mar 2024
Cited by 4 | Viewed by 1714
Abstract
Cavitation bubbles commonly exist in shipbuilding engineering, ocean engineering, mechanical engineering, chemical industry, and aerospace. Asymmetric deformation of the bubble occurs near the boundary and then has strong destructiveness, such as high amplitude loading. Therefore, the research on non-spherical deformation is of great [...] Read more.
Cavitation bubbles commonly exist in shipbuilding engineering, ocean engineering, mechanical engineering, chemical industry, and aerospace. Asymmetric deformation of the bubble occurs near the boundary and then has strong destructiveness, such as high amplitude loading. Therefore, the research on non-spherical deformation is of great significance, and the objective of this paper is to investigate the non-spherical collapse dynamics of laser-induced cavitation bubbles when near different boundaries. In this study, experimental data, such as the bubble pulsation process and bubble surface velocity distribution, were obtained by high-speed camera techniques and full-field velocity calculations. Near the different boundaries, the results show that the bubbles appeared to have different collapse shapes, such as near-hemispherical, near-ellipsoidal, near-cone, and near-pea shapes, and the surface velocity distribution is extremely non-uniform. When the bubble near the free surface or rigid boundary collapses, the smaller the stand-off r is, the more obvious the repulsive effect of the free surface or the attractive effect of the rigid boundary is. As the stand-off r decreases, the larger the Bjerknes force and the bubble surface velocity difference and the more pronounced the non-spherical shape becomes. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 8968 KB  
Article
Unveiling Fundamentals of Multi-Beam Pulsed Laser Ablation in Liquids toward Scaling up Nanoparticle Production
by Oleksandr Gatsa, Shabbir Tahir, Miroslava Flimelová, Farbod Riahi, Carlos Doñate-Buendia, Bilal Gökce and Alexander V. Bulgakov
Nanomaterials 2024, 14(4), 365; https://doi.org/10.3390/nano14040365 - 16 Feb 2024
Cited by 12 | Viewed by 4317
Abstract
Pulsed laser ablation in liquids (PLAL) is a versatile technique to produce high-purity colloidal nanoparticles. Despite considerable recent progress in increasing the productivity of the technique, there is still significant demand for a practical, cost-effective method for upscaling PLAL synthesis. Here we employ [...] Read more.
Pulsed laser ablation in liquids (PLAL) is a versatile technique to produce high-purity colloidal nanoparticles. Despite considerable recent progress in increasing the productivity of the technique, there is still significant demand for a practical, cost-effective method for upscaling PLAL synthesis. Here we employ and unveil the fundamentals of multi-beam (MB) PLAL. The MB-PLAL upscaling approach can bypass the cavitation bubble, the main limiting factor of PLAL efficiency, by splitting the laser beam into several beams using static diffractive optical elements (DOEs). A multimetallic high-entropy alloy CrFeCoNiMn was used as a model material and the productivity of its nanoparticles in the MB-PLAL setup was investigated and compared with that in the standard single-beam PLAL. We demonstrate that the proposed multi-beam method helps to bypass the cavitation bubble both temporally (lower pulse repetition rates can be used while keeping the optimum processing fluence) and spatially (lower beam scanning speeds are needed) and thus dramatically increases the nanoparticle yield. Time-resolved imaging of the cavitation bubble was performed to correlate the observed production efficiencies with the bubble bypassing. The results suggest that nanoparticle PLAL productivity at the level of g/h can be achieved by the proposed multi-beam strategy using compact kW-class lasers and simple inexpensive scanning systems. Full article
(This article belongs to the Special Issue Laser-Assisted Synthesis and Processing of Nanomaterials)
Show Figures

Figure 1

18 pages, 3915 KB  
Article
Charged Cavitation Multibubbles Dynamics Model: Growth Process
by Ahmed K. Abu-Nab, Amerah M. Hakami and Ali F. Abu-Bakr
Mathematics 2024, 12(4), 569; https://doi.org/10.3390/math12040569 - 14 Feb 2024
Cited by 12 | Viewed by 1941
Abstract
The nonlinear dynamics of charged cavitation bubbles are investigated theoretically and analytically in this study through the Rayleigh–Plesset model in dielectric liquids. The physical and mathematical situations consist of two models: the first one is noninteracting charged cavitation bubbles (like single cavitation bubble) [...] Read more.
The nonlinear dynamics of charged cavitation bubbles are investigated theoretically and analytically in this study through the Rayleigh–Plesset model in dielectric liquids. The physical and mathematical situations consist of two models: the first one is noninteracting charged cavitation bubbles (like single cavitation bubble) and the second one is interacting charged cavitation bubbles. The proposed models are formulated and solved analytically based on the Plesset–Zwick technique. The study examines the behaviour of charged cavitation bubble growth processes under the influence of the polytropic exponent, the number of bubbles N, and the distance between the bubbles. From our analysis, it is observed that the radius of charged cavitation bubbles increases with increases in the distance between the bubbles, dimensionless phase transition criteria, and thermal diffusivity, and is inversely proportional to the polytropic exponent and the number of bubbles N. Additionally, it is evident that the growth process of charged cavitation bubbles is enhanced significantly when the number of bubbles is reduced. The electric charges and polytropic exponent weakens the growth process of charged bubbles in dielectric liquids. The obtained results are compared with experimental and theoretical previous works to validate the given solutions of the presented models of noninteraction and interparticle interaction of charged cavitation bubbles. Full article
Show Figures

Figure 1

17 pages, 5221 KB  
Article
Numerical Simulation of Cavitation Bubble Collapse inside an Inclined V-Shape Corner by Thermal Lattice Boltzmann Method
by Yu Li, Jingyi Ouyang, Yong Peng and Yang Liu
Water 2024, 16(1), 161; https://doi.org/10.3390/w16010161 - 31 Dec 2023
Cited by 3 | Viewed by 3342
Abstract
Cavitation happening inside an inclined V-shaped corner is a common and important phenomenon in practical engineering. In the present study, the lattice Boltzmann models coupling velocity and temperature fields are adopted to investigate this complex collapse process. Based on a series of simulations, [...] Read more.
Cavitation happening inside an inclined V-shaped corner is a common and important phenomenon in practical engineering. In the present study, the lattice Boltzmann models coupling velocity and temperature fields are adopted to investigate this complex collapse process. Based on a series of simulations, the fields of density, pressure, velocity and temperature are obtained simultaneously. Overall, the simulation results agree with the experiments, and they prove that the coupled lattice Boltzmann models are effective to study cavitation bubble collapse. It was found that the maximum temperature of bubble collapse increases approximately linearly with the rise of the distance between the single bubble center and the corner. Meanwhile, the velocity of the micro-jet increases and the pressure peak at the corner decreases correspondingly. Moreover, the effect of angle of the V-shaped wall on the collapse process of bubbles is similar to the effect of distance between the single bubble center and the corner. Moreover, with the increase in bubble radius, the maximum temperature of bubble collapse increases proportionally, the starting and ending of the micro-jet are delayed and the pressure peak at the corner becomes larger and also is delayed. In the double bubble collapse, the effect of distance between two bubble centers on the collapse process of bubbles is discussed in detail. Based on the present study, appropriate measures can be proposed to prevent or utilize cavitation in practical engineering. Full article
Show Figures

Figure 1

Back to TopTop