Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (205)

Search Parameters:
Keywords = simulated inflammatory conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5447 KB  
Article
PF4 Autoantibody Complexes Cause Activation of Integrins αIIbβ3 and αvβ3 and Possible Subsequent Thrombosis and Autoimmune Diseases
by Yoko K. Takada, Chun-Yi Wu and Yoshikazu Takada
Int. J. Mol. Sci. 2025, 26(21), 10260; https://doi.org/10.3390/ijms262110260 - 22 Oct 2025
Viewed by 120
Abstract
Previous studies suggest that multiple inflammatory chemokines (e.g., CCL5, CXCL12) bind to the allosteric site of integrins (site 2) and induce allosteric integrin activation and inflammatory signals. PF4 is abundantly present in platelet granules, but PF4 levels are very low in plasma. PF4 [...] Read more.
Previous studies suggest that multiple inflammatory chemokines (e.g., CCL5, CXCL12) bind to the allosteric site of integrins (site 2) and induce allosteric integrin activation and inflammatory signals. PF4 is abundantly present in platelet granules, but PF4 levels are very low in plasma. PF4 is released from damaged platelets and is markedly increased in plasma (>1000×) in pathological conditions. PF4 (tetramer) is an inhibitory chemokine, and the specifics of PF4 signaling are unclear. Docking simulation predicted that PF4 monomer binds to site 2, but PF4 by itself did not induce allosteric integrin activation. Anti-PF4 mAbs KKO and RTO generate complexes with PF4 tetramer and monomer, respectively. We discovered that the PF4/RTO complex induced potent integrin activation, but the PF4/KKO complex did not. We hypothesize that inactive PF4 tetramer is converted by RTO to active monomer. A PF4 mutant (4E), in which four basic amino acid residues in the predicted site 2 binding site were mutated to Glu, did not induce integrin activation and acted as a dominant-negative antagonist, suggesting that the RTO/PF4 complex is required to bind to site 2 for integrin activation. Notably, RTO-like autoantibody was detected in plasma of healthy people. We propose that autoanti-PF4 in healthy controls may not be a problem since plasma PF4 levels are very low. When plasma PF4 tetramer is increased, active PF4 monomer is generated by autoanti-PF4 and plays a role in disease pathogenesis. Notably, anti-inflammatory cytokine neuregulin-1 and anti-inflammatory ivermectin bind to site 2 and suppress integrin activation induced by RTO/PF4 complex, suggesting that neuregulin-1 and ivermectin are potentially useful to suppress PF4/anti-PF4-mediated inflammatory signals. Full article
(This article belongs to the Special Issue Role of Integrins in Cytokine Signaling)
Show Figures

Figure 1

12 pages, 2612 KB  
Article
A Novel Liposomal Palmitoylethanolamide (PEA) with Enhanced Gastrointestinal Permeating Properties
by Giada Ceccarelli, Chiara Pennetta, Francesco Montalbano, Mariano Licciardi, Valentina Melfi and Rossana G. Iannitti
Nutraceuticals 2025, 5(4), 34; https://doi.org/10.3390/nutraceuticals5040034 - 20 Oct 2025
Viewed by 286
Abstract
Palmitoylethanolamide (PEA) is a naturally occurring fatty acid amide and an endocannabinoid-related lipid that has been extensively studied for its analgesic, immunomodulatory, antimicrobial, and anti-inflammatory properties. It has demonstrated efficacy in various applications and is currently utilized as a nutraceutical for its antinociceptive, [...] Read more.
Palmitoylethanolamide (PEA) is a naturally occurring fatty acid amide and an endocannabinoid-related lipid that has been extensively studied for its analgesic, immunomodulatory, antimicrobial, and anti-inflammatory properties. It has demonstrated efficacy in various applications and is currently utilized as a nutraceutical for its antinociceptive, neuroprotective, and immunomodulatory effects, particularly in supporting brain and joint health and in mitigating inflammatory processes. Background/Objectives: Despite its significant therapeutic potential, the clinical effectiveness of PEA is limited by its poor water solubility and, consequently, low oral bioavailability. Additionally, degradation in the acidic gastrointestinal environment further compromises its absorption. To address these challenges, several technological strategies have been explored to improve its pharmacokinetic profile, including conventional micronization and ultra-micronization techniques. The objective of this study was to characterize a novel liposomal formulation based on PEA and evaluate its intestinal permeation and absorption. Methods: Comparative permeation studies of PEA were conducted using ex vivo models to evaluate its absorption characteristics across gastrointestinal mucosae. The experiments were performed in a Franz diffusion cell system using a porcine colon mucosa in two physiologically relevant media: Simulated Gastric Fluid (SGF) and Fasted State Simulated Intestinal Fluid (FaSSIF). Results: Liposomal PEA showed a more efficient and continuous release over time, reaching higher concentrations of PEA permeated through the membrane. Conclusions: Our findings demonstrate a significant improvement in PEA’s permeability and absorption in an ex vivo simulated gastrointestinal environment. Liposomal PEA appears to be more affine to biological membranes. These results suggest that liposomal PEA may represent a promising therapeutic strategy for managing chronic pain and inflammatory conditions such as chronic pelvic pain. Full article
(This article belongs to the Special Issue New Insights into Nano Nutraceuticals)
Show Figures

Figure 1

20 pages, 3567 KB  
Article
Molecular Modelling of the Adsorption and Delivery of α-Pinene and Similar Terpenes of Essential Oils on Montmorillonite Surfaces
by Shamsa Kanwal, Alfonso Hernández-Laguna and C. Ignacio Sainz-Díaz
Nanomaterials 2025, 15(20), 1573; https://doi.org/10.3390/nano15201573 - 16 Oct 2025
Viewed by 236
Abstract
Alkylic molecules are found as some of the main components of natural essential oils. These essential oils offer several therapeutic properties in skin treatments and cosmetics. Systems providing controlled release of these molecules through the skin tissue are a challenge for their applications. [...] Read more.
Alkylic molecules are found as some of the main components of natural essential oils. These essential oils offer several therapeutic properties in skin treatments and cosmetics. Systems providing controlled release of these molecules through the skin tissue are a challenge for their applications. This work explores some properties of the crystal structure of α-pinene and the adsorption and desorption of five terpenoid components of essential oils, such as α-pinene, limonene, β-ocimene, β-caryophyllene, and β-elemene, in the confined surfaces provided by natural clay minerals, particularly montmorillonite (MNT). These terpenoids have a methyl-ethenyl group as their common structural feature. Molecular modelling calculations have been applied at the atomic scale, including force fields, quantum mechanical methods, and molecular dynamics simulations. We calculated the crystallographic and spectroscopic properties of the α-pinene crystal via density functional theory (DFT)-level calculations, which were very close to the known experimental data. Moreover, this work explored the adsorption and desorption of these molecules in confined surfaces provided by MNT. Molecular dynamics simulations also showed the adsorption of these organics in the confined interlayer space of MNT at room temperature and allowed us to know the diffusion coefficient of these adsorbates in this material. The direct adsorption process of these molecules in the vapour phase is not energetically favourable, suggesting the use of non-aqueous solvents and kinetics and thermodynamic conditions for this process. However, the release of these molecules into aqueous media are energetically favourable, predicting that MNT–essential oil can be an excellent pharmaceutical formulation to be delivered in skin as a bioactive preparation with anti-inflammatory or cosmetic power. This research was performed to predict possible therapeutic applications for future experimental works. Full article
(This article belongs to the Special Issue Advanced Nanomedicine for Drug Delivery)
Show Figures

Figure 1

21 pages, 4743 KB  
Article
Transcriptomic Investigation of FoxM1-Mediated Neuroprotection by hAEC-Derived Exosomes in an In Vitro Ischemic Stroke Model
by Dong Wang, Jiaxin Liu, Liang Wu, Xiubao Yang, Zhihao Fang, Zhong Sun and Dong Chen
Biology 2025, 14(10), 1368; https://doi.org/10.3390/biology14101368 - 7 Oct 2025
Viewed by 441
Abstract
Human amniotic epithelial cell-derived exosomes (hAECs-Exos) are nanoscale extracellular vesicles with neuroprotective, regenerative, and anti-inflammatory properties, presenting a promising cell-free therapeutic approach for ischemic stroke. This study investigated the protective effects of hAECs-Exos against ischemic injury and explored the underlying molecular mechanisms. An [...] Read more.
Human amniotic epithelial cell-derived exosomes (hAECs-Exos) are nanoscale extracellular vesicles with neuroprotective, regenerative, and anti-inflammatory properties, presenting a promising cell-free therapeutic approach for ischemic stroke. This study investigated the protective effects of hAECs-Exos against ischemic injury and explored the underlying molecular mechanisms. An optimized oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in murine hippocampal HT22 neurons and BV2 microglial cells to simulate ischemic conditions. hAECs-Exos were successfully isolated and characterized via transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Confocal microscopy confirmed efficient exosome uptake by both cell types. Functional analyses revealed that hAECs-Exos significantly improved cell viability, suppressed pro-inflammatory cytokine release, alleviated oxidative stress, and modulated apoptosis-related proteins. RNA sequencing identified Forkhead box protein M1 (FoxM1) as a significantly upregulated transcription factor following hAECs-Exos treatment. Further experiments demonstrated that knockdown of FoxM1 in hAECs abolished the beneficial effects of exosomes on the viability of HT22 and BV2 cells and on the suppression of inflammation, oxidative stress, and apoptosis. These findings indicate that hAECs-Exos confer neuroprotection through FoxM1-dependent mechanisms. Together, our results highlight the therapeutic potential of hAECs-Exos as a safe, effective, and clinically translatable strategy for ischemic stroke treatment, warranting future validation in vivo and rescue experiments to fully elucidate FoxM1’s causal role. Full article
(This article belongs to the Special Issue Young Researchers in Neuroscience)
Show Figures

Figure 1

18 pages, 1132 KB  
Article
Characterization of Lactiplantibacillus paraplantarum HK-1 and GABA Synthesis Under Simulated Gastrointestinal Conditions
by Susana Castro-Seriche, Joaquin Alvarez-Norambuena, Paulina Lincoñir-Campos, Cristian Gutiérrez-Zamorano, Alvaro Ruiz-Garrido, Bruno Jerez-Angulo, Apolinaria García-Cancino and Alonso Jerez-Morales
Foods 2025, 14(19), 3345; https://doi.org/10.3390/foods14193345 - 26 Sep 2025
Viewed by 432
Abstract
Gamma-aminobutyric acid (GABA) is a bioactive amino acid with anti-inflammatory and neurotransmitter properties, yet limited information exists regarding its production by Lactiplantibacillus paraplantarum. We evaluated factors that influence GABA synthesis by L. paraplantarum HK-1 and assessed its production in vitro and under [...] Read more.
Gamma-aminobutyric acid (GABA) is a bioactive amino acid with anti-inflammatory and neurotransmitter properties, yet limited information exists regarding its production by Lactiplantibacillus paraplantarum. We evaluated factors that influence GABA synthesis by L. paraplantarum HK-1 and assessed its production in vitro and under simulated gastrointestinal conditions. GABA production was analyzed using HPLC with pre-column derivatization, gene expression was assessed through RT-qPCR, and probiotic characteristics were evaluated using standard microbiological methods. L. paraplantarum HK-1 demonstrated dose-dependent GABA production with monosodium glutamate (MSG) supplementation, achieving maximum levels at 500 mM MSG (161.1 µg/mL), which was significantly higher than those in other treatments (p < 0.01). A strong positive correlation was observed between MSG concentration and GABA production (r = 0.908, p = 0.002). Gene expression analysis revealed a 61.6-fold higher gadB expression at 500 mM MSG compared to 250 mM, though statistical significance with GABA production was not achieved (r = 0.741, p = 0.259). The strain exhibited appropriate probiotic characteristics including γ-hemolytic activity, bile salt tolerance, and acid resistance. Under simulated gastrointestinal conditions, maximum GABA production occurred in the distal colon (148.3 ± 19.0 µg/mL with probiotic vs. 7.2 ± 6.2 µg/mL control), with overall production significantly higher in probiotic-treated groups (p < 0.001). Overall, L. paraplantarum HK-1 produced GABA throughout gastrointestinal phases and showed traits consistent with probiotic use. These results position HK-1 as a promising GABA-producing candidate for functional food applications, pending in vivo validation. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 8305 KB  
Article
Machine Learning Identifies Shared Regulatory Mechanisms of Genes Associated with Ferroptosis in Major Depressive Disorder and Inflammatory Bowel Disease
by Jiyuan Shi, Luojin Wu, Lingxi Li, Ye Liu, Yuxuan Lu, Mengmeng Sang and Liming Mao
Genes 2025, 16(9), 1111; https://doi.org/10.3390/genes16091111 - 19 Sep 2025
Viewed by 561
Abstract
Background: Major depressive disorder (MDD) and inflammatory bowel disease (IBD) form a “bidirectional vicious cycle” through the gut–brain axis: psychological and emotional abnormalities can induce intestinal inflammation, while intestinal inflammation can in turn exacerbate mental health disorders. Ferroptosis is an iron-dependent form of [...] Read more.
Background: Major depressive disorder (MDD) and inflammatory bowel disease (IBD) form a “bidirectional vicious cycle” through the gut–brain axis: psychological and emotional abnormalities can induce intestinal inflammation, while intestinal inflammation can in turn exacerbate mental health disorders. Ferroptosis is an iron-dependent form of regulated cell death that is driven by lipid peroxidation. Although this process has been molecularly defined in recent years, its role in the context of IBD and MDD remains insufficiently investigated. This study investigates the molecular roles of ferroptosis-related genes (FRGs) in both conditions and explores potential therapeutic strategies targeting these genes. Methods: We first identified differentially expressed FRGs (DE-FRGs) by comparing normal and disease samples. Subsequently, we screened for DE-FRGs in both IBD and MDD and named them Co-DEGs. Correlation analyses of these co-FRGs were performed, including comparisons between disease and control groups, as well as associations between Co-DEGs and immune cell infiltrations. Four distinct machine learning algorithms were employed to identify the core Co-DEGs associated with both IBD and MDD. Moreover, analyses of drug sensitivity, molecular docking, and molecular dynamics simulations were carried out to predict potential therapeutic agents for both conditions. Finally, single-cell sequencing analysis was also performed. Results: We identified 29 Co-DEGs in both IBD and MDD. Machine learning analysis identified RPL8 as a key common biomarker exhibiting a consistent expression trend in both diseases. A predictive approach integrating molecular docking and molecular dynamics simulations indicated that LE135, a compound targeting RPL8, is the most promising therapeutic candidate. Conclusions: These discoveries enhance the understanding of the shared and distinct regulatory mechanisms of FRGs in gut–brain axis disorders. We have pinpointed key biomarkers and predicted potential therapeutic agents that may offer dual-targeting strategies for both IBD and MDD. Full article
(This article belongs to the Special Issue Machine Learning in Cancer and Disease Genomics)
Show Figures

Figure 1

14 pages, 2877 KB  
Article
Ivermectin Binds to the Allosteric Site (Site 2) and Inhibits Allosteric Integrin Activation by TNF and Other Pro-Inflammatory Cytokines
by Yoko K. Takada and Yoshikazu Takada
Int. J. Mol. Sci. 2025, 26(17), 8655; https://doi.org/10.3390/ijms26178655 - 5 Sep 2025
Viewed by 1072
Abstract
Ivermectin (IVM), a broad-spectrum anthelmintic agent, has anti-inflammatory properties, and affects cellular and humoral immune responses. We recently showed that multiple pro-inflammatory cytokines (e.g., FGF2, CCL5, CD40L) bind to the allosteric site (site 2) of integrins and activate them. 25-Hydroxycholesterol, a pro-inflammatory lipid [...] Read more.
Ivermectin (IVM), a broad-spectrum anthelmintic agent, has anti-inflammatory properties, and affects cellular and humoral immune responses. We recently showed that multiple pro-inflammatory cytokines (e.g., FGF2, CCL5, CD40L) bind to the allosteric site (site 2) of integrins and activate them. 25-Hydroxycholesterol, a pro-inflammatory lipid mediator, is known to bind to site 2 and induce integrin activation and inflammatory signals (e.g., IL-6 and TNF secretion), suggesting that site 2 is critically involved in inflammation. We showed that two anti-inflammatory cytokines (FGF1 and NRG1) bind to site 2 and inhibit integrin activation by inflammatory cytokines. We hypothesized that ivermectin binds to site 2 and inhibits inflammatory signaling by pro-inflammatory cytokines. A docking simulation predicts that ivermectin binds to site 2. Ivermectin inhibits the integrin activation induced by inflammatory cytokines, suggesting that ivermectin is a site 2 antagonist. We showed that TNF, a major pro-inflammatory cytokine, binds to integrin site 2 and induces allosteric integrin activation like other pro-inflammatory cytokines, suggesting that site 2 binding and integrin activation is a potential mechanism of the pro-inflammatory action of these cytokines. Ivermectin suppressed the activation of soluble β3 integrins by TNF and other pro-inflammatory cytokines in a dose-dependent manner in cell-free conditions. Binding to site 2 and the inhibition of binding of inflammatory cytokines may be a potential mechanism of anti-inflammatory action of ivermectin. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

27 pages, 3086 KB  
Article
Trimetazidine–Profen Hybrid Molecules: Synthesis, Chemical Characterization, and Biological Evaluation of Their Racemates
by Diyana Dimitrova, Stanimir Manolov, Iliyan Ivanov, Dimitar Bojilov, Nikol Dimova, Gabriel Marc, Smaranda Oniga and Ovidiu Oniga
Pharmaceuticals 2025, 18(9), 1251; https://doi.org/10.3390/ph18091251 - 23 Aug 2025
Viewed by 832
Abstract
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel [...] Read more.
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel trimetazidine–profen hybrid compounds were synthesized using N,N′-dicyclohexylcarbodiimide-mediated coupling and structurally characterized by NMR and high-resolution mass spectrometry. Their antioxidant activity was evaluated by hydroxyl radical scavenging assays (HRSA), and the anti-inflammatory potential was assessed via the inhibition of albumin denaturation (IAD). Lipophilicity was determined chromatographically. Molecular docking and 100 ns molecular dynamics simulations were performed to investigate the binding modes and stability in human serum albumin (HSA) binding sites. The acute toxicity of the hybrid molecules was predicted in silico using GUSAR software. Results: All synthesized hybrids demonstrated varying degrees of biological activity, with compound 3c exhibiting the most potent antioxidant (HRSA IC₅₀ = 71.13 µg/mL) and anti-inflammatory (IAD IC₅₀ = 108.58 µg/mL) effects. Lipophilicity assays indicated moderate membrane permeability, with compounds 3c and 3d showing favorable profiles. Docking studies revealed stronger binding affinities of S-enantiomers, particularly 3c and 3d, to Sudlow sites II and III in HSA. Molecular dynamics simulations confirmed stable ligand–protein complexes, highlighting compound 3c as maintaining consistent and robust interactions. The toxicity results indicate that most hybrids, particularly compounds 3b3d, exhibit a favorable safety profile compared to the parent trimetazidine. Conclusion: The hybrid trimetazidine–profen compounds synthesized herein, especially compound 3c, demonstrate promising dual antioxidant and anti-inflammatory therapeutic potential. Their stable interaction with serum albumin and balanced physicochemical properties support further development as novel agents for managing ischemic heart disease and associated inflammatory conditions. Full article
(This article belongs to the Special Issue Advances in the Medicinal Synthesis of Bioactive Compounds)
Show Figures

Graphical abstract

25 pages, 2042 KB  
Article
CFTR Modulators Counteract F508del CFTR Functional Defects in a Pancreatic Epithelial Model of Cystic Fibrosis
by Alessandra Ludovico and Debora Baroni
Life 2025, 15(8), 1315; https://doi.org/10.3390/life15081315 - 19 Aug 2025
Viewed by 982
Abstract
Cystic fibrosis is a multisystem disorder caused by mutations in the CFTR gene that lead to impaired ion and fluid transport across secretory epithelia. Although the therapeutic impact of CFTR modulators has been extensively studied in airway epithelia, their efficacy in extra-pulmonary tissues, [...] Read more.
Cystic fibrosis is a multisystem disorder caused by mutations in the CFTR gene that lead to impaired ion and fluid transport across secretory epithelia. Although the therapeutic impact of CFTR modulators has been extensively studied in airway epithelia, their efficacy in extra-pulmonary tissues, such as the pancreas, has been less explored. This study evaluated the effects of the CFTR modulators, VX770 (ivacaftor), VX661 (tezacaftor), and VX445 (elexacaftor), administered either individually or in combination, on CFPAC-1 cells, a pancreatic ductal epithelial cell line derived from a cystic fibrosis patient harboring the F508del CFTR mutation. The cells were cultured and differentiated onto porous supports, and a panel of functional parameters was assessed. These included transepithelial electrical conductance, fluid reabsorption, apical surface fluid pH, protein concentration, and microviscosity, the latter analyzed with multiple particle tracking. To simulate a pro-inflammatory micro-environment, the cells were preconditioned with lipopolysaccharide (LPS). Treatment with VX661 and VX445 resulted in significant improvement in epithelial function, with the triple combination producing the most pronounced rescue. Pro-inflammatory stimulation by LPS increased the production of cytokine IL6, IL-8, and IL-1β, as well as the protein content of the apical surface fluid. Despite the LPS pro-inflammatory stimulus, CFTR modulators preserved or slightly enhanced their efficacy in restoring CFTR-mediated ion and fluid transport. However, they did not reduce cytokine expression under pro-inflammatory conditions. Collectively, these findings show that CFTR modulators can restore critical aspects of cystic fibrosis pancreatic epithelial physiology in vitro, even under pro-inflammatory stress, supporting their potential relevance beyond the airway disease. Full article
(This article belongs to the Special Issue Cystic Fibrosis: A Disease with a New Face)
Show Figures

Figure 1

27 pages, 2435 KB  
Article
Functional Compound Bioaccessibility and Microbial Viability in Green and Black Tea Kombucha During Simulated Digestion
by Gloria Ghion, Jacopo Sica, Sofia Massaro, Armin Tarrah, Tove Gulbrandsen Devold, Davide Porcellato, Alessio Giacomini, Frederico Augusto Ribeiro de Barros, Viviana Corich and Chiara Nadai
Foods 2025, 14(16), 2770; https://doi.org/10.3390/foods14162770 - 9 Aug 2025
Viewed by 1214
Abstract
Kombucha, a fermented tea beverage, is gaining popularity due to its rich content of bioactive compounds and associated health benefits. Kombucha fermentation involves a complex microbial consortium, including acetic acid bacteria, lactic acid bacteria, and yeasts, that works synergistically to enhance its nutritional [...] Read more.
Kombucha, a fermented tea beverage, is gaining popularity due to its rich content of bioactive compounds and associated health benefits. Kombucha fermentation involves a complex microbial consortium, including acetic acid bacteria, lactic acid bacteria, and yeasts, that works synergistically to enhance its nutritional and functional properties. Key compounds produced during fermentation provide antioxidant, anti-inflammatory, and antimicrobial benefits. Despite its well-documented health-promoting properties, limited research exists on how human digestion influences the stability and functionality of kombucha bioactive components. This study investigated how digestion impacts kombucha made from green and black teas, focusing on free amino acid content, antioxidant activity, antimicrobial potential, and microbiota viability. Results showed that digestion significantly increased free amino acids, as fermentation released peptides suitable for gastrointestinal digestion. However, L-theanine, a beneficial tea compound, was no longer detectable after fermentation and digestion, suggesting limited bioaccessibility. Digested kombucha exhibited higher antioxidant activity and stronger antimicrobial effects compared to undigested tea. Moreover, culture-dependent and PMA-based sequencing confirmed the survival of viable microbial strains through simulated gastrointestinal conditions, suggesting the potential of kombucha as a source of live, functional microbes. These findings support the role of kombucha as a natural functional beverage whose health benefits not only persist but may be enhanced after digestion. Full article
(This article belongs to the Special Issue Advances on Functional Foods with Antioxidant Bioactivity)
Show Figures

Figure 1

30 pages, 13403 KB  
Article
Baicalein-Loaded Chitosan Films for Local Treatment of Oral Infections
by Magdalena Paczkowska-Walendowska, Anna Rył, Jakub Kwiatek, Natalia Rosiak, Kamil Szarzyński, Weronika Wawrzyniak, Julia Ziółkowska, Weronika Kuderska, Kaja Kręcka, Anna Marciniak, Tomasz M. Karpiński, Tomasz Plech, Andrzej Miklaszewski, Piotr Owczarz and Judyta Cielecka-Piontek
Polymers 2025, 17(16), 2167; https://doi.org/10.3390/polym17162167 - 8 Aug 2025
Viewed by 994
Abstract
Oral infections and tissue defects remain significant clinical challenges, often requiring localized, sustained, and multifunctional therapeutic solutions. In this study, baicalein-loaded chitosan films were developed and comprehensively characterized as novel biomaterials for oral and maxillofacial applications. Using a 32 factorial design, nine [...] Read more.
Oral infections and tissue defects remain significant clinical challenges, often requiring localized, sustained, and multifunctional therapeutic solutions. In this study, baicalein-loaded chitosan films were developed and comprehensively characterized as novel biomaterials for oral and maxillofacial applications. Using a 32 factorial design, nine film formulations were prepared via solvent casting, varying chitosan molecular weight and composition. Physicochemical and structural analyses (microscopy, SEM, FTIR, and XRPD) confirmed uniform drug distribution and matrix compatibility. Mechanical testing and dissolution studies demonstrated zero-order baicalein release kinetics, with controlled, sustained delivery influenced by chitosan content and molecular weight. The optimal formulation (F5: CS MMW 2%, Gel 2%) combined favorable mechanical integrity, drug release, and potent antioxidant and anti-inflammatory activities. Further evaluation on 3D anatomical models simulating bone and soft tissue defects highlighted excellent membrane adaptability, stability, and ease of handling under conditions mimicking clinical surgery. The films acted as effective barriers in guided tissue regeneration and donor site protection, with improved surgical visibility due to their baicalein-induced coloration. Biocompatibility assays confirmed the safety of the materials, while antibacterial testing demonstrated activity against Streptococcus mutans. These results support the potential of baicalein-loaded chitosan films as multifunctional membranes for regenerative dentistry, periodontal therapy, and peri-implant care. The modular formulation design provides a platform for future integration of additional bioactive agents, paving the way for personalized, advanced wound healing solutions. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

12 pages, 924 KB  
Article
Houttuynia cordata Exhibits Anti-Inflammatory Activity Against Interleukin-1β-Induced Inflammation in Human Gingival Epithelial Cells: An In Vitro Study
by Ryo Kunimatsu, Sawako Ikeoka, Yuma Koizumi, Ayaka Odo, Izumi Tanabe, Yoshihito Kawashima, Akinori Kiso, Yoko Hashii, Yuji Tsuka and Kotaro Tanimoto
Dent. J. 2025, 13(8), 360; https://doi.org/10.3390/dj13080360 - 7 Aug 2025
Viewed by 1057
Abstract
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function [...] Read more.
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function has been proposed as a therapeutic strategy to prevent the progression of periodontal disease. Houttuynia cordata, a perennial herb traditionally used in Asian medicine, is recognized for its anti-inflammatory properties, with documented benefits in the cardiovascular, respiratory, and gastrointestinal systems. However, its potential therapeutic role in oral pathologies, such as periodontitis, remains underexplored. This study aimed to investigate the anti-inflammatory effects of H. cordata extract on interleukin (IL)-1β-stimulated primary gingival keratinocytes (PGKs) subjected to IL-1β-induced inflammatory stress, simulating the conditions encountered during orthodontic treatment. Methods: Inflammation was induced in PGKs using IL-1β, and the impact of H. cordata extract pretreatment was assessed using quantitative real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunoblotting. Results: H. cordata extract significantly downregulated the mRNA and protein expression levels of tumor necrosis factor-alpha, IL-8, and intercellular adhesion molecule-1 in IL-1β-stimulated PGKs without inducing cytotoxicity. Conclusions: These findings suggest that H. cordata holds promise as a preventive agent against periodontitis by attenuating inflammatory responses in gingival epithelial tissues. We believe that our findings will inform the development of prophylactic interventions to reduce periodontitis risk in patients undergoing orthodontic therapy. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Graphical abstract

12 pages, 1394 KB  
Article
Integrating Cartilage Explant Culture with Simulated Digestion and Hepatic Biotransformation Refines In Vitro Screening of Joint Care Nutraceuticals
by Michelina Crosbie, Kailey Vanderboom, Jamie Souccar-Young and Wendy Pearson
Methods Protoc. 2025, 8(4), 91; https://doi.org/10.3390/mps8040091 - 6 Aug 2025
Viewed by 575
Abstract
In vitro cartilage explant culture has been used to assess nutraceuticals on cartilage responses to inflammatory stimuli. However, applying extracts of nutraceuticals directly to cartilage explants does not account for effects of digestion and hepatic biotransformation, or selective exclusion of product metabolites from [...] Read more.
In vitro cartilage explant culture has been used to assess nutraceuticals on cartilage responses to inflammatory stimuli. However, applying extracts of nutraceuticals directly to cartilage explants does not account for effects of digestion and hepatic biotransformation, or selective exclusion of product metabolites from joint fluid by the synovial membrane. The current study produced a simulated biological extract of a common nutraceutical (glucosamine; Gsim) by exposing it to a simulated upper gastrointestinal tract digestion, hepatic biotransformation by liver microsomes, and purification to a molecular weight cut-off of 50 kDa. This extract was then used to condition cartilage explants cultured for 120 h in the presence or absence of an inflammatory stimulus (lipopolysaccharide). Media samples were analyzed for prostaglandin E2 (PGE2), glycosaminoglycan (GAG), and nitric oxide (NO). Tissue was digested and analyzed for GAG content and stained for viability. Conditioning of explants with Gsim significantly reduced media GAG in stimulated and unstimulated explants and reduced nitric oxide production in unstimulated explants. These data provide evidence for the value of glucosamine in protecting cartilage from deterioration following an inflammatory challenge, and the model improves applicability of these in vitro data to the in vivo setting. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

22 pages, 8824 KB  
Article
Pro-Inflammatory Microglia Exacerbate High-Altitude-Induced Cognitive Impairment by Driving Lipid Droplet Accumulation in Astrocytes
by Xiaoyang Fan, Sitong Cao, Yujie Fang, Li Zhu and Xueting Wang
Antioxidants 2025, 14(8), 918; https://doi.org/10.3390/antiox14080918 - 26 Jul 2025
Viewed by 1637
Abstract
High-altitude cognitive impairment (HACI) results from acute or chronic exposure to hypoxic conditions. Brain lipid homeostasis is crucial for cognitive function, and lipid droplet (LD) accumulation in glia cells is linked to cognitive decline in aging and stroke. However, whether high-altitude exposure affects [...] Read more.
High-altitude cognitive impairment (HACI) results from acute or chronic exposure to hypoxic conditions. Brain lipid homeostasis is crucial for cognitive function, and lipid droplet (LD) accumulation in glia cells is linked to cognitive decline in aging and stroke. However, whether high-altitude exposure affects brain lipid homeostasis is unclear. Microglia, key regulators of brain homeostasis and inflammation, play a significant role in pathological cognitive impairment and are implicated in LD formation. This study investigates whether lipid dysregulation contributes to HACI and explores microglia-driven mechanisms and potential interventions. Mice were exposed to a simulated 7000 m altitude for 48 h, followed by a week of recovery. Cognitive function and LD accumulation in brain cells were assessed. Microglia were depleted using PLX5622, and mice were exposed to hypoxia or lipopolysaccharide (LPS) to validate microglia’s role in driving astrocytic LD accumulation and cognitive decline. Minocycline was used to inhibit inflammation. In vitro, co-culture systems of microglia and astrocytes were employed to confirm microglia-derived pro-inflammatory factors’ role in astrocytic LD accumulation. Hypobaric hypoxia exposure induced persistent cognitive impairment and LD accumulation in hippocampal astrocytes and microglia. Microglia depletion alleviated cognitive deficits and reduced astrocytic LD accumulation. Hypoxia or LPS did not directly cause LD accumulation in astrocytes but activated microglia to release IL-1β, inducing astrocytic LD accumulation. Microglia depletion also mitigated LPS-induced cognitive impairment and astrocytic LD accumulation. Minocycline reduced hypoxia-induced LD accumulation in co-cultured astrocytes and improved cognitive function. Hypoxia triggers pro-inflammatory microglial activation, leading to LD accumulation and the release of IL-1β, which drives astrocytic LD accumulation and neuroinflammation, exacerbating HACI. Minocycline effectively restores brain lipid homeostasis and mitigates cognitive impairment. This study provides novel insights into HACI mechanisms and suggests potential therapeutic strategies. Full article
Show Figures

Graphical abstract

16 pages, 2230 KB  
Article
Three-Dimensional-Printed Biomimetic Scaffolds for Investigating Osteoblast-Like Cell Interactions in Simulated Microgravity: An In Vitro Platform for Bone Tissue Engineering Research
by Eleonora Zenobi, Giulia Gramigna, Elisa Scatena, Luca Panizza, Carlotta Achille, Raffaella Pecci, Annalisa Convertino, Costantino Del Gaudio, Antonella Lisi and Mario Ledda
J. Funct. Biomater. 2025, 16(8), 271; https://doi.org/10.3390/jfb16080271 - 24 Jul 2025
Viewed by 1186
Abstract
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to [...] Read more.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research. Polylactic acid scaffolds with physiological (P) and osteoporotic-like (O) trabecular architectures were 3D-printed by means of fused deposition modeling technology. Morphometric characterization was performed using micro-computed tomography. Human osteoblast-like SAOS-2 and U2OS cells were cultured on the scaffolds under static and dynamic simulated microgravity conditions using a rotary cell culture system (RCCS). Scaffold biocompatibility, cell viability, adhesion, and metabolic activity were evaluated through Bromodeoxyuridine incorporation assays, a water-soluble tetrazolium salt assay, and an enzyme-linked immunosorbent assay of tumor necrosis factor-α secretion. Both scaffold models supported osteoblast-like cell adhesion and growth, with an approximately threefold increase in colonization observed on the high-porosity O scaffolds under dynamic conditions. The dynamic environment facilitated increased surface interaction, amplifying the effects of scaffold architecture on cell behavior. Overall, sustained cell growth and metabolic activity, together with the absence of detectable inflammatory responses, confirmed the biocompatibility of the system. Scaffold microstructure and dynamic culture conditions significantly influence osteoblast-like cell behavior. The combination of 3D-printed scaffolds and a RCCS bioreactor provides a promising platform for studying bone remodeling in osteoporosis and microgravity-induced bone loss. These findings may contribute to the development of advanced in vitro models for biomedical research and potential countermeasures for bone degeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

Back to TopTop