Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = silicon carbide covering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6292 KiB  
Review
Review of Bioinspired Composites for Thermal Energy Storage: Preparation, Microstructures and Properties
by Min Yu, Mengyuan Wang, Changhao Xu, Wei Zhong, Haoqi Wu, Peng Lei, Zeya Huang, Renli Fu, Francesco Gucci and Dou Zhang
J. Compos. Sci. 2025, 9(1), 41; https://doi.org/10.3390/jcs9010041 - 15 Jan 2025
Cited by 1 | Viewed by 1491
Abstract
Bioinspired composites for thermal energy storage have gained much attention all over the world. Bioinspired structures have several advantages as the skeleton for preparing thermal energy storage materials, including preventing leakage and improving thermal conductivity. Phase change materials (PCMs) play an important role [...] Read more.
Bioinspired composites for thermal energy storage have gained much attention all over the world. Bioinspired structures have several advantages as the skeleton for preparing thermal energy storage materials, including preventing leakage and improving thermal conductivity. Phase change materials (PCMs) play an important role in the development of energy storage materials because of their stable chemical/thermal properties and high latent heat storage capacity. However, their applications have been compromised, owing to low thermal conductivity and leakage. The plant-derived scaffolds (i.e., wood-derived SiC/Carbon) in the composites can not only provide higher thermal conductivity but also prevent leakage. In this paper, we review recent progress in the preparation, microstructures, properties and applications of bioinspired composites for thermal energy storage. Two methods are generally used for producing bioinspired composites, including the direct introduction of biomass-derived templates and the imitation of biological structures templates. Some of the key technologies for introducing PCMs into templates involves melting, vacuum impregnation, physical mixing, etc. Continuous and orderly channels inside the skeleton can improve the overall thermal conductivity, and the thermal conductivity of composites with biomass-derived, porous, silicon carbide skeleton can reach as high as 116 W/m*K. In addition, the tightly aligned microporous structure can cover the PCM well, resulting in good leakage resistance after up to 2500 hot and cold cycles. Currently, bioinspired composites for thermal energy storage hold the greatest promise for large-scale applications in the fields of building energy conservation and solar energy conversion/storage. This review provides guidance on the preparation methods, performance improvements and applications for the future research strategies of bioinspired composites for thermal energy storage. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

18 pages, 40755 KiB  
Article
Effects of Temperature and Water Vapor Content on Microstructure, Mechanical Properties and Corrosion Behavior of C/C-SiC Composites
by Yanbin Wei, Zhiyong Ye, Yalei Wang, Xiang Xiong, Zaidong Liu, Jinming Wang and Tongqi Li
Materials 2024, 17(24), 6259; https://doi.org/10.3390/ma17246259 - 21 Dec 2024
Cited by 2 | Viewed by 850
Abstract
Carbon-fiber-reinforced carbon and silicon carbide (C/C-SiC) composites were prepared using chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI). The microstructure and flexural properties of C/C-SiC composites after oxidation in different temperature water vapor environments were studied. The results indicate that the [...] Read more.
Carbon-fiber-reinforced carbon and silicon carbide (C/C-SiC) composites were prepared using chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI). The microstructure and flexural properties of C/C-SiC composites after oxidation in different temperature water vapor environments were studied. The results indicate that the difficulty of oxidation in water vapor can be ranked from easy to difficult in the following order: carbon fiber (CF), pyrolytic carbon (PyC), and ceramic phase. The surface CFs become cone-shaped under corrosion. PyC has a slower oxidation rate and lower degree of oxidation compared to CF. The SiO2 layer formed by the oxidation of SiC and residual Si was insufficient to fully cover the surface of CFs and PyC. As the temperature increased, the oxide film thickened, but the corrosion degree of CF and PyC intensified, and the flexural performance continuously deteriorated. The flexural strength of C/C-SiC composites was 271.86 MPa at room temperature. Their strength retention rates were all higher than 92.19% after water vapor corrosion at 1000 °C, still maintaining the “pseudoplastic” fracture characteristics. After water vapor corrosion at 1200 °C, the CFs inside the composites sustained more severe damage, with a strength retention rate as low as 48.75%. The fracture mode was also more inclined towards brittle fracture. Full article
(This article belongs to the Special Issue Damage, Fracture and Fatigue of Ceramic Matrix Composites (CMCs))
Show Figures

Graphical abstract

22 pages, 4208 KiB  
Article
Numerical Modeling on Ballistic Impact Analysis of the Segmented Sandwich Composite Armor System
by Shah Alam and Papa Aboagye
Appl. Mech. 2024, 5(2), 340-361; https://doi.org/10.3390/applmech5020020 - 20 May 2024
Cited by 3 | Viewed by 2770
Abstract
This research delves into the design, modeling, and finite element impact analysis of the segmented sandwich composite armor system subjected to impact loading, considering different parameters such as materials to be used, armor height, and armor design configuration. Initial studies were performed to [...] Read more.
This research delves into the design, modeling, and finite element impact analysis of the segmented sandwich composite armor system subjected to impact loading, considering different parameters such as materials to be used, armor height, and armor design configuration. Initial studies were performed to select the ideal model that will provide the best impact resistance at the least weight and with minimal fabrication requirements. Material type, thickness, and overall model configuration were defined during the initial model development period. Once the final design was defined, finite element analysis was performed using 2017 ABAQUS software to observe the performance of the model and to validate the efficiency of the chosen armor. Based on the results from the material selection and thickness validation, the optimal design with the best impact resistance was noted as 1.2 mm thick rectangular segmented silicon carbide tiles, serving as the top layer that covers the three-level gradient core composed of a titanium metal honeycomb frame filled with silicon carbide inserts, and finally a 2 mm thick glass epoxy composite layer made from four laminas in a 0/45/90/-45-degree configuration serving as the last layer of the armor. Full article
Show Figures

Figure 1

11 pages, 3201 KiB  
Article
Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method
by Yu Zhang, Xin Wen, Nuofu Chen, Fang Zhang, Jikun Chen and Wenrui Hu
Crystals 2024, 14(2), 118; https://doi.org/10.3390/cryst14020118 - 25 Jan 2024
Cited by 4 | Viewed by 2947
Abstract
Silicon carbide (SiC) polycrystalline powder. As the raw material for SiC single-crystal growth through the physical vapor transport (PVT) method, its surface size and shape have a great influence on growth of crystal. The surface size and shape of the evaporation area filled [...] Read more.
Silicon carbide (SiC) polycrystalline powder. As the raw material for SiC single-crystal growth through the physical vapor transport (PVT) method, its surface size and shape have a great influence on growth of crystal. The surface size and shape of the evaporation area filled with polycrystalline powder were investigated by numerical simulation in this study. Firstly, the temperature distribution and deposition rate distribution for the PVT system were calculated by global numerical simulation, and the optimal ratio of polycrystalline powder surface diameter to seed crystal diameter was determined to be 1.6. Secondly, the surface of the evaporation area filled with polycrystalline powder was covered by a graphite ring and a graphite disc, respectively, to change its surface shape. The results show that adjusting the surface size and shape of the evaporation area filled with polycrystalline powder is an effective method to control the growth rate, growth stability, and growth surface shape of the single crystal. Finally, the result obtained by selecting appropriate covered structures for actual growth indicates that this process can act as a reference for improving the quality of single crystals. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor: GaN and SiC Material and Device)
Show Figures

Figure 1

11 pages, 2913 KiB  
Article
Growth Mechanism of Semipolar AlN Layers by HVPE on Hybrid SiC/Si(110) Substrates
by Alexander A. Koryakin, Sergey A. Kukushkin, Andrey V. Osipov, Shukrillo Sh. Sharofidinov and Mikhail P. Shcheglov
Materials 2022, 15(18), 6202; https://doi.org/10.3390/ma15186202 - 6 Sep 2022
Cited by 6 | Viewed by 2056
Abstract
In this work, the growth mechanism of aluminum nitride (AlN) epitaxial films by hydride vapor phase epitaxy (HVPE) on silicon carbide (SiC) epitaxial layers grown on silicon (110) substrates is investigated. The peculiarity of this study is that the SiC layers used for [...] Read more.
In this work, the growth mechanism of aluminum nitride (AlN) epitaxial films by hydride vapor phase epitaxy (HVPE) on silicon carbide (SiC) epitaxial layers grown on silicon (110) substrates is investigated. The peculiarity of this study is that the SiC layers used for the growth of AlN films are synthesized by the method of coordinated substitution of atoms. In this growth method, a part of the silicon atoms in the silicon substrate is replaced with carbon atoms. As a result of atom substitution, the initially smooth Si(110) surface transforms into a SiC surface covered with octahedron-shaped structures having the SiC(111) and SiC(111¯) facets. The SiC(111)/(111¯) facets forming the angle of 35.3° with the original Si(110) surface act as “substrates” for further growth of semipolar AlN. The structure and morphology of AlN films are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), reflection high-energy electron diffraction (RHEED) and Raman spectroscopy. It is found that the AlN layers are formed by merged hexagonal microcrystals growing in two directions, and the following relation is approximately satisfied for both crystal orientations: AlN(101¯3)||Si(110). The full-width at half-maximum (FWHM) of the X-ray rocking curve for the AlN(101¯3) diffraction peak averaged over the sample area is about 20 arcmin. A theoretical model explaining the presence of two orientations of AlN films on hybrid SiC/Si(110) substrates is proposed, and a method for controlling their orientation is presented. Full article
(This article belongs to the Special Issue Silicon Carbide: From Fundamentals to Applications (Volume II))
Show Figures

Graphical abstract

13 pages, 29791 KiB  
Article
Design and Research of Wireless Passive High-Temperature Sensor Based on SIW Resonance
by Fujia Xu, Shujing Su, Lili Zhang and Ting Ren
Micromachines 2022, 13(7), 1035; https://doi.org/10.3390/mi13071035 - 29 Jun 2022
Cited by 9 | Viewed by 2072
Abstract
The temperature of advanced components in aviation and aerospace fields is difficult to obtain timely. In this study, we aimed to investigate microwave backscattering technology combined with the theory of substrate integrated waveguide and resonant cavity to design a wireless passive temperature sensor [...] Read more.
The temperature of advanced components in aviation and aerospace fields is difficult to obtain timely. In this study, we aimed to investigate microwave backscattering technology combined with the theory of substrate integrated waveguide and resonant cavity to design a wireless passive temperature sensor and explore its potential in this field. We employed silicon carbide and aluminum ceramic as the substrate to make sensors. The interrogation antenna was designed to test the sensor, which could completely cover the working frequency of the sensor and had good radiation characteristics. Based on the test results, the silicon carbide sensor was capable of bearing a temperature limit of about 1000 °C compared to the alumina sensor. From 25 °C to 500 °C, its sensitivity was 73.68 kHz/°C. Furthermore, the sensitivity was 440 kHz/°C in the range of 501 °C to 1000 °C. Moreover, we observed the surface of this sensor by using the scanning electron microscope, and the results showed that the damage to the sensor surface film structure caused by long-term high temperature is the major reason for the failure of the sensor. In conclusion, the performance of the silicon carbide sensor is superior to the alumina sensor. Full article
Show Figures

Figure 1

13 pages, 5674 KiB  
Article
Modulation of Casimir Force between Graphene-Covered Hyperbolic Materials
by Ge Song, Zhixiang Liu, Lingchun Jia, Cong Li and Yingli Chang
Nanomaterials 2022, 12(13), 2168; https://doi.org/10.3390/nano12132168 - 23 Jun 2022
Cited by 6 | Viewed by 2409
Abstract
A flexible method for modulating the Casimir force is proposed by combining graphene and hyperbolic materials (HMs). The proposed structure employs two candidates other than graphene. One is hexagonal boron nitride (hBN), a natural HM. The other is porous silicon carbide (SiC), which [...] Read more.
A flexible method for modulating the Casimir force is proposed by combining graphene and hyperbolic materials (HMs). The proposed structure employs two candidates other than graphene. One is hexagonal boron nitride (hBN), a natural HM. The other is porous silicon carbide (SiC), which can be treated as an artificial HM by the effective medium theory. The Casimir force between graphene-covered hBN (porous SiC) bulks is presented at zero temperature. The results show that covering HM with graphene increases the Casimir force monotonically. Furthermore, the force can be modulated by varying the Fermi level, especially at large separation distances. The reflection coefficients are thoroughly investigated, and the enhancement is attributed to the interaction of surface plasmons (SPs) supported by graphene and hyperbolic phonon polaritons (HPhPs) supported by HMs. Moreover, the Casimir force can be controlled by the filling factor of porous SiC. The Casimir force can thus be modulated flexibly by designing desired artificial HMs and tuning the Fermi level. The proposed models have promising applications in practical detection and technological fields. Full article
Show Figures

Figure 1

27 pages, 5033 KiB  
Review
Review of Silicon Carbide Processing for Power MOSFET
by Catherine Langpoklakpam, An-Chen Liu, Kuo-Hsiung Chu, Lung-Hsing Hsu, Wen-Chung Lee, Shih-Chen Chen, Chia-Wei Sun, Min-Hsiung Shih, Kung-Yen Lee and Hao-Chung Kuo
Crystals 2022, 12(2), 245; https://doi.org/10.3390/cryst12020245 - 11 Feb 2022
Cited by 125 | Viewed by 36138
Abstract
Owing to the superior properties of silicon carbide (SiC), such as higher breakdown voltage, higher thermal conductivity, higher operating frequency, higher operating temperature, and higher saturation drift velocity, SiC has attracted much attention from researchers and the industry for decades. With the advances [...] Read more.
Owing to the superior properties of silicon carbide (SiC), such as higher breakdown voltage, higher thermal conductivity, higher operating frequency, higher operating temperature, and higher saturation drift velocity, SiC has attracted much attention from researchers and the industry for decades. With the advances in material science and processing technology, many power applications such as new smart energy vehicles, power converters, inverters, and power supplies are being realized using SiC power devices. In particular, SiC MOSFETs are generally chosen to be used as a power device due to their ability to achieve lower on-resistance, reduced switching losses, and high switching speeds than the silicon counterpart and have been commercialized extensively in recent years. A general review of the critical processing steps for manufacturing SiC MOSFETs, types of SiC MOSFETs, and power applications based on SiC power devices are covered in this paper. Additionally, the reliability issues of SiC power MOSFET are also briefly summarized. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor: GaN and SiC Material and Device)
Show Figures

Figure 1

8 pages, 2528 KiB  
Communication
Numerical Study of Graphene/Au/SiC Waveguide-Based Surface Plasmon Resonance Sensor
by Wei Du, Lucas Miller and Feng Zhao
Biosensors 2021, 11(11), 455; https://doi.org/10.3390/bios11110455 - 15 Nov 2021
Cited by 12 | Viewed by 3130
Abstract
A new waveguide-based surface plasmon resonance (SPR) sensor was proposed and investigated by numerical simulation. The sensor consists of a graphene cover layer, a gold (Au) thin film, and a silicon carbide (SiC) waveguide layer on a silicon dioxide/silicon (SiO2/Si) substrate. [...] Read more.
A new waveguide-based surface plasmon resonance (SPR) sensor was proposed and investigated by numerical simulation. The sensor consists of a graphene cover layer, a gold (Au) thin film, and a silicon carbide (SiC) waveguide layer on a silicon dioxide/silicon (SiO2/Si) substrate. The large bandgap energy of SiC allows the sensor to operate in the visible and near-infrared wavelength ranges, which effectively reduces the light absorption in water to improve the sensitivity. The sensor was characterized by comparing the shift of the resonance wavelength peak with change of the refractive index (RI), which mimics the change of analyte concentration in the sensing medium. The study showed that in the RI range of 1.33~1.36, the sensitivity was improved when the graphene layers were increased. With 10 graphene layers, a sensitivity of 2810 nm/RIU (refractive index unit) was achieved, corresponding to a 39.1% improvement in sensitivity compared to the Au/SiC sensor without graphene. These results demonstrate that the graphene/Au/SiC waveguide SPR sensor has a promising use in portable biosensors for chemical and biological sensing applications, such as detection of water contaminations (RI = 1.33~1.34), hepatitis B virus (HBV), and glucose (RI = 1.34~1.35), and plasma and white blood cells (RI = 1.35~1.36) for human health and disease diagnosis. Full article
Show Figures

Figure 1

21 pages, 7290 KiB  
Review
Thermonuclear Fusion Reactor Plasma-Facing Materials under Conditions of Ion Irradiation and Plasma Flux
by Boris I. Khripunov, Vasily S. Koidan and Evgeny V. Semenov
Symmetry 2021, 13(11), 2081; https://doi.org/10.3390/sym13112081 - 3 Nov 2021
Cited by 3 | Viewed by 2736
Abstract
A review of experimental studies carried out at the NRC “Kurchatov Institute” on plasma-facing thermonuclear fusion reactor materials is presented in the paper. An experimental method was developed to produce high-level radiation damage in materials simulating the neutron effect by surrogate irradiation with [...] Read more.
A review of experimental studies carried out at the NRC “Kurchatov Institute” on plasma-facing thermonuclear fusion reactor materials is presented in the paper. An experimental method was developed to produce high-level radiation damage in materials simulating the neutron effect by surrogate irradiation with high-energy ions. Plasma-surface interaction is investigated on materials irradiated to high levels of radiation damage in high-flux deuterium plasma. The total fluence of accelerated ions (3–30 MeV, 4He2+, 12C3+, 14N3+, protons) on the samples was 1021–1023 m−2. Experiments were carried out on graphite materials, tungsten, and silicon carbide. Samples have been obtained with a primary defect concentration from 0.1 to 100 displacements per atom, which covers the predicted damage for the ITER and DEMO projects. Erosion dynamics of the irradiated materials in steady-state deuterium plasma, changes of the surface microstructure, and deuterium retention were studied using SEM, TEM, ERDA, TDS, and nuclear backscattering techniques. The surface layer of the materials (3 to hundreds µm) was investigated, and it was shown that the changes in the crystal structure, the loss of their symmetry, and diffusion of defects to grain boundaries play an important role. The most significant results are presented in the paper as an overview of our previous work for many years (carbon and tungsten materials) as well as the relatively recent results (silicon carbide). Full article
(This article belongs to the Special Issue Symmetry in Physics of Plasma Technologies)
Show Figures

Figure 1

17 pages, 4910 KiB  
Article
Effect of Cover Plate on the Ballistic Performance of Ceramic Armor
by Miao Sun, Wuxiong Cao, Diqi Hu, Nana Zhang and Runqiang Chi
Materials 2021, 14(1), 1; https://doi.org/10.3390/ma14010001 - 22 Dec 2020
Cited by 22 | Viewed by 3706
Abstract
The interface defeat and dwell can effectively improve the ballistic performance of ceramic armors under high velocity impact of long rod projectiles. Confinement conditions along both axial and radial directions of ceramic armors can affect these behaviors. With the aim of giving an [...] Read more.
The interface defeat and dwell can effectively improve the ballistic performance of ceramic armors under high velocity impact of long rod projectiles. Confinement conditions along both axial and radial directions of ceramic armors can affect these behaviors. With the aim of giving an insight into the effect of cover plate thickness and connection mode of cover plates with confining tubes on these behaviors, numerical simulations were performed in which the confined silicon carbide (SiC) targets with cover plates were impacted by tungsten rods. The pressure on the surfaces of SiC targets with fixed cover plates are compared to that with free cover plates, showing that the plates fixed with the confining tubes can produce higher pressure by way of wedging. With the increase in cover plate thickness, the dwell duration of the tungsten rods on the ceramic interface gradually grows. In addition, the upper and lower limits of transition impact velocities for the SiC targets with cover plates in different connection modes (i.e., free or fixed) were obtained and analyzed. The results show that the increase rate of the transition velocity region for the cover plate with the fixed-mode is relatively stable and lower than with the free-mode. On this basis, the fixed cover plate contributes higher ballistic performances to the SiC target than the free cover plate. It is also noteworthy that the size of transition velocity region does not enlarge linearly with the increase in cover plate thickness due to the slow growth of the upper limit. Accordingly, thickness thresholds exist, which are 5 mm and 6 mm for the fixed and free cover plates, respectively. Considering the ballistic performance and economy, the cover plate with the thickness ranging from 3 mm to 5 mm, i.e., 1.5~2.5 times of the tungsten rod diameter, is ideal for the structural dimensions in this paper. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

12 pages, 4435 KiB  
Article
The Surface Condition of Ni-Cr after SiC Abrasive Blasting for Applications in Ceramic Restorations
by Weronika Czepułkowska-Pawlak, Emilia Wołowiec-Korecka and Leszek Klimek
Materials 2020, 13(24), 5824; https://doi.org/10.3390/ma13245824 - 21 Dec 2020
Cited by 4 | Viewed by 2415
Abstract
Abrasive blasting is a process widely used in dentistry. One of the uses is the development of metal surfaces for connections with ceramics in fixed prosthetic restorations. The purpose of this paper was to check how the rough surface profile (width, height, and [...] Read more.
Abrasive blasting is a process widely used in dentistry. One of the uses is the development of metal surfaces for connections with ceramics in fixed prosthetic restorations. The purpose of this paper was to check how the rough surface profile (width, height, and depth on unevenness) impacts the surface’s condition, like its wettability and percentage of stuck abrasives. The Ni-Cr alloy surface was abrasive blasted by silicon carbide with the various pressure parameters (0.2, 0.4, and 0.6 MPa) and abrasive particle sizes (50, 110, and 250 µm). Cleaned surfaces were examined for roughness, wettability, and percentage of stuck abrasive particles on the surface. The surface after abrasive blasting using 110 µm of abrasive size and 0.4 MPa pressure has the best wettability results. The width of unevenness may cause it. When the unevenness has too small or too large width and depth, the fluids may not cover the entire cavities because of locking the air. The surface condition of dental alloys directly affects metal–ceramic connection strength. The knowledge about the impact of the abrasive blasting parameters on the bond strength will allow one to create durable dental restorations. Full article
(This article belongs to the Special Issue Properties of Dental Restorative Materials)
Show Figures

Figure 1

12 pages, 3893 KiB  
Article
Investigation of Factors Influencing the Occurrence of 3C-Inclusions for the Thick Growth of on-Axis C-Face 4H-SiC Epitaxial Layers
by Keiko Masumoto, Kazutoshi Kojima and Hiroshi Yamaguchi
Materials 2020, 13(21), 4818; https://doi.org/10.3390/ma13214818 - 28 Oct 2020
Cited by 3 | Viewed by 3024
Abstract
In this study, we grew homoepitaxial layers on 3-inch on-axis carbon-face 4H-silicon carbide substrates and attempted to suppress the generation of 3C-inclusions. It was found that the 3C-inclusion density decreased with increasing time spent on reaching an objective flow rate for the precursors. [...] Read more.
In this study, we grew homoepitaxial layers on 3-inch on-axis carbon-face 4H-silicon carbide substrates and attempted to suppress the generation of 3C-inclusions. It was found that the 3C-inclusion density decreased with increasing time spent on reaching an objective flow rate for the precursors. It is suggested that 3C-SiC nucleation occurred on large terraces of the on-axis substrates, which existed before the substrates were covered with spiral hillocks. This nucleation was suppressed owing to the decrease in the degree of supersaturation at the initial growth stage. Moreover, we found that the 3C-inclusions were also generated owing to contamination in the form of graphite products. Furthermore, we succeeded in growing a thick on-axis 4H-SiC homoepitaxial layer on a 3-inch substrate and demonstrating its free-standing epitaxial layer with a thickness of 182 μm and a 3C-inclusion density of 2.0 cm−2. Full article
(This article belongs to the Special Issue SiC Materials and Applications)
Show Figures

Graphical abstract

13 pages, 3119 KiB  
Article
Development of Analytical Procedures for Chemical Characterization of Substrates for the Production of TRISO Coated Particles as Nuclear Fuel in High Temperature Gas-Cooled Reactors
by Ewelina Chajduk, Paweł Kalbarczyk, Jakub Dudek, Marta Pyszynska, Anna Bojanowska-Czajka and Zbigniew Samczyński
Sustainability 2020, 12(17), 7221; https://doi.org/10.3390/su12177221 - 3 Sep 2020
Cited by 4 | Viewed by 3176
Abstract
High temperature gas-cooled reactors have recently gained importance as a source of electricity and process heat. Nuclear fuel used in these reactors consists of TRISO (TRiple coated ISOtropic) coated particles, where spherical grains of UO2 or UC2 or UCO kernel are [...] Read more.
High temperature gas-cooled reactors have recently gained importance as a source of electricity and process heat. Nuclear fuel used in these reactors consists of TRISO (TRiple coated ISOtropic) coated particles, where spherical grains of UO2 or UC2 or UCO kernel are covered with four successive layers consisting of pyrolytic carbon and silicon carbide. Of great importance is the chemical purity of reagents and substances used for the production of TRISO coated fuel particles. Analytical techniques ensuring the determination of elements at trace levels are inductively coupled plasma mass spectrometry (ICP-MS) and neutron activation analysis (NAA). They were applied in this work for the chemical characterization of substrates used for TRISO fuel production. Two analytical procedures were developed: the first, where materials are analyzed using ICP-MS, and the second with the aid of NAA. Successive stages of these procedures are described with details. Results of quantitative chemical analysis of examined substances are reported as well as detection limits for the investigated elements. Moreover, the expanded uncertainties estimated for the determined elements while employing the devised analytical procedures are presented. Full article
Show Figures

Figure 1

11 pages, 1226 KiB  
Article
Influence of Carbon Cap on Self-Diffusion in Silicon Carbide
by Marianne Etzelmüller Bathen, Margareta Linnarsson, Misagh Ghezellou, Jawad Ul Hassan and Lasse Vines
Crystals 2020, 10(9), 752; https://doi.org/10.3390/cryst10090752 - 26 Aug 2020
Cited by 7 | Viewed by 5891
Abstract
Self-diffusion of carbon (12C and 13C) and silicon (28Si and 30Si) in 4H silicon carbide has been investigated by utilizing a structure containing an isotope purified 4H-28Si12C epitaxial layer grown on an n-type [...] Read more.
Self-diffusion of carbon (12C and 13C) and silicon (28Si and 30Si) in 4H silicon carbide has been investigated by utilizing a structure containing an isotope purified 4H-28Si12C epitaxial layer grown on an n-type (0001) 4H-SiC substrate, and finally covered by a carbon capping layer (C-cap). The 13C and 30Si isotope profiles were monitored using secondary ion mass spectrometry (SIMS) following successive heat treatments performed at 23002450C in Ar atmosphere using an inductively heated furnace. The 30Si profiles show little redistribution within the studied temperature range, with the extracted diffusion lengths for Si being within the error bar for surface roughening during annealing, as determined by profilometer measurements. On the other hand, a significant diffusion of 13C was observed into the isotope purified layer from both the substrate and the C-cap. A diffusivity of D=8.3×106e10.4/kBT cm2/s for 13C was extracted, in contrast to previous findings that yielded lower both pre-factors and activation energies for C self-diffusion in SiC. The discrepancy between the present measurements and previous theoretical and experimental works is ascribed to the presence of the C-cap, which is responsible for continuous injection of C interstitials during annealing, and thereby suppressing the vacancy mediated diffusion. Full article
(This article belongs to the Special Issue Development and Investigation of SiC and SiC-based devices)
Show Figures

Figure 1

Back to TopTop