# Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model and Numerical Methods

## 3. Results

#### 3.1. Effects of Ratio of Polycrystalline Powder Diameter to Seed Crystal Diameter

#### 3.2. Effects of Cover of Polycrystalline Powder Surface

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Li, J.; Yang, G.; Liu, X.; Luo, H.; Xu, L.; Zhang, Y.; Cui, C.; Pi, X.; Yang, D.; Wang, R. Dislocations in 4H silicon carbide. J. Phys. D Appl. Phys.
**2022**, 55, 46. [Google Scholar] [CrossRef] - Yakimova, R.; Syväjarvi, M.; Iakimov, T.; Jacobsson, H.; Kakanakova-Georgieva, A.; Råback, P.; Janzén, E. Growth of silicon carbide: Process-related defects. Appl. Surf. Sci.
**2001**, 184, 27–36. [Google Scholar] [CrossRef] - Nakamura, D.; Shigetoh, K. Fabrication of large-sized TaC-coated carbon crucibles for the low-cost sublimation growth of large-diameter bulk SiC crystals. Jpn. J. Appl. Phys.
**2017**, 56, 85504. [Google Scholar] [CrossRef] - Tairov, Y.M.; Tsvetkov, V.F. Progress in controlling the growth of polytypic crystals. Prog. Cryst. Growth Charact.
**1983**, 7, 111–162. [Google Scholar] [CrossRef] - Chen, Q.S.; Zhang, H.; Prasad, V.; Balkas, C.M.; Yushin, N.K. Modeling of Heat Transfer and Kinetics of Physical Vapor Transport Growth of Silicon Carbide Crystals. J. Heat Transf.
**2001**, 123, 1098–1109. [Google Scholar] [CrossRef] - Sudarshan, T.S.; Maximenko, S.I. Bulk growth of single crystal silicon carbide. Microelectron. Eng.
**2005**, 83, 155–159. [Google Scholar] [CrossRef] - Lin, S.; Chen, Z.; Yang, Y.; Liu, S.; Ba, Y.; Li, L.; Yang, C. Formation and evolution of micropipes in SiC crystals. CrystEngComm
**2012**, 14, 1588–1594. [Google Scholar] [CrossRef] - Fisicaro, G.; Bongiorno, C.; Deretzis, I.; Giannazzo, F.; La Via, F.; Roccaforte, F.; Zielinski, M.; Zimbone, M.; La Magna, A. Genesis and evolution of extended defects: The role of evolving interface instabilities in cubic SiC. Appl. Phys. Rev.
**2020**, 7, 021402. [Google Scholar] [CrossRef] - Gao, P.; Xin, J.; Liu, X.; Zheng, Y.; Shi, E. Control of 4H polytype of SiC crystals by moving up the crucible to adjust the temperature field of the growth interface. CrystEngComm
**2019**, 21, 6964–6968. [Google Scholar] [CrossRef] - Müller, S.G.; Eckstein, R.; Hofmann, D.; Koelbl, M.; Schmitt, E.; Kadinski, L.; Kaufmann, P. Modelling of the PVT-SiC Bulk Growth Process Taking into Account Global Heat Transfer, Mass Transport and Heat of Crystallization and Results on its Experimental Verification. Mater. Sci. Forum
**1997**, 352, 57–60. [Google Scholar] [CrossRef] - Wang, X.; Cai, D.; Zhang, H. Increase of SiC sublimation growth rate by optimizing of powder packaging. J. Cryst. Growth
**2007**, 305, 122–132. [Google Scholar] [CrossRef] - Kitou, Y.; Bahng, W.; Kato, T.; Nishizawa, S.I.; Arai, K. Flux-Controlled Sublimation Growth by an Inner Guide-Tube. Mater. Sci. Forum
**2002**, 444, 83–86. [Google Scholar] [CrossRef] - Chen, X.J.; Liu, L.J.; Tezuka, H.; Usuki, Y.; Kakimoto, K. Optimization of the design of a crucible for a SiC sublimation growth system using a global model. J. Cryst. Growth
**2007**, 310, 1810–1814. [Google Scholar] [CrossRef] - Steiner, J.; Arzig, M.; Denisov, A.; Wellmann, P.J. Impact of Varying Parameters on the Temperature Gradients in 100 mm Silicon Carbide Bulk Growth in a Computer Simulation Validated by Experimental Results. Cryst. Res. Technol.
**2020**, 55, 1900121. [Google Scholar] [CrossRef] - Ariyawong, K.; Chatillon, C.; Blanquet, E.; Dedulle, J.M.; Chaussende, D. A first step toward bridging silicon carbide crystal properties and physical chemistry of crystal growth. CrystEngComm
**2016**, 18, 2119–2124. [Google Scholar] [CrossRef] - Zhang, S.; Li, T.; Li, Z.; Sui, J.; Zhao, L.; Chen, G. Thermal field design of a large-sized SiC using the resistance heating PVT method via simulations. Crystals
**2023**, 13, 1638. [Google Scholar] [CrossRef] - Zhang, S.; Fu, G.; Cai, H.; Yang, J.; Fan, G.; Chen, Y.; Li, T.; Zhao, L. Design and Optimization of Thermal Field for PVT Method 8-Inch SiC Crystal Growth. Materials
**2023**, 16, 767. [Google Scholar] [CrossRef] - Roy, A.; Mackintosh, B.; Kalejs, J.P.; Chen, Q.S.; Zhang, H.; Prasad, V. A numerical model for inductively heated cylindrical silicon tube growth system. J. Cryst. Growth
**2000**, 211, 365–371. [Google Scholar] [CrossRef] - Su, J.; Chen, X.; Li, Y. Numerical design of induction heating in the PVT growth of SiC crystal. J. Cryst. Growth
**2014**, 401, 128–132. [Google Scholar] [CrossRef] - Chen, Q.S.; Gao, P.; Hu, W.R. Effects of induction heating on temperature distribution and growth rate in large-size SiC growth system. J. Cryst. Growth
**2004**, 266, 320–326. [Google Scholar] [CrossRef] - Chen, Q.S.; Yan, J.Y.; Prasad, V. Application of flow-kinetics model to the PVT growth of SiC crystals. J. Cryst. Growth
**2006**, 303, 357–361. [Google Scholar] [CrossRef] - Pons, M.; Blanquet, E.; Dedulle, J.M.; Garcon, I.; Madar, R.; Bernard, C. Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals. J. Electrochem. Soc.
**2019**, 143, 3727–3735. [Google Scholar] [CrossRef] - Chen, H.; Hang, W.; Wang, R.; Yuan, J.; Pi, X.; Yang, D.; Han, X. Numerical analysis of the dislocation density in n-type 4H-SiC. CrystEngComm
**2023**, 25, 3718. [Google Scholar]

**Figure 2.**Schematic diagram of the ratio of ${\mathrm{D}}_{\mathrm{p}\mathrm{o}\mathrm{w}\mathrm{d}\mathrm{e}\mathrm{r}}$ to ${\mathrm{D}}_{\mathrm{s}\mathrm{e}\mathrm{e}\mathrm{d}}$ in the cross-section of SiC growth crucible.

**Figure 6.**Temperature gradient distribution at different cover ratios: (

**a**) graphite disc cover, (

**b**) graphite ring cover.

**Figure 7.**The deposition rate distribution at different cover ratios ($R$): (

**a**) graphite disc cover, (

**b**) graphite ring cover.

Part | Size |
---|---|

inner diameter of reactor | 150 |

reactor height | 400 |

insulation thickness | 50 |

inner diameter of growth crucible | 80 |

outer diameter of growth crucible | 100 |

growth crucible height | 200 |

SiC powder thickness | 60 |

SiC seed crystal thickness | 1 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, Y.; Wen, X.; Chen, N.; Zhang, F.; Chen, J.; Hu, W.
Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method. *Crystals* **2024**, *14*, 118.
https://doi.org/10.3390/cryst14020118

**AMA Style**

Zhang Y, Wen X, Chen N, Zhang F, Chen J, Hu W.
Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method. *Crystals*. 2024; 14(2):118.
https://doi.org/10.3390/cryst14020118

**Chicago/Turabian Style**

Zhang, Yu, Xin Wen, Nuofu Chen, Fang Zhang, Jikun Chen, and Wenrui Hu.
2024. "Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method" *Crystals* 14, no. 2: 118.
https://doi.org/10.3390/cryst14020118