Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method
Abstract
:1. Introduction
2. Model and Numerical Methods
3. Results
3.1. Effects of Ratio of Polycrystalline Powder Diameter to Seed Crystal Diameter
3.2. Effects of Cover of Polycrystalline Powder Surface
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Yang, G.; Liu, X.; Luo, H.; Xu, L.; Zhang, Y.; Cui, C.; Pi, X.; Yang, D.; Wang, R. Dislocations in 4H silicon carbide. J. Phys. D Appl. Phys. 2022, 55, 46. [Google Scholar] [CrossRef]
- Yakimova, R.; Syväjarvi, M.; Iakimov, T.; Jacobsson, H.; Kakanakova-Georgieva, A.; Råback, P.; Janzén, E. Growth of silicon carbide: Process-related defects. Appl. Surf. Sci. 2001, 184, 27–36. [Google Scholar] [CrossRef]
- Nakamura, D.; Shigetoh, K. Fabrication of large-sized TaC-coated carbon crucibles for the low-cost sublimation growth of large-diameter bulk SiC crystals. Jpn. J. Appl. Phys. 2017, 56, 85504. [Google Scholar] [CrossRef]
- Tairov, Y.M.; Tsvetkov, V.F. Progress in controlling the growth of polytypic crystals. Prog. Cryst. Growth Charact. 1983, 7, 111–162. [Google Scholar] [CrossRef]
- Chen, Q.S.; Zhang, H.; Prasad, V.; Balkas, C.M.; Yushin, N.K. Modeling of Heat Transfer and Kinetics of Physical Vapor Transport Growth of Silicon Carbide Crystals. J. Heat Transf. 2001, 123, 1098–1109. [Google Scholar] [CrossRef]
- Sudarshan, T.S.; Maximenko, S.I. Bulk growth of single crystal silicon carbide. Microelectron. Eng. 2005, 83, 155–159. [Google Scholar] [CrossRef]
- Lin, S.; Chen, Z.; Yang, Y.; Liu, S.; Ba, Y.; Li, L.; Yang, C. Formation and evolution of micropipes in SiC crystals. CrystEngComm 2012, 14, 1588–1594. [Google Scholar] [CrossRef]
- Fisicaro, G.; Bongiorno, C.; Deretzis, I.; Giannazzo, F.; La Via, F.; Roccaforte, F.; Zielinski, M.; Zimbone, M.; La Magna, A. Genesis and evolution of extended defects: The role of evolving interface instabilities in cubic SiC. Appl. Phys. Rev. 2020, 7, 021402. [Google Scholar] [CrossRef]
- Gao, P.; Xin, J.; Liu, X.; Zheng, Y.; Shi, E. Control of 4H polytype of SiC crystals by moving up the crucible to adjust the temperature field of the growth interface. CrystEngComm 2019, 21, 6964–6968. [Google Scholar] [CrossRef]
- Müller, S.G.; Eckstein, R.; Hofmann, D.; Koelbl, M.; Schmitt, E.; Kadinski, L.; Kaufmann, P. Modelling of the PVT-SiC Bulk Growth Process Taking into Account Global Heat Transfer, Mass Transport and Heat of Crystallization and Results on its Experimental Verification. Mater. Sci. Forum 1997, 352, 57–60. [Google Scholar] [CrossRef]
- Wang, X.; Cai, D.; Zhang, H. Increase of SiC sublimation growth rate by optimizing of powder packaging. J. Cryst. Growth 2007, 305, 122–132. [Google Scholar] [CrossRef]
- Kitou, Y.; Bahng, W.; Kato, T.; Nishizawa, S.I.; Arai, K. Flux-Controlled Sublimation Growth by an Inner Guide-Tube. Mater. Sci. Forum 2002, 444, 83–86. [Google Scholar] [CrossRef]
- Chen, X.J.; Liu, L.J.; Tezuka, H.; Usuki, Y.; Kakimoto, K. Optimization of the design of a crucible for a SiC sublimation growth system using a global model. J. Cryst. Growth 2007, 310, 1810–1814. [Google Scholar] [CrossRef]
- Steiner, J.; Arzig, M.; Denisov, A.; Wellmann, P.J. Impact of Varying Parameters on the Temperature Gradients in 100 mm Silicon Carbide Bulk Growth in a Computer Simulation Validated by Experimental Results. Cryst. Res. Technol. 2020, 55, 1900121. [Google Scholar] [CrossRef]
- Ariyawong, K.; Chatillon, C.; Blanquet, E.; Dedulle, J.M.; Chaussende, D. A first step toward bridging silicon carbide crystal properties and physical chemistry of crystal growth. CrystEngComm 2016, 18, 2119–2124. [Google Scholar] [CrossRef]
- Zhang, S.; Li, T.; Li, Z.; Sui, J.; Zhao, L.; Chen, G. Thermal field design of a large-sized SiC using the resistance heating PVT method via simulations. Crystals 2023, 13, 1638. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, G.; Cai, H.; Yang, J.; Fan, G.; Chen, Y.; Li, T.; Zhao, L. Design and Optimization of Thermal Field for PVT Method 8-Inch SiC Crystal Growth. Materials 2023, 16, 767. [Google Scholar] [CrossRef]
- Roy, A.; Mackintosh, B.; Kalejs, J.P.; Chen, Q.S.; Zhang, H.; Prasad, V. A numerical model for inductively heated cylindrical silicon tube growth system. J. Cryst. Growth 2000, 211, 365–371. [Google Scholar] [CrossRef]
- Su, J.; Chen, X.; Li, Y. Numerical design of induction heating in the PVT growth of SiC crystal. J. Cryst. Growth 2014, 401, 128–132. [Google Scholar] [CrossRef]
- Chen, Q.S.; Gao, P.; Hu, W.R. Effects of induction heating on temperature distribution and growth rate in large-size SiC growth system. J. Cryst. Growth 2004, 266, 320–326. [Google Scholar] [CrossRef]
- Chen, Q.S.; Yan, J.Y.; Prasad, V. Application of flow-kinetics model to the PVT growth of SiC crystals. J. Cryst. Growth 2006, 303, 357–361. [Google Scholar] [CrossRef]
- Pons, M.; Blanquet, E.; Dedulle, J.M.; Garcon, I.; Madar, R.; Bernard, C. Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals. J. Electrochem. Soc. 2019, 143, 3727–3735. [Google Scholar] [CrossRef]
- Chen, H.; Hang, W.; Wang, R.; Yuan, J.; Pi, X.; Yang, D.; Han, X. Numerical analysis of the dislocation density in n-type 4H-SiC. CrystEngComm 2023, 25, 3718. [Google Scholar]
Part | Size |
---|---|
inner diameter of reactor | 150 |
reactor height | 400 |
insulation thickness | 50 |
inner diameter of growth crucible | 80 |
outer diameter of growth crucible | 100 |
growth crucible height | 200 |
SiC powder thickness | 60 |
SiC seed crystal thickness | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wen, X.; Chen, N.; Zhang, F.; Chen, J.; Hu, W. Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method. Crystals 2024, 14, 118. https://doi.org/10.3390/cryst14020118
Zhang Y, Wen X, Chen N, Zhang F, Chen J, Hu W. Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method. Crystals. 2024; 14(2):118. https://doi.org/10.3390/cryst14020118
Chicago/Turabian StyleZhang, Yu, Xin Wen, Nuofu Chen, Fang Zhang, Jikun Chen, and Wenrui Hu. 2024. "Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method" Crystals 14, no. 2: 118. https://doi.org/10.3390/cryst14020118
APA StyleZhang, Y., Wen, X., Chen, N., Zhang, F., Chen, J., & Hu, W. (2024). Effects of Surface Size and Shape of Evaporation Area on SiC Single-Crystal Growth Using the PVT Method. Crystals, 14(2), 118. https://doi.org/10.3390/cryst14020118