Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = silica-based hybrid sol-gel coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3841 KiB  
Article
Eco-Friendly Octylsilane-Modified Amino-Functional Silicone Coatings for a Durable Hybrid Organic–Inorganic Water-Repellent Textile Finish
by Mariam Hadhri, Claudio Colleoni, Agnese D’Agostino, Mohamed Erhaim, Raphael Palucci Rosa, Giuseppe Rosace and Valentina Trovato
Polymers 2025, 17(11), 1578; https://doi.org/10.3390/polym17111578 - 5 Jun 2025
Viewed by 1155
Abstract
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the [...] Read more.
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the in situ hydrolysis–condensation of triethoxy(octyl)silane (OS) in an amino-terminated polydimethylsiloxane (APT-PDMS) aqueous dispersion was investigated. The sol was applied to plain-weave cotton and polyester by a pad-dry-cure process and benchmarked against a commercial fluorinated finish. Morphology and chemistry were characterised by SEM–EDS, ATR-FTIR, and Raman spectroscopy; wettability was assessed by static contact angle, ISO 4920 spray ratings, and AATCC 193 water/alcohol repellence; and durability, handle, and breathability were evaluated through repeated laundering, bending stiffness, and water-vapour transmission rate measurements. The silica/PDMS coating formed a uniform, strongly adherent nanostructured layer conferring static contact angles of 130° on cotton and 145° on polyester. After five ISO 105-C10 wash cycles, the treated fabrics still displayed a spray rating of 5/5 and AATCC 193 grade 7, outperforming or equalling the fluorinated control, while causing ≤5% loss of water-vapour permeability and only a marginal increase in bending stiffness. These results demonstrate that the proposed one-step, water-borne sol–gel process affords a sustainable, industrially scalable route to high-performance, durable, water-repellent finishes for both natural and synthetic textiles, offering a viable alternative to PFAS-based chemistry for outdoor apparel and technical applications. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Graphical abstract

19 pages, 8164 KiB  
Article
Cellulose Fabrics Functionalized with Sol–Gel Photocatalytic Coatings Based on Iron (III) Phthalocyanine Tetracarboxylic Acids–TiO2–Silica Hybrids
by Alina Raditoiu, Valentin Raditoiu, Monica Florentina Raduly, Augusta Raluca Gabor, Adriana Nicoleta Frone, Maria Grapin and Mihai Anastasescu
Gels 2023, 9(11), 860; https://doi.org/10.3390/gels9110860 - 30 Oct 2023
Cited by 2 | Viewed by 1860
Abstract
Photocatalytic coatings are difficult to obtain on textile materials because of the sometimes contradictory properties that must be achieved. In order to obtain a high efficiency of a photocatalytic effect, the metal–oxide semiconductor must be found in the vicinity of the coating–air interface [...] Read more.
Photocatalytic coatings are difficult to obtain on textile materials because of the sometimes contradictory properties that must be achieved. In order to obtain a high efficiency of a photocatalytic effect, the metal–oxide semiconductor must be found in the vicinity of the coating–air interface in order to come into direct contact with the contaminant species and allow light radiation access to its surface. Another necessary condition is related to the properties of the covering textile material as well as to the stability of the xerogel films to light and wet treatments. In this sense, we proposed a solution based on hybrid silica films generated by sol–gel processes, coatings that contain as a photocatalyst TiO2 sensitized with tetracarboxylic acid of iron (III) phthalocyanine (FeTCPc). The coatings were made by the pad–dry–cure process, using in the composition a bifunctional anchoring agent (3-glycidoxipropyltrimethoxysilane, GLYMO), a crosslinking agent (sodium tetraborate, BORAX), and a catalyst (N-methylimidazole, MIM) for the polymerization of epoxy groups. The photodegradation experiments performed on methylene blue (MB), utilized as a model contaminant, using LED or xenon arc as light sources, showed that the treatment with BORAX improves the resistance of the coatings to wet treatments but worsens their photocatalytic performances. Full article
(This article belongs to the Special Issue Designing Gels for Catalysts)
Show Figures

Figure 1

10 pages, 3797 KiB  
Proceeding Paper
The Influence of Adding Silica Fluoroalkylsilane on the Morphology, Mechanical, and Corrosion Resistance Properties of Sol-Gel Derived Coatings
by Magdi Mussa, Abdalrahem Shtawa and Sarra Takita
Eng. Proc. 2023, 56(1), 98; https://doi.org/10.3390/ASEC2023-15380 - 26 Oct 2023
Cited by 1 | Viewed by 902
Abstract
Sol-gel-derived coatings’ corrosion resistance and mechanical properties have been studied frequently in the literature individually. However, there is a limitation in the studies that consider both mutually, as is common in all sol-gel hybrid coatings, for instance, mechanical failures such as cracks that [...] Read more.
Sol-gel-derived coatings’ corrosion resistance and mechanical properties have been studied frequently in the literature individually. However, there is a limitation in the studies that consider both mutually, as is common in all sol-gel hybrid coatings, for instance, mechanical failures such as cracks that influence the mechanical durability of coatings as well as their corrosion resistance. Therefore, this research will study the impact of adding fluoroalkylsilane (FAS) to silica-based sol-gel on its mechanical properties by using atomic force microscopy (AFM) nanoindentation, cross-cut adhesion, microhardness, and water contact angle, in line with a short investigation of corrosion resistance using electrochemical coating to test for the new modified coatings, which will be discussed. The results show that the new modified coating with fluoroalkylsilane was more flexible and could produce mechanical and corrosion protection stability, enhancing the hydrophobicity of the new surface, which is essential within the coating industry. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 3850 KiB  
Article
Influence of Physical and Mechanical Parameters on Cavitation Erosion and Antifouling Behaviour of Multilayer Silica-Based Hybrid Sol–Gel Coatings on Aluminium Alloys
by Manasa Hegde, Marta Mroczkowska, Joseph Mohan, Adriana Cunha Neves, Yvonne Kavanagh, Brendan Duffy and Edmond F. Tobin
Eng 2023, 4(2), 1393-1408; https://doi.org/10.3390/eng4020081 - 15 May 2023
Cited by 1 | Viewed by 1608
Abstract
Sol–gel coatings can provide anti-fouling and erosion resistance while being safe to use in the marine environment. MAPTMS/ZPO multilayer coatings deposited on the AA2024-T3 aluminium surface using the dip-coating method at three different thicknesses (2, 4, and 6 µm) are investigated in this [...] Read more.
Sol–gel coatings can provide anti-fouling and erosion resistance while being safe to use in the marine environment. MAPTMS/ZPO multilayer coatings deposited on the AA2024-T3 aluminium surface using the dip-coating method at three different thicknesses (2, 4, and 6 µm) are investigated in this work. The coatings are characterised in terms of physical and mechanical properties, and these properties are investigated in comparison to previously obtained cavitation erosion resistance levels of the coatings. Additionally, the efficiency of the coatings against biofouling was assessed using Phaeodactylum tricornutum, a marine diatom. The influence of the formation of organic–inorganic hybrid materials (OIHMs) from the prepared sols on the physical and mechanical properties of the coatings were analysed. A variety of techniques, including attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), water contact angle (WCA) measurements, pencil hardness testing, cross-cut adhesion testing, a roughness profilometer, and nano-indentation, were performed on the bare and coated substrates. The results indicated that the thickness, hydrophobicity, and adherence of the coatings are strongly affected by the roughness. The elastic strain failure (H/E) and resistance to plastic deformation (H3/E2) coefficients were higher than those of the bare substrate before and after the cavitation erosion test, indicating that the coating had a higher ability to withstand deformation in comparison to the substrate alone. Furthermore, the microscopic analysis of a marine diatom, Phaeodactylum tricornutum, revealed that coated surfaces exhibited a decreased rate of bacterial adhesion and biofilm formation. The data show that sol–gel formed coatings outperform uncoated AA2024-T3 in terms of hardness, elastic strain, plastic deformation, and biofouling resistance. These characteristics are attributed to the coatings’ mechanical and adhesive capabilities, as well as their tribological behaviour. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

14 pages, 5953 KiB  
Article
Highly Transparent and Zirconia-Enhanced Sol-Gel Hybrid Coating on Polycarbonate Substrates for Self-Cleaning Applications
by Bing Zhang, Ruohan Xia, Yao Yan, Jia Liu and Zisheng Guan
Materials 2023, 16(8), 3138; https://doi.org/10.3390/ma16083138 - 16 Apr 2023
Cited by 3 | Viewed by 2699
Abstract
To improve the efficacy of polymer-based substrate hybrid coatings, it is essential to simultaneously optimize mechanical strength and preserve the optical properties. In this study, a mixture of zirconium oxide (ZrO2) sol and methyltriethoxysilane modified silica (SiO2) sol-gel was [...] Read more.
To improve the efficacy of polymer-based substrate hybrid coatings, it is essential to simultaneously optimize mechanical strength and preserve the optical properties. In this study, a mixture of zirconium oxide (ZrO2) sol and methyltriethoxysilane modified silica (SiO2) sol-gel was dip-coated onto polycarbonate (PC) substrates to form zirconia-enhanced SiO2 hybrid coatings. Additionally, a solution containing 1H, 1H, 2H, and 2H-perfluorooctyl trichlorosilane (PFTS) was employed for surface modification. The results show that the ZrO2-SiO2 hybrid coating enhanced the mechanical strength and transmittance. The average transmittance of the coated PC reached up to 93.9% (400–800 nm), while the peak transmittance reached up to 95.1% at 700 nm. SEM images and AFM morphologies demonstrate that the ZrO2 and SiO2 nanoparticles were evenly distributed, and a flat coating was observed on the PC substrate. The PFTS-modified ZrO2-SiO2 hybrid coating also exhibited good hydrophobicity (WCA, 113°). As an antireflective coating on PC, with self-cleaning capability, the proposed coating has application prospects in optical lenses and automotive windows. Full article
(This article belongs to the Special Issue Advanced Multifunctional Coatings for New Applications)
Show Figures

Figure 1

15 pages, 4620 KiB  
Article
Influence of Perfluorooctanoic Acid on Structural, Morphological, and Optical Properties of Hybrid Silica Coatings on Glass Substrates
by Violeta Purcar, Valentin Rădiţoiu, Florentina Monica Raduly, Alina Rădiţoiu, Simona Căprărescu, Adriana Nicoleta Frone, Raluca Şomoghi, Mihai Anastasescu, Hermine Stroescu and Cristian-Andi Nicolae
Appl. Sci. 2023, 13(3), 1669; https://doi.org/10.3390/app13031669 - 28 Jan 2023
Cited by 3 | Viewed by 2057
Abstract
In recent years, various coatings based on fluorinated materials, used in a commercial application, have been created through many preparation routes. However, the techniques utilized to realize these coatings required either expensive and complex equipment, imply multiple manufacturing steps, or are time- or [...] Read more.
In recent years, various coatings based on fluorinated materials, used in a commercial application, have been created through many preparation routes. However, the techniques utilized to realize these coatings required either expensive and complex equipment, imply multiple manufacturing steps, or are time- or cost-consuming. In this paper, the major target was to develop fluorinated hybrid coatings presenting sustainable hydrophobicity and good transparency simultaneously. The sol–gel method was proposed to obtain these fluorinated hybrid coatings because it does not require expensive equipment, or the existence of stabilizing agents that reduce the storage period, it consumes less energy, and it is easy to implement. The influence of perfluorooctanoic acid, utilized in the sol–gel processing of hybrid silica materials, on the structural, morphological, and optical properties of coatings deposited on glass substrates, was evaluated. Different silane precursors (tetraethyl orthosilicate (TEOS), triethoxymethylsilane (MTES), and trimethoxyhexadecylsilane (HDTMES)) were utilized to synthesize hybrid silica materials. The properties of the obtained materials were characterized by FTIR, UV–Vis, TEM, TGA, AFM, Ellipsometry, and Contact Angle analyses. FTIR spectroscopy shows the formation of a silica network tailored with organofunctional and fluoroalkyl groups. The fluorinated silica coatings presented smooth surfaces and good transparency, with a transmittance of ~90% in the visible range. It was found that the fluorinated silica materials improved the coating’s hydrophobicity (~110° in contact angle with water). These fluorinated silica materials can create multifunctional structures with antireflective and hydrophobic coatings for possible optical devices. Full article
Show Figures

Figure 1

11 pages, 3600 KiB  
Article
Abrasion and Cavitation Erosion Resistance of Multi-Layer Dip Coated Sol-Gel Coatings on AA2024-T3
by Manasa Hegde, Yvonne Kavanagh, Brendan Duffy and Edmond F. Tobin
Corros. Mater. Degrad. 2022, 3(4), 661-671; https://doi.org/10.3390/cmd3040036 - 22 Nov 2022
Cited by 5 | Viewed by 2551
Abstract
AA2024-T3 are widely used in various applications because of their exceptional physical properties. However, they are susceptible to corrosion and cavitation erosion in aggressive environments due to high concentration of copper. Sol-gel coatings in the field of corrosion prevention are emerging. Improved thickness [...] Read more.
AA2024-T3 are widely used in various applications because of their exceptional physical properties. However, they are susceptible to corrosion and cavitation erosion in aggressive environments due to high concentration of copper. Sol-gel coatings in the field of corrosion prevention are emerging. Improved thickness of coatings significantly improves the barrier effect of the coatings, thereby improving their operational-life in industrial applications. To date, a limited amount of work has been carried out in determining the effect of hybrid sol-gel coatings on abrasion and cavitation erosion of AA2024-T3. The present study investigates the effect of thickness of the coatings on morphology, corrosion, abrasion and cavitation erosion properties of the prepared hybrid sol-gel coatings deposited on AA2024-T3 surfaces. The hybrid sol-gels have been synthesized from 3-trimethoxysilylpropylmethacrylate (MAPTMS), and a zirconium complex prepared from the chelation of zirconium n-propoxide (ZPO), and methacrylic acid (MAAH). AA-2024 T3 were coated using single-dip, double-dip and triple-dip. Abrasion and cavitation erosion tests were performed according to the relevant standards. Structural damage caused by corrosion, abrasion and cavitation erosion was studied by Optical Microscope and Scanning Electron Microscope (SEM). Corrosion protection performance of the coatings was tested using Open Circuit Potential (OCP) and Potentiodynamic polarization (PDS). Results indicated that the multilayer coated samples improved the corrosion, cavitation erosion and abrasion resistance of AA2024-T3. Hence, the prepared silica-based coatings can be proposed as a potential choice for marine renewable energy applications. Full article
Show Figures

Figure 1

19 pages, 12310 KiB  
Article
Development of Eco-Friendly Hydrophobic and Fouling-Release Coatings for Blue-Growth Environmental Applications: Synthesis, Mechanical Characterization and Biological Activity
by Silvia Sfameni, Giulia Rando, Alessia Marchetta, Cristina Scolaro, Simone Cappello, Clara Urzì, Annamaria Visco and Maria Rosaria Plutino
Gels 2022, 8(9), 528; https://doi.org/10.3390/gels8090528 - 23 Aug 2022
Cited by 19 | Viewed by 4271
Abstract
The need to ensure adequate antifouling protection of the hull in the naval sector led to the development of real painting cycles, which involve the spreading of three layers of polymeric material on the hull surface exposed to the marine environment, specifically defined [...] Read more.
The need to ensure adequate antifouling protection of the hull in the naval sector led to the development of real painting cycles, which involve the spreading of three layers of polymeric material on the hull surface exposed to the marine environment, specifically defined as primer, tie coat and final topcoat. It is already well known that coatings based on suitable silanes provide an efficient and non-toxic approach for the hydrophobic and antifouling/fouling release treatment of surfaces. In the present work, functional hydrophobic hybrid silica-based coatings (topcoats) were developed by using sol-gel technology and deposited on surfaces with the “doctor blade” method. In particular, those organic silanes, featuring opportune functional groups such as long (either fluorinated) alkyl chains, have a notable influence on surface wettability as showed in this study. Furthermore, the hydrophobic behavior of this functionalized coating was improved by introducing an intermediate commercial tie-coat layer between the primer and the topcoat, in order to decrease the wettability (i.e., decreasing the surface energy with a matching increase in the contact angle, CA) and to therefore make such coatings ideal for the design and development of fouling release paints. The hereby synthesized coatings were characterized by optical microscopy, contact angle analysis and a mechanical pull-off test to measure the adhesive power of the coating against a metal substrate typically used in the nautical sector. Analysis to evaluate the bacterial adhesion and the formation of microbial biofilm were related in laboratory and simulation (microcosm) scales, and assessed by SEM analysis. Full article
(This article belongs to the Special Issue Functional Gels for Agricultural and Environmental Applications)
Show Figures

Graphical abstract

15 pages, 4519 KiB  
Article
Physicochemical and Morphological Properties of Hybrid Films Containing Silver-Based Silica Materials Deposited on Glass Substrates
by Violeta Purcar, Valentin Rădiţoiu, Florentina Monica Raduly, Alina Rădițoiu, Mihai Anastasescu, Monica Popa, Simona Căprărescu, Raluca Şomoghi, Mariana Constantin, Cristina Firincă and Georgiana Cornelia Ispas
Coatings 2022, 12(2), 242; https://doi.org/10.3390/coatings12020242 - 13 Feb 2022
Cited by 3 | Viewed by 2600
Abstract
The main goal of this study was to present a facile and inexpensive approach for the preparation of hybrid coatings by the deposition under ambient air conditions of silver-based silica materials on glass substrates, which can be used to improve solar cells’ performance. [...] Read more.
The main goal of this study was to present a facile and inexpensive approach for the preparation of hybrid coatings by the deposition under ambient air conditions of silver-based silica materials on glass substrates, which can be used to improve solar cells’ performance. The silica materials containing silver nanoparticles (AgNPs) were synthesized by the hydrolytic condensation of tetraethylorthosilicate (TEOS), triethoxymethylsilane (MTES), and trimethoxyhexadecylsilane (HDTMES), under acidic conditions, at room temperature (25 ± 2 °C). The silver nitrate solution (AgNO3, 0.1 wt. %) was used as a source of Ag+ ions. The final samples were investigated through Fourier Transform Infrared Spectroscopy–Attenuated Total Reflectance (FTIR–ATR), Transmission Electron Microscopy equipped with energy dispersive X–ray (TEM–EDX), UV–Vis spectroscopy, Atomic Force Microscopy (AFM), and Raman Spectroscopy (RS). The TEM images confirmed the formation of AgNPs and were found to be around 3 nm. It was observed that AgNPs were embedded in the silica matrix. EDX also confirmed the presence of the resulting AgNPs within the silica material. AFM images demonstrated that the morphology of the hybrid films’ surfaces can be changed as a function of sol–gel composition. RS analysis indicated that silanol groups were significantly present on the silver-based silica film surface. The UV–Vis spectra revealed that the hybrid coatings presented a reflectance of ~8%, at 550 nm. This study will enhance the value of nanocoating technology in optoelectronics, particularly in the development of nanostructures that improve the performance in thin-film solar cells. Full article
(This article belongs to the Special Issue Novel Approaches to Hybrid Films or Coatings)
Show Figures

Figure 1

8 pages, 2773 KiB  
Proceeding Paper
The Influence of Adding a Functionalized Fluoroalkyl Silanes (PFDTES) into a Novel Silica-Based Hybrid Coating on Corrosion Protection Performance on an Aluminium 2024-t3 Alloy
by Magdi H. Mussa, Yaqub Rahaq, Sarra Takita, Farah D. Zahoor, Nicholas Farmilo and Oliver Lewis
Mater. Proc. 2021, 7(1), 6; https://doi.org/10.3390/IOCPS2021-11240 - 30 Oct 2021
Cited by 2 | Viewed by 2128
Abstract
Silica-based coatings prepared using sol-gel polymerizing technology have been shown to exhibit excellent chemical stability combined with reducing the corrosion of metal substrates, showing promising use in aerospace and marine applications to protect light alloys. Moreover, this technology is an eco-friendly technique route [...] Read more.
Silica-based coatings prepared using sol-gel polymerizing technology have been shown to exhibit excellent chemical stability combined with reducing the corrosion of metal substrates, showing promising use in aerospace and marine applications to protect light alloys. Moreover, this technology is an eco-friendly technique route for producing surface coatings, showing high potential for replacing toxic pre-treatment coatings of traditional conversation chromate coatings. This study aims to investigate the enhancement in corrosion protection of a hybrid-organic-inorganic silica-based coating cured at 80 °C by increasing the hydrophobicity to work on the aluminium 2024-T3 alloy. This approach involving a novel silica-based hybrid coating was prepared by introducing 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) into the base hybrid formula created from tetraethylorthosilicatesilane (TEOS) and triethoxymethylsilane (MTMS) precursors; this formula was enhanced by introducing a Polydimethylsiloxane polymer (PDMS). The corrosion protection properties of these coatings were examined by being immersed in 3.5% NaCl with electrochemical impedance testing (EIS) and Potentiodynamic polarization scanning (PDPS). The chemical elements confirmation was performed using infrared spectroscopy (ATR-FTIR); all this was supported by analysing the surface morphology before and after the immersion by using scanning electron microscopy (SEM). The results of the electrochemical impedance testing analyses reveal the new open finite-length diffusion circuit element due to electrolyte media diffusion prevented by fluorinated groups. Additionally, it shows increases in corrosion protection arising from the increasing hydrophobicity of the fluorinated coating compared to other formulas cured under similar conditions and bare substrate. Additionally, the modified sol-gel exhibited improved resistance to cracking, while the increased hydrophobicity may also promote self-cleaning. Full article
Show Figures

Figure 1

7 pages, 5619 KiB  
Proceeding Paper
The Influence of Sample Preparation Techniques on Aluminium Alloy AA2024-T3 Substrates for Sol-Gel Coating
by Magdi H. Mussa, Nicholas Farmilo and Oliver Lewis
Eng. Proc. 2021, 11(1), 5; https://doi.org/10.3390/ASEC2021-11121 - 15 Oct 2021
Cited by 3 | Viewed by 2099
Abstract
Sol-gel coatings provide environmentally friendly surface protection for metals and can replace toxic pre-treatments such as those based on hexavalent chromium on metal alloys. This project ultimately aims to develop silica-based organic–inorganic sol-gel derived thin film coatings possessing anti-corrosion and anti-fouling properties on [...] Read more.
Sol-gel coatings provide environmentally friendly surface protection for metals and can replace toxic pre-treatments such as those based on hexavalent chromium on metal alloys. This project ultimately aims to develop silica-based organic–inorganic sol-gel derived thin film coatings possessing anti-corrosion and anti-fouling properties on aluminium alloy substrates. As with any coating, sample preparation plays a significant role in the performance of a sol-gel coating. Therefore, it was necessary to define a preparation method that combines the removal of contaminants and surface roughening to improve adhesion and reproducibility. Four techniques were investigated: fine abrasive sandpaper cleaning, acetone degreasing only and cleaning with an industrial-available alkaline cleaner for 5 min and 30 min. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

9 pages, 3649 KiB  
Proceeding Paper
Developing a Benzimidazole-Silica-Based Hybrid Sol–Gel Coating with Significant Corrosion Protection on Aluminum Alloys 2024-T3
by Magdi H. Mussa, F. Deeba Zahoor, Oliver Lewis and Nicholas Farmilo
Eng. Proc. 2021, 11(1), 3; https://doi.org/10.3390/ASEC2021-11124 - 15 Oct 2021
Cited by 2 | Viewed by 1889
Abstract
The inherent reactivity of Al–Cu–Mg alloys is such that their use for building structural, maritime, and airplane components with great strength/weight ratios would not be possible without good anti-corrosion systems. These systems could be considered as imitations of the protection mechanism found in [...] Read more.
The inherent reactivity of Al–Cu–Mg alloys is such that their use for building structural, maritime, and airplane components with great strength/weight ratios would not be possible without good anti-corrosion systems. These systems could be considered as imitations of the protection mechanism found in the conventional hexavalent chromium-based system, but with additional limited environmental impact, and in particular without toxic or carcinogenic effects. These coatings also are intended to be eco-friendly, using less of the valuable raw materials and energy than more traditional methods. Silica-based hybrid protective coatings have been shown to exhibit excellent chemical stability combined with the ability to reduce the corrosion of metal substrates. However, research shows that sol–gel has some limitations in terms of the period of the anti-corrosive properties. Therefore, this work reports the performance of a silica-based hybrid sol–gel coating encapsulated with benzimidazole (BZI) that can be applied to light alloys to form an inherently inhibited and crack-free coating. This coating was applied on AA 2024-T3 and cured at 80 °C. The high corrosion resistance performance results from the combination of good adhesion, the hydrophobic property of the silica-based hybrid coating, and the presence of the encapsulated (BZI) film-forming volatile corrosion inhibitor, which is released at pores within the coating system, resulting in film-forming, reducing the reaction at cathodic sites. The evaluation of this mechanism is based on using electrochemical testing techniques. The anti-corrosion properties of the coatings were studied when immersed in 3.5% NaCl by using electrochemical impedance spectroscopy (EIS) and potential-dynamic polarization scanning (PDPS). The chemical confirmation was performed by infrared spectroscopy (ATR-FTIR), supported by analyzing the morphology of the surface before and after the immersion testing by using scanning electron microscopy (SEM). The benzimidazole-silica-based hybrid coating exhibited excellent anti-corrosion properties, providing an adherent protective film on the aluminum alloy 2024-T3 samples compared to sol–gel-only and bare metals, as a cost-effective and eco-friendly system. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

22 pages, 11067 KiB  
Review
Magnetic Nanomaterials as Biocatalyst Carriers for Biomass Processing: Immobilization Strategies, Reusability, and Applications
by Mayra A. Mariño, Stephanie Fulaz and Ljubica Tasic
Magnetochemistry 2021, 7(10), 133; https://doi.org/10.3390/magnetochemistry7100133 - 23 Sep 2021
Cited by 36 | Viewed by 4706
Abstract
Environmental concerns, along with oil shortages, have increased industrial interest in biomass conversion to produce biofuels and other valuable chemicals. A green option in biomass processing is the use of enzymes, such as cellulases, hemicellulases, and ligninolytic (laccase and peroxidases), which have outstanding [...] Read more.
Environmental concerns, along with oil shortages, have increased industrial interest in biomass conversion to produce biofuels and other valuable chemicals. A green option in biomass processing is the use of enzymes, such as cellulases, hemicellulases, and ligninolytic (laccase and peroxidases), which have outstanding specificity toward their substrates and can be reused if immobilized onto magnetic nanocarriers. Numerous studies report the biocatalysts’ performance after covalent binding or adsorption on differently functionalized magnetic nanoparticles (MNPs). Functionalization strategies of MNPs include silica-based surfaces obtained through a sol–gel process, graphene oxide-based nanocomposites, polymer-coated surfaces, grafting polymer brushes, and others, which have been emphasized in this review of the immobilization and co-immobilization of enzymes used for biomass conversion. Careful analysis of the parameters affecting the performance of enzyme immobilization for new hybrid matrices has enabled us to achieve wider tolerance to thermal or chemical stress by these biosystems during saccharification. Additionally, it has enabled the application of immobilized laccase to remove toxic organic compounds from lignin, among other recent advances addressed here related to the use of reusable magnetic carriers for bioderived chemical manufacturing. Full article
(This article belongs to the Special Issue Magnetic Properties of Nanomaterials)
Show Figures

Graphical abstract

15 pages, 4770 KiB  
Article
Hybrid Sol–Gel Superhydrophobic Coatings Based on Alkyl Silane-Modified Nanosilica
by Dafna Heiman-Burstein, Anna Dotan, Hanna Dodiuk and Samuel Kenig
Polymers 2021, 13(4), 539; https://doi.org/10.3390/polym13040539 - 12 Feb 2021
Cited by 32 | Viewed by 6189
Abstract
Hybrid sol–gel superhydrophobic coatings based on alkyl silane-modified nanosilica were synthesized and studied. The hybrid coatings were synthesized using the classic Stöber process for producing hydrophilic silica nanoparticles (NPs) modified by the in-situ addition of long-chain alkyl silanes co-precursors in addition to the [...] Read more.
Hybrid sol–gel superhydrophobic coatings based on alkyl silane-modified nanosilica were synthesized and studied. The hybrid coatings were synthesized using the classic Stöber process for producing hydrophilic silica nanoparticles (NPs) modified by the in-situ addition of long-chain alkyl silanes co-precursors in addition to the common tetraethyl orthosilicate (TEOS). It was demonstrated that the long-chain alkyl substituent silane induced a steric hindrance effect, slowing the alkylsilane self-condensation and allowing for the condensation of the TEOS to produce the silica NPs. Hence, following the formation of the silica NPs the alkylsilane reacted with the silica’s hydroxyls to yield hybrid alkyl-modified silica NPs having superhydrophobic (SH) attributes. The resulting SH coatings were characterized by contact angle goniometry, demonstrating a more than 150° water contact angle, a water sliding angle of less than 5°, and a transmittance of more than 90%. Confocal microscopy was used to analyze the micro random surface morphology of the SH surface and to indicate the parameters related to superhydrophobicity. It was found that a SH coating could be obtained when the alkyl length exceeded ten carbons, exhibiting a raspberry-like hierarchical morphology. Full article
(This article belongs to the Special Issue Functional Coatings and Its Applications)
Show Figures

Graphical abstract

16 pages, 4024 KiB  
Article
Synthesis and Characterisation of Organo-Modified Silica Nanostructured Films for the Water-Repellent Treatment of Historic Stone Buildings
by Cristian Petcu, Elvira Alexandrescu, Adriana Bălan, Maria Antonia Tănase and Ludmila Otilia Cinteză
Coatings 2020, 10(10), 1010; https://doi.org/10.3390/coatings10101010 - 21 Oct 2020
Cited by 13 | Viewed by 3666
Abstract
This study presents the facile sol-gel synthesis of nanostructured coatings for use in water-repellent treatment of travertine stone. The synthesized materials combine surface roughness characteristics with particular chemical compositions to give different hydrophobicity results. The influence of the silica particle coating precursor on [...] Read more.
This study presents the facile sol-gel synthesis of nanostructured coatings for use in water-repellent treatment of travertine stone. The synthesized materials combine surface roughness characteristics with particular chemical compositions to give different hydrophobicity results. The influence of the silica particle coating precursor on the hydrophobicity of the polymeric film was investigated, and the octyl-modified silane was selected for further fabrication of the hybrid coatings. The water repellent properties, together with composition and structural properties of the silane-based hybrid material were measured on model glass surface. The coating with the best characteristics was subsequently deposited onto the travertine stone. The potential applicability of the nanostructured material was evaluated considering both the properties of the coating film and those of the travertine stone subjected to the treatment. The surface texture of the film, water repellent properties and uniformity were determined using scanning electron microscopy, atomic force microscopy, dynamic light scattering and contact angle measurements. The coating’s potential for use in stone conservation was evaluated by assessing its impact on the stone’s visual aspect. All the results obtained from the different types of analyses showed that the octyl-modified silica nanostructured material was highly hydrophobic and compatible both with the travertine stone and with the requirements for use on cultural heritage monuments. Full article
Show Figures

Figure 1

Back to TopTop