The Influence of Adding a Functionalized Fluoroalkyl Silanes (PFDTES) into a Novel Silica-Based Hybrid Coating on Corrosion Protection Performance on an Aluminium 2024-t3 Alloy †
Abstract
:1. Introduction
2. Experimental Work
2.1. Substrate Preparation
2.2. Sol-Gel Preparation
3. Results and Discussion
3.1. Electrochemical Corrosion Testing
3.1.1. Potentiodynamic Polarization (PDPS)
3.1.2. Electrochemical Impedance Spectroscopy (EIS) Analysis
3.1.3. Electrochemical Equivalent Circuits Fitting for Both Sol-Gel Coatings
3.2. Confirmation of PFDTES Addition in Sol-Gel Formula
3.3. Water Contact Angle Measurements of SHX-80- and PF-SHX-80-Coated Samples
3.4. Scanning Electron Microscopy Imaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marks, D.L.; Vinegoni, C.; Bredfeldt, J.S.; Boppart, S.A. Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes. Appl. Phys. Lett. 2004, 85, 5787–5789. [Google Scholar] [CrossRef] [Green Version]
- Detty, M.R.; Ciriminna, R.; Bright, F.V.; Pagliaro, M. Environmentally benign sol-gel antifouling and foul-releasing coatings. Acc. Chem. Res. 2014, 47, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Mussa, M.H.; Zahoor, F.D.; Lewis, O.; Farmilo, N. Developing a Benzimidazole-Silica-Based Hybrid Sol–Gel Coating with Significant Corrosion Protection on Aluminum Alloys 2024-T3. Eng. Proc. 2021, 11, 3. [Google Scholar] [CrossRef]
- Wang, H.; Akid, R.; Gobara, M. Scratch-resistant anticorrosion sol–gel coating for the protection of AZ31 magnesium alloy via a low temperature sol-gel route. Corros. Sci. 2010, 52, 2565–2570. [Google Scholar] [CrossRef]
- Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51, 5283–5293. [Google Scholar] [CrossRef] [Green Version]
- Eduok, U.; Suleiman, R.; Gittens, J.; Khaled, M.; Smith, T.J.; Akid, R.; Alia, B.; Khalile, A.; El Ali, B.; Khalil, A. Anticorrosion/antifouling properties of bacterial spore-loaded sol-gel type coating for mild steel in saline marine condition: A case of thermophilic strain of Bacillus licheniformis. RSC Adv. 2015, 5, 93818–93830. [Google Scholar] [CrossRef] [Green Version]
- Lev, O.; Wu, Z.; Bharathi, S.; Glezer, V.; Modestov, A.; Gun, J.; Rabinovich, L.; Sampath, S. Sol-Gel Materials in Electrochemistry. Chem. Mater. 1997, 9, 2354–2375. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.P. Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Pathak, S.S.; Khanna, S. Sol-gel nano coatings for corrosion protection. Met. Surf. Eng. 2012, 12, 304–329. [Google Scholar]
- Zhang, S.; Xianting, Z.; Yongsheng, W.; Kui, C.; Wenjian, W. Adhesion strength of sol-gel derived fluoridated hydroxyapatite coatings. Surf. Coat. Technol. 2006, 200, 6350–6354. [Google Scholar] [CrossRef]
- Merck 1H,1H,2H,2H-Perfluorodecyltriethoxysilane 97%. Available online: https://www.sigmaaldrich.com/GB/en/product/aldrich/658758 (accessed on 22 June 2021).
- Cui, X.-j.; Lin, X.-z.; Liu, C.-h.; Yang, R.-s.; Zheng, X.-w.; Gong, M. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corros. Sci. 2015, 90, 402–412. [Google Scholar] [CrossRef]
- Mussa, M. Development of Hybrid Sol-Gel Coatings on AA2024-T3 with Environmentally Benign Corrosion Inhibitors. Ph.D. Thesis, Sheffield Hallam University, Sheffield, UK, 2020. [Google Scholar]
- Tait, W.S. Electrochemical Impedance Spectroscopy Fundamentals, an Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists; Tait, W.S., Ed.; PairODocs Publications: Racine, WI, USA, 1994; ISBN 13-978-0966020700. [Google Scholar]
- Kobayashi, T.; Hugel, H.M. Special issue, organo-fluorine chemical science-inventing the fluorine future. In Applied Sciences; Multidisciplinary Digital Publishing Institute (MDPI): Basel, Switzerland, 2012; pp. 1–283. ISBN 3906980332. [Google Scholar]
- Yabuki, A.; Yamagami, H.; Noishiki, K. Barrier and self-healing abilities of corrosion protective polymer coatings and metal powders for aluminum alloys. Mater. Corros. 2007, 58, 497–501. [Google Scholar] [CrossRef]
- Brassard, J.; Sarkar, D.K.; Perron, J. Fluorine Based Superhydrophobic Coatings. Appl. Sci. 2012, 2, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Wu, X.; Fu, Q.; Ho, J.W.C.; Kanhere, P.D.; Li, L.; Chen, Z. Development of durable self-cleaning coatings using organic-inorganic hybrid sol-gel method. Appl. Surf. Sci. 2015, 344, 205–212. [Google Scholar] [CrossRef]
No. | Identifier | Base Composite Sol-Gel | (PFDTES) v/v% | Curing Temperature |
---|---|---|---|---|
1. | SHX-80 | TEOS + MTMS + PDMS | - | 80 °C |
2. | PF-SHX-80 | TOES + MTMS + PDMS | 1.5% | 80 °C |
3. | Bare AA2024 T3 | - | - | - |
Sample | Ecorr [mV vs. SCE] | Icorr [A/cm2] | OCP [mV vs. SCE] |
---|---|---|---|
Bare-AA 2024 | −640 | ||
SHX-80 coating | −708 | ||
PF-SHX-80 coating | −658 |
Sample | Element | Immersion Time (h) | ||
---|---|---|---|---|
01 | 48 | 144 | ||
Circuit | R(Q(R(QR))) | R(Q(RO)(QR)) | R(Q(RO)(RQ)) | |
Rs | 10 | 18 | 45 | |
Qct | ||||
n | 1 | 1 | 0.900 | |
Rct | ||||
Oct | - | |||
B | - | 0.469 | 0.618 | |
QiL | ||||
n | 0.772 | 0.803 | 0.800 | |
RiL |
Sample | Element | Immersion Time (h) | ||
---|---|---|---|---|
01 | 48 | 144 | ||
Circuit | R(Q(R(QR))) | R(Q(R(Q(RW)))) | R(Q(R(Q(RW)))) | |
Rs | 100 | 205 | 195 | |
Qct | ||||
n | 0.649 | 0.800 | 0.752 | |
Rct | 817 | 110 | ||
QiL | ||||
n | 0.827 | 0.800 | 0.818 | |
RiL | ||||
W | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mussa, M.H.; Rahaq, Y.; Takita, S.; Zahoor, F.D.; Farmilo, N.; Lewis, O. The Influence of Adding a Functionalized Fluoroalkyl Silanes (PFDTES) into a Novel Silica-Based Hybrid Coating on Corrosion Protection Performance on an Aluminium 2024-t3 Alloy. Mater. Proc. 2021, 7, 6. https://doi.org/10.3390/IOCPS2021-11240
Mussa MH, Rahaq Y, Takita S, Zahoor FD, Farmilo N, Lewis O. The Influence of Adding a Functionalized Fluoroalkyl Silanes (PFDTES) into a Novel Silica-Based Hybrid Coating on Corrosion Protection Performance on an Aluminium 2024-t3 Alloy. Materials Proceedings. 2021; 7(1):6. https://doi.org/10.3390/IOCPS2021-11240
Chicago/Turabian StyleMussa, Magdi H., Yaqub Rahaq, Sarra Takita, Farah D. Zahoor, Nicholas Farmilo, and Oliver Lewis. 2021. "The Influence of Adding a Functionalized Fluoroalkyl Silanes (PFDTES) into a Novel Silica-Based Hybrid Coating on Corrosion Protection Performance on an Aluminium 2024-t3 Alloy" Materials Proceedings 7, no. 1: 6. https://doi.org/10.3390/IOCPS2021-11240
APA StyleMussa, M. H., Rahaq, Y., Takita, S., Zahoor, F. D., Farmilo, N., & Lewis, O. (2021). The Influence of Adding a Functionalized Fluoroalkyl Silanes (PFDTES) into a Novel Silica-Based Hybrid Coating on Corrosion Protection Performance on an Aluminium 2024-t3 Alloy. Materials Proceedings, 7(1), 6. https://doi.org/10.3390/IOCPS2021-11240