Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = shutoff compositions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11573 KiB  
Article
Development of Polymer–Gel Fibrous Composites for Well Water Shutoff in Fractured–Porous Carbonate Formations
by Aleksey Telin, Ravil Yakubov, Artem Pavlik, Vladimir Dokichev, Rida Gallyamova, Anton Mamykin, Farit Safarov, Vladimir Strizhnev, Sergey Vezhnin, Anatoly Politov and Lyubov Lenchenkova
Polymers 2025, 17(11), 1541; https://doi.org/10.3390/polym17111541 - 1 Jun 2025
Viewed by 676
Abstract
The challenge of water shutoff in carbonate reservoirs is complicated by the presence of fractures, which cannot be effectively blocked using conventional hydrogel screens designed for granular reservoirs. To reliably seal fractures, fibrous and dispersed fillers are added to hydrogels. These fillers must [...] Read more.
The challenge of water shutoff in carbonate reservoirs is complicated by the presence of fractures, which cannot be effectively blocked using conventional hydrogel screens designed for granular reservoirs. To reliably seal fractures, fibrous and dispersed fillers are added to hydrogels. These fillers must exhibit affinity for the matrix to ensure the composites can effectively isolate water. Given the wide variability in fracture apertures, it is evident that water shutoff composites should incorporate fibers and dispersed fillers of varying geometric sizes. This study presents a range of hydrogel composites reinforced with mono-, bi-, and tri-component fibers, as well as dispersed fillers, designed for water shutoff in fractured carbonate reservoirs with varying fracture apertures. Oscillation test results demonstrated a twofold increase in the elastic modulus (40–45 Pa) for compositions with various fillers compared to the base composition (23 Pa). Filtration studies revealed the effectiveness of the optimized compositions under different fracture apertures. Specifically, even at a fracture aperture of 650 μm, the residual resistance factor (RRF) reached 82.3 and 9.76 at water flow rates of 0.1 cm3/min and 0.5 cm3/min, respectively. The conducted rheological and filtration tests, along with field trials, confirmed the validity of the selected approach. Full article
Show Figures

Figure 1

16 pages, 5706 KiB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Viewed by 426
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

21 pages, 7897 KiB  
Article
Urea Delays High-Temperature Crosslinking of Polyacrylamide for In Situ Preparation of an Organic/Inorganic Composite Gel
by Li Liang, Junlong Li, Dongxiang Li, Jie Xu, Bin Zheng and Jikuan Zhao
Gels 2025, 11(4), 256; https://doi.org/10.3390/gels11040256 - 31 Mar 2025
Viewed by 772
Abstract
To address the rapid crosslinking reaction and short stability duration of polyacrylamide gel under high salinity and temperature conditions, this paper proposes utilizing urea to delay the nucleophilic substitution crosslinking reaction among polyacrylamide, hydroquinone, and formaldehyde. Additionally, urea regulates the precipitation of calcium [...] Read more.
To address the rapid crosslinking reaction and short stability duration of polyacrylamide gel under high salinity and temperature conditions, this paper proposes utilizing urea to delay the nucleophilic substitution crosslinking reaction among polyacrylamide, hydroquinone, and formaldehyde. Additionally, urea regulates the precipitation of calcium and magnesium ions, enabling the in situ preparation of an organic/inorganic composite gel consisting of crosslinked polyacrylamide and carbonate particles. With calcium and magnesium ion concentrations at 6817 mg/L and total salinity at 15 × 104 mg/L, the gelation time can be controlled to range from 6.6 to 14.1 days at 95 °C and from 2.9 to 6.5 days at 120 °C. The resulting composite gel can remain stable for up to 155 days at 95 °C and 135 days at 120 °C. The delayed gelation facilitates longer-distance diffusion of the gelling agent into the formation, while the enhancements in gel strength and stability provide a solid foundation for improving the effectiveness of profile control and water shut-off in oilfields. The urea-controlling method is novel and effective in extending the high-temperature cross-linking reaction time of polyacrylamide. By converting calcium and magnesium ions into inorganic particles, it enables the in situ preparation of organic/inorganic composite gels, enhancing their strength and stability. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Graphical abstract

16 pages, 11348 KiB  
Article
Thermal Degradation Study of Hydrogel Nanocomposites Based on Polyacrylamide and Nanosilica Used for Conformance Control and Water Shutoff
by Aleksey Telin, Farit Safarov, Ravil Yakubov, Ekaterina Gusarova, Artem Pavlik, Lyubov Lenchenkova and Vladimir Dokichev
Gels 2024, 10(12), 846; https://doi.org/10.3390/gels10120846 - 22 Dec 2024
Cited by 3 | Viewed by 1185
Abstract
The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10–15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels [...] Read more.
The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10–15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control. In all these processes, hydrogels crosslinked with different crosslinkers are used, with the addition of different amounts of nanoparticles. The highest nanoparticle content, from 5 to 9 wt%, was observed in hydrogels for well killing. This is explained by the fact that the volumes of injection of block packs are counted only in tens of cubic meters, and for the sake of trouble-free workover, it is very important to preserve the structural and mechanical properties of block packs during the entire repair of the well. For water shutoff, the volumes of nanocomposite injection, depending on the well design, are from 50 to 150 m3. For conformance control, it is required to inject from one to several thousand cubic meters of hydrogel with nanoparticles. Naturally, for such operations, service companies try to select compositions with the minimum required nanoparticle content, which would ensure injection efficiency but at the same time would not lose economic attractiveness. The aim of the present work is to develop formulations of nanocomposites with increased structural and mechanical characteristics based on hydrogels made of partially hydrolyzed polyacrylamide crosslinked with resorcinol and paraform, with the addition of commercially available nanosilica, as well as to study their thermal degradation, which is necessary to predict the lifetime of gel shields in reservoir conditions. Hydrogels with additives of pyrogenic (HCSIL200, HCSIL300, RX380) and hydrated (white carbon black grades: ‘BS-50’, ‘BS-120 NU’, ‘BS-120 U’) nanosilica have been studied. The best samples in terms of their structural and mechanical properties have been established: nanocomposites with HCSIL200, HCSIL300, and BS-120 NU. The addition of hydrophilic nanosilica HCSIL200 in the amount of 0.4 wt% to a hydrogel consisting of partially hydrolyzed polyacrylamide (1%), resorcinol (0.04%), and paraform (0.09%) increased its elastic modulus by almost two times and its USS by almost three times. The thermal degradation of hydrogels was studied at 140 °C, and the experimental time was converted to the exposure time at 80 °C using Van’t Hoff’s rule. It was found that the nanocomposite with HCSIL200 retains its properties at a satisfactory level for 19 months. Filtration studies on water-saturated fractured reservoir models showed that the residual resistance factor and selectivity of the effect of nanocomposites with HCSIL200 on fractures are very high (226.4 and 91.6 for fracture with an opening of 0.05 cm and 11.0 for porous medium with a permeability of 332.3 mD). The selectivity of the isolating action on fractured intervals of the porous formation was noted. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

22 pages, 6454 KiB  
Article
Use of Self-Generating Foam Gel Composition with Subsequent Injection of Hydrogel to Limit Gas Inflow in Horizontal Wells of Vostochno-Messoyakhskoye Field
by Aleksey Telin, Dmitriy Karazeev, Sergey Vezhnin, Vladimir Strizhnev, Aleksey Levadsky, Anton Mamykin, Lyubov Lenchenkova, Ravil Yakubov, Alsu Fakhreeva, Alfir Akhmetov, Aleksey Oleynik, Anton Shirobokov, Bulat Minnebaev, Ilyas Mullagalin and Ramil Bakhtizin
Gels 2024, 10(4), 215; https://doi.org/10.3390/gels10040215 - 22 Mar 2024
Cited by 4 | Viewed by 2185
Abstract
Gas inflow control in oil wells is one of the most challenging types of repair and sealing operations, the success rate of which does not exceed, as a rule, 30%. Conventional shutoff methods are often ineffective for this purpose. For instance, cement solutions [...] Read more.
Gas inflow control in oil wells is one of the most challenging types of repair and sealing operations, the success rate of which does not exceed, as a rule, 30%. Conventional shutoff methods are often ineffective for this purpose. For instance, cement solutions cannot be injected into wells in the required volumes, while gel screens can only temporarily block the breakthrough zones, as gas easily seeps through the gel, forming new channels for gas inflow. Technology for the two-stage injection of gas-insulating gel systems for gas control in horizontal wells was developed. At the first stage, a self-generating foam gel composition (FGC), consisting of gel-forming and gas-forming compositions, was used. A foam gel structure with enhanced rheological and flow characteristics was formed over a controlled time as a result of the interaction between the gel-forming and gas-forming compounds. A PAM-based hydrogel crosslinked with an organic crosslinker was added to the FGC at the second stage of treatment. The laboratory experiments substantiated the technology of well gas and water shutoff by the sequential injection of self-generating foam gel composition and hydrogel. Field tests confirmed the correctness of the chosen concept. It is very important to clearly identify the sources of gas inflow for the success of this well intervention and take into account the well design, as well as the reservoir geological structure and characteristics. The gas shutoff operation can be properly designed for each well only by comparing all these factors. The validity of the selected technology was tested through a series of laboratory experiments. Successful laboratory tests allowed for the application of the studied technology in a field setting, where the gas shutoff agent was injected into three horizontal wells. As a result of the field application, the gas inflow was successfully isolated in two wells. However, the application of the technology failed in the third well which gave an opportunity to revisit the technology’s design and to review the sources of gas inflow. Overall, the achieved success rate of 66% demonstrated the high efficiency of the studied technology and supported its wider application in the field. Full article
(This article belongs to the Special Issue Gels for Oil Drilling and Enhanced Recovery (2nd Edition))
Show Figures

Figure 1

22 pages, 14551 KiB  
Article
Surfactant–Polymer Composition for Selective Water Shut-Off in Production Wells
by Lyubov Magadova, Mikhail Silin, Vladimir Gubanov and Svetlana Aksenova
Gels 2024, 10(2), 117; https://doi.org/10.3390/gels10020117 - 1 Feb 2024
Cited by 7 | Viewed by 2560
Abstract
Today, a significant part of production wells’ stock has a high water cut percentage of 90% and above. Obviously, for this reason, the need to develop new and improved existing technologies for water shut-off in wells increases every year. Physico-chemical methods of water [...] Read more.
Today, a significant part of production wells’ stock has a high water cut percentage of 90% and above. Obviously, for this reason, the need to develop new and improved existing technologies for water shut-off in wells increases every year. Physico-chemical methods of water shut-off are based on the application of special reagents and compositions that plug the pathways of water inflow to the well. Depending on the mechanism and specific features of water barrier formation, isolation methods are divided into selective and non-selective. This article investigates the possibility of using hydrolyzed polyacrylonitrile as a gel-forming and precipitation-forming reagent for water shut-off technologies in production wells. A surfactant–polymer composition for the isolation of water inflow in production wells in objects with high salinity in formation water, possessing physical and chemical selectivity and providing permeability reduction only in water-saturated intervals, is proposed. The developed composition is the invert emulsion, which makes it possible to carry out treatment at a distance from the well and solve the problem of possible premature gel formation directly in the wellbore. The lowest effective concentration of HPAN in an aqueous solution for use as a gel-forming and sedimentation reagent was determined experimentally (5.0 wt% and more). The interaction of the polymer solution with a chromium crosslinker allows obtaining structured gels in the whole volume of the system. The structure of the gels was evaluated using the Sydansk classifier with the assignment of a letter code from A to J. It was experimentally proved that the structure of the obtained gels depends on the temperature and content of the crosslinking agent in the system; the more crosslinking agent in the composition of the system, the stronger the structure of the resulting gel. The optimal ratio of polymer and crosslinking agent to obtain a strong gel was obtained, which amounted to 5:1 by weight of dry polymer powder. For the HPAN concentration of 5 wt% according to the Sydansk classifier, the gel structure had the code “H”—slightly deformable non-flowing gel. The dependence of the volume of gel sediment obtained because of the interaction with mineralized water on the polymer concentration was studied. It was proved that an increase in the concentration of hydrolyzed polyacrylonitrile in the solution, as well as an increase in the concentration of calcium ions in mineralized water, leads to a larger volume of the resulting gel or precipitate and to the strengthening of the gel structure. The results of rheological studies of the developed composition, as well as experiments on thermal stability, are presented. The results of filtration tests on bulk reservoir models demonstrated the selectivity of the developed composition. The obtained value of the residual resistance factor for the oil-saturated low-permeability model was 1.49 units; the value of the residual resistance factor for the water-saturated high-permeability model was 18.04 units. The ratio of the obtained values of the residual resistance factor, equal to 0.08 (much less than 1), can characterize the developed composition as a selective material for water shut-off in producing wells. Existing technologies for water shut-off based on HPAN do not allow for making a treatment at a distance from the well and require the use of technological solutions to prevent premature gel sedimentation in the well. The developed composition makes it possible to solve the problem of premature gelation. In addition, the composition can form a blocking screen in highly permeable water-saturated zones. The development can be useful for deposits with difficult conditions (high mineralization in reservoir waters, boreholes with a horizontal end, elevated temperatures up to 80 °C). Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Figure 1

14 pages, 948 KiB  
Review
Translational Control of Alphavirus–Host Interactions: Implications in Viral Evolution, Tropism and Antiviral Response
by Iván Ventoso, Juan José Berlanga, René Toribio and Irene Díaz-López
Viruses 2024, 16(2), 205; https://doi.org/10.3390/v16020205 - 30 Jan 2024
Cited by 7 | Viewed by 2698
Abstract
Alphaviruses can replicate in arthropods and in many vertebrate species including humankind, but only in vertebrate cells do infections with these viruses result in a strong inhibition of host translation and transcription. Translation shutoff by alphaviruses is a multifactorial process that involves both [...] Read more.
Alphaviruses can replicate in arthropods and in many vertebrate species including humankind, but only in vertebrate cells do infections with these viruses result in a strong inhibition of host translation and transcription. Translation shutoff by alphaviruses is a multifactorial process that involves both host- and virus-induced mechanisms, and some of them are not completely understood. Alphavirus genomes contain cis-acting elements (RNA structures and dinucleotide composition) and encode protein activities that promote the translational and transcriptional resistance to type I IFN-induced antiviral effectors. Among them, IFIT1, ZAP and PKR have played a relevant role in alphavirus evolution, since they have promoted the emergence of multiple viral evasion mechanisms at the translational level. In this review, we will discuss how the adaptations of alphaviruses to vertebrate hosts likely involved the acquisition of new features in viral mRNAs and proteins to overcome the effect of type I IFN. Full article
Show Figures

Figure 1

12 pages, 4001 KiB  
Article
Preparation and Properties of PP/PAN/Cotton Fibers Composite Membrane as Lithium-Ion Battery Separator with Thermal Shut-Off Function
by Peiyu Liu, Xiongfei Zhang, Chuang Ma, Dan Huang, Pengyun Li, Yana Shi, Chunxiao Qu and Xiang Shi
Batteries 2023, 9(2), 113; https://doi.org/10.3390/batteries9020113 - 5 Feb 2023
Cited by 6 | Viewed by 3339
Abstract
The lithium-ion battery separator plays roles of separating the positive and negative electrodes and providing ion channels, and at the same time, it can play a more important role in the safety of the lithium-ion battery. In this work, a modified PP (polypropylene)/PAN [...] Read more.
The lithium-ion battery separator plays roles of separating the positive and negative electrodes and providing ion channels, and at the same time, it can play a more important role in the safety of the lithium-ion battery. In this work, a modified PP (polypropylene)/PAN (polyacrylonitrile)/cotton fibers composite membrane with a thermal shut-off function was prepared by a wet-laid process. The results are as follows: When the fibers’ mass fraction was 50%, the composite membrane had the best combination properties, with a tensile strength of 1.644 KN·m−1, the porosity was 63%, and it had good wettability with an aspiration height of 39 mm and a liquid absorption rate of 269%. The thermal shrinkage of the composite membrane was less than 4% after thermal treatment under 160 °C. More importantly, the DSC curve showed that the modified PP/PAN/cotton fibers composite membrane had a thermal shut-off function with the temperature between 110 °C and 160 °C. After thermal treatment under 160 °C for 1 h, the ionic conductivity of the fiber membrane decreased to 0.32 mS·cm−1 from 1.99 mS·cm−1. Electrochemical performance tests showed that the button battery using the fiber composite membrane had a slightly better initial discharge, capacity retention and cycle performance at different rates than the button battery equipped with the PP membrane. The results show that the modified PP/PAN/cotton fibers composite membrane improves the safety and electrochemical performance of lithium-ion battery. Full article
Show Figures

Figure 1

16 pages, 3499 KiB  
Article
Investigation of the Selectivity of the Water Shutoff Technology
by Victor Duryagin, Thang Nguyen Van, Nikita Onegov and Galiya Shamsutdinova
Energies 2023, 16(1), 366; https://doi.org/10.3390/en16010366 - 28 Dec 2022
Cited by 21 | Viewed by 2699
Abstract
High water-cut oil production is one of the major issues in the petroleum industry. The present study investigates different profile control solutions, with an emphasis on selective methods and materials that mostly decrease the permeability of water-saturated reservoir areas. To achieve the selective [...] Read more.
High water-cut oil production is one of the major issues in the petroleum industry. The present study investigates different profile control solutions, with an emphasis on selective methods and materials that mostly decrease the permeability of water-saturated reservoir areas. To achieve the selective water flow blockage in fractured porous media, the sodium silicate-based gel-forming composition was developed. The test procedure was created to assess selective and strength characteristics of the presented composition. According to the results of this procedure, adding polyatomic alcohols to the mentioned composition enhances its hydrophilic behavior in water-saturated rocks (work of adhesion increases from 117 to 129 mJ/m2) and reduces the hydrophobic behavior in oil-saturated rocks (work of adhesion drops from 110.3 to 77.4 mJ/m2). The selectivity of the composition performance is validated by its higher wettability of water-saturated reservoir rocks compared with oil-saturated; thus, the composition creates a more stable water shutoff barrier when entering the water zone in a formation. As a result of core flooding experiments in natural, fractured, porous core samples, the efficiency of the water blocking capacity of the composition was proved. In addition, these tests showed the selectivity of the composition because the permeability decrease in water-saturated core samples was higher than in oil-saturated ones. The experimental value of the selectivity coefficient was 152.14. Full article
(This article belongs to the Special Issue Modern Trends in Oil and Gas Industry)
Show Figures

Figure 1

14 pages, 5366 KiB  
Article
Application of Renewable Natural Materials for Gas and Water Shutoff Processes in Oil Wells
by Valery Meshalkin, Alfir Akhmetov, Lyubov Lenchenkova, Antony Nzioka, Anatoly Politov, Vladimir Strizhnev, Aleksey Telin and Alsu Fakhreeva
Energies 2022, 15(23), 9216; https://doi.org/10.3390/en15239216 - 5 Dec 2022
Cited by 7 | Viewed by 1964
Abstract
We propose a complex sealing compound for increasing the efficiency of shutoff operations based on natural materials processing for materials such as sand, peat, rice, and husks. We studied the influence of mechanical activation processes on the mechanical and rheological properties of the [...] Read more.
We propose a complex sealing compound for increasing the efficiency of shutoff operations based on natural materials processing for materials such as sand, peat, rice, and husks. We studied the influence of mechanical activation processes on the mechanical and rheological properties of the developed sealants. Through mechanochemical activation, sand dissolution in a low-concentrated alkali solution was possible, and gelling the resulting sodium silicate while reinforcing it with undissolved sand particles to obtain a sealant composition. We used this approach to produce a hybrid sealing compound based on activated rice husks with up to 20% biogenic silicon dioxide combined with mechanically activated peat: the maximum shear strain of the hybrid sealant was 27.7 ± 1.7 Pa. We produced hydrogels based on sodium silicate, polyacrylamide, and chromium acetate, reinforced with mechanically activated rice husks. We studied the sealants’ rheological and filtration properties and observed the respective viscoplastic and viscoelastic properties. An increase in the dispersion concentration from 0 to 0.5% increased the maximum strain value of undestroyed hydrogel’s structure in the range 50–91 Pa and the maximum shear strain from 104 to 128 Pa. The high residual resistance factor values of the ideal fracture model make the natural and plant-renewable raw materials very promising for repair and sealing work. Full article
Show Figures

Figure 1

30 pages, 10868 KiB  
Review
Polymer Gels Used in Oil–Gas Drilling and Production Engineering
by Jinliang Han, Jinsheng Sun, Kaihe Lv, Jingbin Yang and Yuhong Li
Gels 2022, 8(10), 637; https://doi.org/10.3390/gels8100637 - 7 Oct 2022
Cited by 24 | Viewed by 8766
Abstract
Polymer gels are widely used in oil–gas drilling and production engineering for the purposes of conformance control, water shutoff, fracturing, lost circulation control, etc. Here, the progress in research on three kinds of polymer gels, including the in situ crosslinked polymer gel, the [...] Read more.
Polymer gels are widely used in oil–gas drilling and production engineering for the purposes of conformance control, water shutoff, fracturing, lost circulation control, etc. Here, the progress in research on three kinds of polymer gels, including the in situ crosslinked polymer gel, the pre-crosslinked polymer gel and the physically crosslinked polymer gel, are systematically reviewed in terms of the gel compositions, crosslinking principles and properties. Moreover, the advantages and disadvantages of the three kinds of polymer gels are also comparatively discussed. The types, characteristics and action mechanisms of the polymer gels used in oil-gas drilling and production engineering are systematically analyzed. Depending on the crosslinking mechanism, in situ crosslinked polymer gels can be divided into free-radical-based monomer crosslinked gels, ionic-bond-based metal cross-linked gels and covalent-bond-based organic crosslinked gels. Surface crosslinked polymer gels are divided into two types based on their size and gel particle preparation method, including pre-crosslinked gel particles and polymer gel microspheres. Physically crosslinked polymer gels are mainly divided into hydrogen-bonded gels, hydrophobic association gels and electrostatic interaction gels depending on the application conditions of the oil–gas drilling and production engineering processes. In the field of oil–gas drilling engineering, the polymer gels are mainly used as drilling fluids, plugging agents and lost circulation materials, and polymer gels are an important material that are utilized for profile control, water shutoff, chemical flooding and fracturing. Finally, the research potential of polymer gels in oil–gas drilling and production engineering is proposed. The temperature resistance, salinity resistance, gelation strength and environmental friendliness of polymer gels should be further improved in order to meet the future technical requirements of oil–gas drilling and production. Full article
(This article belongs to the Special Issue Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

13 pages, 2852 KiB  
Article
Substantiation of In Situ Water Shut-Off Technology in Carbonate Oil Reservoirs
by Artem Shagiakhmetov and Svetlana Yushchenko
Energies 2022, 15(14), 5059; https://doi.org/10.3390/en15145059 - 11 Jul 2022
Cited by 16 | Viewed by 2481
Abstract
The efficient development of carbonate oil deposits with excessive fissuring is a current challenge. Uneven and rapid well stream watering is considered as one of the factors that make the process of the development of carbon deposits more complicated. The purpose of the [...] Read more.
The efficient development of carbonate oil deposits with excessive fissuring is a current challenge. Uneven and rapid well stream watering is considered as one of the factors that make the process of the development of carbon deposits more complicated. The purpose of the research is to diagnose and evaluate the mechanisms of well stream watering for carbon deposits and find applicable technology to prevent it. An overview of in situ water shut-off technologies was carried out. A description of the main materials used for water shut-off is presented, and selective methods are studied in more detail. A carbonate basin of an oil field is selected as the object of investigation. The geological and physical characteristics of this deposit are given. Analysis of possible causes and sources of water cut of the fluid is made according to the technique of K.S. Chan, under which the main reason for the watering of the well production is the breakthrough of formation and injection water through a system of highly permeable natural fractures and channels. Matrixes of applicability of in situ water shut-off technologies and polymer compositions are made. The composition based on carboxymethyl cellulose for in situ water shut-off is selected for the chosen deposit. Full article
Show Figures

Graphical abstract

14 pages, 4194 KiB  
Article
Technology for Improving the Efficiency of Fractured Reservoir Development Using Gel-Forming Compositions
by Dmitry Mardashov, Victor Duryagin and Shamil Islamov
Energies 2021, 14(24), 8254; https://doi.org/10.3390/en14248254 - 8 Dec 2021
Cited by 32 | Viewed by 2998
Abstract
Increasing the field development efficiency of fractured reservoirs is a contemporary issue. This paper presents fundamental and exploratory research results in this field using modern high-tech experimental equipment from the “Arctic” Scientific Centre at the Saint Petersburg Mining University. Oil reserves in fractured [...] Read more.
Increasing the field development efficiency of fractured reservoirs is a contemporary issue. This paper presents fundamental and exploratory research results in this field using modern high-tech experimental equipment from the “Arctic” Scientific Centre at the Saint Petersburg Mining University. Oil reserves in fractured reservoirs are enormous; however, they are classified as hard-to-recover. The before-mentioned reservoirs require a specific approach when selecting technologies to improve the efficiency of their development. In this paper, as a solution to the problem under discussion, we propose the use of a physicochemical method of developing fractured reservoirs based on the injection of a water shut-off agent to exclude highly permeable water-conducting fractures from the drainage process. This technology makes it possible to effectively include and develop previously undrained reservoir areas by directly controlling their filtration properties with the use of new highly efficient and ecologically safe chemical reagents and process fluids. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery (EOR) Methods)
Show Figures

Figure 1

13 pages, 3672 KiB  
Article
Gelation Behavior Study of a Resorcinol–Hexamethyleneteramine Crosslinked Polymer Gel for Water Shut-Off Treatment in Low Temperature and High Salinity Reservoirs
by Yongpeng Sun, Yanchao Fang, Ang Chen, Qing You, Caili Dai, Rui Cheng and Yifei Liu
Energies 2017, 10(7), 913; https://doi.org/10.3390/en10070913 - 3 Jul 2017
Cited by 34 | Viewed by 5627
Abstract
Mature oilfields usually encounter the problem of high watercut. It is practical to use chemical methods for water-shutoff in production wells, however conventional water-shutoff agents have problems of long gelation time, low gel strength, and poor stability under low temperature and high salinity [...] Read more.
Mature oilfields usually encounter the problem of high watercut. It is practical to use chemical methods for water-shutoff in production wells, however conventional water-shutoff agents have problems of long gelation time, low gel strength, and poor stability under low temperature and high salinity conditions. In this work a novel polymer gel for low temperature and high salinity reservoirs was developed. This water-shutoff agent had controllable gelation time, adjustable gel strength and good stability performance. The crosslinking process of this polymer gel was studied by rheological experiments. The process could be divided into an induction period, a fast crosslinking period, and a stable period. Its gelation behaviors were investigated in detail. According to the Gel Strength Code (GSC) and vacuum breakthrough method, the gel strength was displayed in contour maps. The composition of the polymer gel was optimized to 0.25~0.3% YG100 + 0.6~0.9% resorcinol + 0.2~0.4% hexamethylenetetramine (HMTA) + 0.08~0.27% conditioner (oxalic acid). With the concentration increase of the polymer gel and temperature, the decrease of pH, the induction period became shorter and the crosslinking was more efficient, resulting in better stability performance. Various factors of the gelation behavior which have an impact on the crosslinking reaction process were examined. The relationships between each impact factor and the initial crosslinking time were described with mathematical equations. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

Back to TopTop