Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = short plant fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 520 KiB  
Review
Sustainable Plant-Based Diets and Food Allergies: A Scoping Review Inspired by EAT-Lancet
by Giuseppe Mazzola, Carlo Cattaneo, Eleonora Patta, Tariq A. Alalwan, Domenico Azzolino, Simone Perna and Mariangela Rondanelli
Appl. Sci. 2025, 15(13), 7296; https://doi.org/10.3390/app15137296 - 28 Jun 2025
Cited by 1 | Viewed by 432
Abstract
Background: The escalating prevalence of food allergies, alongside the global call for environmentally sustainable dietary transitions, has drawn attention to plant-based dietary models—particularly those inspired by the EAT-Lancet Commission. These frameworks not only reduce reliance on animal-sourced foods, benefiting planetary health, but [...] Read more.
Background: The escalating prevalence of food allergies, alongside the global call for environmentally sustainable dietary transitions, has drawn attention to plant-based dietary models—particularly those inspired by the EAT-Lancet Commission. These frameworks not only reduce reliance on animal-sourced foods, benefiting planetary health, but may also play a role in modulating immune tolerance and allergic responses. Methods: This scoping review followed PRISMA guidelines and included 53 peer-reviewed studies published between 2000 and 2024, retrieved from PubMed, Scopus, and Google Scholar. Eligible articles were classified into two thematic domains: prevention of food allergy onset (n = 31) and modulation of allergic symptoms in sensitized individuals (n = 22). Included studies comprised randomized controlled trials (n = 6), observational studies (n = 17), systematic reviews and meta-analyses (n = 11), and narrative/scoping reviews (n = 19). Results: Sustainable plant-based diets were consistently associated with a lower incidence of allergic sensitization and reduced symptom severity. These effects were partly due to the exclusion of common allergens (e.g., dairy, eggs, and shellfish) but more importantly due to immunomodulatory mechanisms. Fermentable fibers can enhance short-chain fatty acid (SCFA)-producing bacteria (e.g., Faecalibacterium prausnitzii), elevating butyrate and acetate levels, which interact with G-protein-coupled receptors 43 and 109A (GPR43 and GPR109A) to induce regulatory T cells (Tregs) and reinforce epithelial integrity via tight junction proteins such as occludin and claudin-1. Polyphenols (e.g., quercetin and luteolin) can inhibit Th2-driven inflammation by stabilizing mast cells and downregulating IL-4 and IL-1. Conclusions: Following sustainable dietary guidelines such as those proposed by the EAT-Lancet Commission may confer dual benefits: promoting environmental health and reducing the burden of allergic diseases. By emphasizing plant-based patterns rich in fiber and polyphenols, these diets support microbiota-mediated immune education, mucosal barrier function, and immunological tolerance. When properly supervised, they represent a promising tool for allergy prevention and symptom management. Larger randomized trials and long-term population studies are needed to confirm and operationalize these findings in clinical and public health contexts. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

18 pages, 1217 KiB  
Article
Nutritional Profiling and Labeling Practices of Plant-Based, Hybrid, and Animal-Based Dog Foods: A Study of European Pack Labels (2020–2024)
by Fatma Boukid and Kurt A. Rosentrater
Animals 2025, 15(13), 1883; https://doi.org/10.3390/ani15131883 - 26 Jun 2025
Viewed by 679
Abstract
As pet owners become increasingly mindful of pet health and sustainability, labeling plays a crucial role in shaping informed purchasing decisions for pet food. This study evaluated the nutritional adequacy and pricing of plant-based, hybrid, and animal-based dog foods. Using the Mintel database, [...] Read more.
As pet owners become increasingly mindful of pet health and sustainability, labeling plays a crucial role in shaping informed purchasing decisions for pet food. This study evaluated the nutritional adequacy and pricing of plant-based, hybrid, and animal-based dog foods. Using the Mintel database, we analyzed product labels, ingredient compositions, and marketing claims for various dog food categories. The findings revealed notable differences in key nutrients, such as protein, fiber, fat, ash, and moisture content. Plant-based dog foods generally offer higher fiber and ash content but often fall short in protein and fat levels, particularly in snacks and treats, which may impact their suitability for meeting the dietary needs of canines. Hybrid dog foods, which blend plant and animal ingredients, show greater variability, with some achieving balanced protein and fat content, while fiber levels depend on the plant-based proportion. Animal-based foods tend to excel in protein and fat content, particularly in wet and dry formats, while being lower in fiber and ash content. A key concern is the reliance on additives, particularly in plant-based and hybrid options, which raises questions about the long-term health impacts on pets. Pricing trends indicate that plant-based dog foods are generally more expensive than hybrid and animal-based options, although the cost varies widely across all categories. Full article
(This article belongs to the Special Issue Advancements in Nutritional Management of Companion Animals)
Show Figures

Figure 1

17 pages, 222 KiB  
Article
Short-Season Direct-Seeded Cotton Cultivation Under Once-Only Irrigation Throughout the Growing Season: Investigating the Effects of Planting Density and Nitrogen Application
by Zhangshu Xie, Yeling Qin, Xuefang Xie, Xiaoju Tu, Aiyu Liu and Zhonghua Zhou
Plants 2025, 14(12), 1864; https://doi.org/10.3390/plants14121864 - 17 Jun 2025
Viewed by 501
Abstract
To identify optimal strategies for high-yield and high-efficiency cultivation under a “short-season direct-seeded cotton with once-only irrigation” regime, we conducted two-year field experiments (2022 and 2023) using a split-plot factorial design with three planting densities (30,000 (D1), 45,000 (D2), and 60,000 (D3) plants·ha [...] Read more.
To identify optimal strategies for high-yield and high-efficiency cultivation under a “short-season direct-seeded cotton with once-only irrigation” regime, we conducted two-year field experiments (2022 and 2023) using a split-plot factorial design with three planting densities (30,000 (D1), 45,000 (D2), and 60,000 (D3) plants·ha−1) and three nitrogen application rates (150 (N1), 180 (N2), and 210 (N3) kg·ha−1). Our study systematically examined how these treatment combinations influenced canopy architecture, physiological traits, yield components, and fiber quality. The results showed that increased planting density significantly enhanced plant height, the leaf area index (LAI), and the number of fruiting branches, with the highest density (D3) contributing to a more compact and efficient canopy. Moderate nitrogen input (N2) significantly increased peroxidase (POD) activity, reduced malondialdehyde (MDA) accumulation, delayed functional leaf senescence, and prolonged the canopy’s photosynthetic performance. A significant interaction between planting density and nitrogen application was observed. The D3N2 treatment (high density with moderate nitrogen) consistently achieved the highest fruiting branch count, boll number per plant, and yields of both seed cotton and lint in both years, while maintaining stable fiber quality. This indicates its strong capacity to balance high yield with quality and maintain physiological resilience. By contrast, the D1N1 treatment (low density and low nitrogen) exhibited a loose canopy, premature photosynthetic decline, and the lowest yield. The D3N3 treatment (high density and high nitrogen) promoted vigorous early growth but reduced stress tolerance during later growth stages, leading to yield instability. These findings demonstrate that moderately increasing planting density while maintaining appropriate nitrogen levels can effectively optimize canopy structure, improve stress resilience, and enhance yield under short-season direct-seeded cotton systems with once-only irrigation. This provides both theoretical underpinning and practical guidance for achieving stable and efficient cotton production under such systems. Full article
18 pages, 6393 KiB  
Article
Metagenomic Comparison of Gut Microbes of Lemur catta in Captive and Semi-Free-Range Environments
by Chunzhong Xu, Xinzi Guo and Lian Li
Animals 2025, 15(10), 1442; https://doi.org/10.3390/ani15101442 - 16 May 2025
Viewed by 348
Abstract
In order to protect endangered species, many zoos adopt diverse rearing models to achieve optimal conservation outcomes. This study employed metagenomic approaches to assess differences in the fecal microbiome of captive and semi-free-ranging ring-tailed lemurs (Lemur catta). The results show that [...] Read more.
In order to protect endangered species, many zoos adopt diverse rearing models to achieve optimal conservation outcomes. This study employed metagenomic approaches to assess differences in the fecal microbiome of captive and semi-free-ranging ring-tailed lemurs (Lemur catta). The results show that captivity significantly altered the microbial community structure. The inter-individual variability in the microbial community within the captive-bred (CB) group was lower than that in the semi-free-ranging (FR) group, yet these individuals harbored a higher abundance of potential pathogens (Treponema_D). In contrast, microbial genera associated with fiber degradation and short-chain fatty acid production in the FR group were significantly elevated (Faecalibacterium, Roseburia, and Megamonas) as compared to the CB group. Environmental variations between the two rearing systems led to distinct profiles in microbial functions and carbohydrate-active enzyme gene composition. Notably, the FR group of lemurs exhibited an increased abundance of enzyme genes associated with the degradation of complex polysaccharides (cellulose, hemicellulose, and pectin), suggesting that their diet, rich in natural plant fibers, enhances the capacity of their gut microbiota to extract essential energy and nutrients. Conversely, the CB group displayed a more homogeneous microbial community with a higher prevalence of potential pathogens, implying that a captive lifestyle may negatively impact gastrointestinal health. These findings offer valuable insights into the influence of rearing conditions on gut microbial ecology and its potential implications for the health management of ring-tailed lemurs. Full article
Show Figures

Figure 1

30 pages, 1810 KiB  
Article
Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region
by Ioannis Roussis, Antonios Mavroeidis, Panteleimon Stavropoulos, Konstantinos Baginetas, Panagiotis Kanatas, Konstantinos Pantaleon, Antigolena Folina, Dimitrios Beslemes and Ioanna Kakabouki
Crops 2025, 5(3), 27; https://doi.org/10.3390/crops5030027 - 3 May 2025
Viewed by 2081
Abstract
The continuous provision of nitrogen (N) to the crop is critical for optimal cotton production; however, the constant and excessive application of synthetic fertilizers causes adverse impacts on soil, plants, animals, and human health. The current study focused on the short-term effects (one-year [...] Read more.
The continuous provision of nitrogen (N) to the crop is critical for optimal cotton production; however, the constant and excessive application of synthetic fertilizers causes adverse impacts on soil, plants, animals, and human health. The current study focused on the short-term effects (one-year study) of adding different rates of clinoptilolite zeolite, as part of an integrated nutrient management plan, and different rates of inorganic N fertilizer to improve soil and crop performance of cotton in three locations (ATH, MES, and KAR) in Greece. Each experiment was set up according to a split-plot design with three replications, three main plots (zeolite application at rates of 0, 5, and 7.5 t ha−1), and four sub-plots (N fertilization regimes at rates of 0, 100, 150, and 200 kg N ha−1). The results of this study indicated that increasing rates of the examined factors increased cotton yields (seed cotton yield, lint yield, and lint percentage), with the greatest lint yield recorded under the highest rates of zeolite (7.5 t ha−1: 1808, 1723, and 1847 kg ha−1 in ATH, MES, and KAR, respectively) and N fertilization (200 kg N ha−1: 1804, 1768, and 1911 kg ha−1 in ATH, MES, and KAR, respectively). From the evaluated parameters, most soil parameters (soil organic matter, soil total nitrogen, and total porosity), root and shoot development (root length density, plant height, leaf area index, and dry weight), fiber maturity traits (micronaire, maturity, fiber strength, and elongation), fiber length traits (upper half mean length, uniformity index, and short fiber index), as well as color (reflectance and spinning consistency index) and trash traits (trash area and trash grade), were positively impacted by the increasing rates of the evaluated factors. In conclusion, the results of the present research suggest that increasing zeolite and N fertilization rates to 7.5 t ha−1 and 200 kg N ha−1, respectively, improved soil properties (except mean weight diameter), stimulated crop development, and enhanced cotton and lint yield, as well as improved the fiber maturity, length, and color parameters of cotton grown in clay-loam soils in the Mediterranean region. Full article
Show Figures

Figure 1

16 pages, 16242 KiB  
Article
Genes Affecting Cotton Fiber Length: A Systematic Review and Meta-Analysis
by Jiao Jiao, Shihao Chang, Fei Wang, Jiaxin Yang, Asigul Ismayil, Peng Wu, Lei Wang and Hongbin Li
Plants 2025, 14(8), 1203; https://doi.org/10.3390/plants14081203 - 12 Apr 2025
Viewed by 739
Abstract
Cotton fiber length is an important measurement for application in the textile industry, and researchers are seeking to cultivate cotton plants with longer fibers. In this study, cotton fiber genes were systematically reviewed through meta-analysis in terms of extending and shortening fiber and [...] Read more.
Cotton fiber length is an important measurement for application in the textile industry, and researchers are seeking to cultivate cotton plants with longer fibers. In this study, cotton fiber genes were systematically reviewed through meta-analysis in terms of extending and shortening fiber and the use of different research technologies for the first time. PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Baidu Xueshu databases were included as literature retrieval sources. A total of 21,467 articles were retrieved, and 45 articles were used in the final analysis. Data analysis was performed using RevMan 5.4 software. To shorten cotton fiber length, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology was superior to virus-induced gene silencing (VIGS) technology and RNA interference (RNAi) technology [p = 0.002, MD = −1.05, 95% CI (−1.73, −0.37), Chi2 = 39.89]. To increase cotton fiber length, CRISPR-Cas9 technology had a similar effect as VIGS technology [p = 0.12, MD = −0.59, 95% CI (−1.33, −0.15), Chi2 = 0.17]. When some genes (GhLAC15, GhALDH7B4, GhMDHAR1A/GhDHAR2A, STTM-miR396b, GhMYB44, GhFP2, GhMYB7, GhKNL1, GhTCP4, GhHDA5, GhGalT1, GhKNOX6, GhXB38D, and GhBZR3) were damaged, cotton fiber length increased. Furthermore, we found that after gene interference, the fiber-shortening genes occurred more frequently than the fiber-elongating genes. Synergistic research on these genes may better promote cotton fiber elongation. Full article
Show Figures

Figure 1

21 pages, 3591 KiB  
Article
Effects of Vegetable and Fruit Juicing on Gut and Oral Microbiome Composition
by Maria Luisa Savo Sardaro, Veronika Grote, Jennifer Baik, Marco Atallah, Katherine Ryan Amato and Melinda Ring
Nutrients 2025, 17(3), 458; https://doi.org/10.3390/nu17030458 - 27 Jan 2025
Cited by 1 | Viewed by 24335
Abstract
Background: In recent years, juicing has often been promoted as a convenient way to increase fruit and vegetable intake, with juice-only diets marketed for digestive cleansing and overall health improvement. However, juicing removes most insoluble fiber, which may diminish the health benefits of [...] Read more.
Background: In recent years, juicing has often been promoted as a convenient way to increase fruit and vegetable intake, with juice-only diets marketed for digestive cleansing and overall health improvement. However, juicing removes most insoluble fiber, which may diminish the health benefits of whole fruits and vegetables. Lower fiber intake can alter the microbiota, affecting metabolism, immunity, and mental health, though little is known about juicing’s specific effects on the microbiota. This study addresses this gap by exploring how juicing impacts gut and oral microbiome composition in an intervention study. Methods: Fourteen participants followed one of three diets—exclusive juice, juice plus food, or plant-based food—for three days. Microbiota samples (stool, saliva, and inner cheek swabs) were collected at baseline, after a pre-intervention elimination diet, immediately after juice intervention, and 14 days after intervention. Moreover, 16S rRNA gene amplicon sequencing was used to analyze microbiota taxonomic composition. Results: The saliva microbiome differed significantly in response to the elimination diet (unweighted UniFrac: F = 1.72, R = 0.06, p < 0.005; weighted UniFrac: F = 7.62, R = 0.23, p-value = 0.0025) with a significant reduction in Firmicutes (p = 0.004) and a significant increase in Proteobacteria (p = 0.005). The juice intervention diets were also associated with changes in the saliva and cheek microbiota, particularly in the relative abundances of pro-inflammatory bacterial families, potentially due to the high sugar and low fiber intake of the juice-related products. Although no significant shifts in overall gut microbiota composition were observed, with either the elimination diet or the juice intervention diets, bacterial taxa associated with gut permeability, inflammation, and cognitive decline increased in relative abundance. Conclusions: These findings suggest that short-term juice consumption may negatively affect the microbiota. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

17 pages, 3231 KiB  
Article
Dietary Fiber-Rich Spartina anglica Improves Intestinal Health and Antioxidant Capacity of Zhedong White Geese
by Xiao Zhou, Li Wang, Jiuli Dai, Huiyan Jia, Kai Shi, Jian Zhao and Shufang Chen
Antioxidants 2025, 14(1), 87; https://doi.org/10.3390/antiox14010087 - 13 Jan 2025
Viewed by 901
Abstract
Spartina anglica (SA), a plant rich in dietary fiber, has demonstrated considerable potential for enhancing gut health and antioxidant capacity in animals. This study investigates the integration of SA as a novel dietary ingredient for Zhedong white geese, with a specific focus on [...] Read more.
Spartina anglica (SA), a plant rich in dietary fiber, has demonstrated considerable potential for enhancing gut health and antioxidant capacity in animals. This study investigates the integration of SA as a novel dietary ingredient for Zhedong white geese, with a specific focus on evaluating its effects on growth performance, nutrient digestibility, antioxidant capacity, intestinal health, and cecal microbiota composition. A total of 360 1-day-old Zhedong white geese with an average weight of 114.94 ± 0.81 g were randomly allocated to 4 dietary treatments, with 6 replicates per treatment and 15 geese per pen. The 4 dietary treatments included different SA supplement levels: a control group receiving a basal diet (CON), and three experimental groups supplemented with 3% SA (SA3), 6% SA (SA6), and 12% SA (SA12). Supplementation with 6% SA significantly enhanced the final body weight, average daily gain, and feed conversion ratio (FCR) compared to the CON group (p < 0.05). In contrast, the SA12 group exhibited reduced digestibility of crude protein and ether extract, relative to the SA3 and SA6 groups (p < 0.05). The highest antioxidant capacity was observed in the SA6 and SA12 groups, while the lowest was recorded in the CON group. SA supplementation did not significantly influence serum biochemical parameters or organ indices but increased cecum length (p < 0.05). Notably, SA supplementation markedly improved intestinal morphology, although excessive levels appeared to compromise these benefits. Additionally, SA supplementation significantly enhanced the richness and diversity of cecal microbiota and increased short-chain fatty acid concentrations. In conclusion, SA at an optimal supplementation level of 6% may be effectively utilized in Zhedong white geese diets to improve growth performance, gut health, and antioxidant capacity. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Gut Health—2nd Edition)
Show Figures

Figure 1

17 pages, 1018 KiB  
Review
The Significance of Plant Nutrition in the Creation of the Intestinal Microbiota—Prevention of Chronic Diseases: A Narrative Review
by Miljana Z. Jovandaric, Kristina Jovanović, Misela Raus, Sandra Babic, Tamara Igic, Boba Kotlica and Srboljub Milicevic
Medicina 2024, 60(12), 1969; https://doi.org/10.3390/medicina60121969 - 29 Nov 2024
Cited by 3 | Viewed by 2184
Abstract
Dysbiosis of the gastrointestinal tract is the most common cause of disease in childhood and adulthood. The formation of the intestinal microbiome begins in utero, and composition modification during life depends mainly on various genetic, nutritional, and environmental factors. The main cause of [...] Read more.
Dysbiosis of the gastrointestinal tract is the most common cause of disease in childhood and adulthood. The formation of the intestinal microbiome begins in utero, and composition modification during life depends mainly on various genetic, nutritional, and environmental factors. The main cause of intestinal dysbiosis is improper nutrition due to a short period of breastfeeding, insufficient intake of fresh fruits and vegetables, and/or consumption of a large amount of processed food. The benefits of a diet based on grains, legumes, fruits, and vegetables are reflected in reducing the risk of cancer, cardiovascular diseases, myocardial infarction, stroke, rheumatoid arthritis, high blood pressure, asthma, allergies, and kidney stones. Anaerobic fermentation of fibers produces short-chain fatty acids (SCFA) that have an anti-inflammatory role and great importance in shaping the intestinal microbiota. Factors associated with high fiber in a plant-based diet promote increased insulin sensitivity. Insulin and insulin-like growth factor 1 (IGF-I) act as promoters of most normal and pre-neoplastic tissues. Conclusion: A plant-based diet high in fiber prevents disease by creating metabolites in the gut that reduce oxidative stress. Full article
Show Figures

Figure 1

14 pages, 3241 KiB  
Article
Crotalaria juncea Genotype Biomass Accumulation in Northern Semi-Arid and Humid-Continental Climates
by Carrie A. Eberle, Donna K. Harris, Tyler Z. Jones, Beth Fowers and Brian A. Mealor
Agronomy 2024, 14(10), 2334; https://doi.org/10.3390/agronomy14102334 - 10 Oct 2024
Viewed by 1097
Abstract
Crotalaria juncea (sunn hemp) is a tropical forage legume used as a cover, forage, and fiber crop. Sunn hemp seed production occurs primarily in India because it requires short days to flower and set seed. Seeds available for production are typically non-specific genotypes [...] Read more.
Crotalaria juncea (sunn hemp) is a tropical forage legume used as a cover, forage, and fiber crop. Sunn hemp seed production occurs primarily in India because it requires short days to flower and set seed. Seeds available for production are typically non-specific genotypes instead of true breeding varieties. As sunn hemp is grown in more locations, understanding not only its performance in different growing conditions but also variations in genotype performance is critical for production management. We evaluated the growth and biomass accumulation of four genotypes (KMB1, KMB2, Thailand Original Sunn, and ‘Tropic Sunn’) of sunn hemp grown in northern semi-arid and humid-continental environments, Wyoming (Adams ‘22 and ‘23 (irrigated), Wyarno ‘23 (rainfed)) and Minnesota (Morris ‘22 and ‘23), USA. Thailand Original Sunn had the fastest growth rate (height over time) but the slowest canopy closure (NDVI over time), while KMB1 had the slowest growth rate but the fastest canopy closure. While growth rates varied among sunn hemp germplasm, there were no marked differences in biomass accumulation when harvested at 60 and 90 days after planting. Although the genotype did not have a significant effect on biomass accumulation, the environment affected not only growth but also biomass accumulation. At 60 DAP, the sunn hemp biomass averaged 1836, 489, 2459, 3334, and 731 kg ha−1 in the Adams ‘22, Adams ‘23, Morris ‘22, Morris ‘23, and Wyarno ‘23 environments, respectively. At 90 DAP, the sunn hemp biomass averaged 6459, 4573, 7979, 7403, and 2220 kg ha−1 in the Adams ‘22, Adams ‘23, Morris ‘22, Morris ‘23, and Wyarno ‘23 environments, respectively. The growth rate, canopy closure, and biomass accumulation differed when compared between the semi-arid environments and the humid-continental environment, with the humid-continental environment producing faster growth and higher biomass. These findings support the hypothesis that genotypes are likely to perform as predicted within growing regions, but there may be room to improve performance in different environments through selective breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

15 pages, 3118 KiB  
Article
Evaluation of Native Festuca Taxa for Sustainable Application in Urban Environments: Their Characteristics, Ornamental Value, and Germination in Different Growing Media
by Tünde Szabó-Szöllösi, Éva Horváthné Baracsi, Péter Csontos, László Papp, Szilvia Kisvarga, László Orlóci, Judit Házi, Zoltán Kende, Dénes Saláta, Márta Fuchs, Judit Rita Keleti, Ákos Tarnawa, Katalin Rusvai and Károly Penksza
Soil Syst. 2024, 8(3), 99; https://doi.org/10.3390/soilsystems8030099 - 13 Sep 2024
Cited by 3 | Viewed by 1276 | Correction
Abstract
This research is part of a Hungarian Research OTKA project that examines the vegetation of sandy grasslands along the Danube. During this study, Festuca wagneri and Festuca tomanii were identified as potentially suitable grass species for urban planting and turf establishment based on [...] Read more.
This research is part of a Hungarian Research OTKA project that examines the vegetation of sandy grasslands along the Danube. During this study, Festuca wagneri and Festuca tomanii were identified as potentially suitable grass species for urban planting and turf establishment based on preliminary research. Our aim was to determine the germination success of seeds from aesthetically selected individuals and to identify the growing media on which they germinate most effectively. From the collected Festuca individuals, we analyzed 30 specimens of each taxon under garden conditions and selected the individuals for germination. The Festuca tomanii individuals were uniform, so we selected only 5 individuals. The Festuca wagneri individuals were categorized into three groups: leaves and inflorescence densely upright, inflorescence shoots spread out, and low ’dwarf’ form (compact and dense but short in stature). It was assumed that Festuca species seeds would germinate better in sandy soils. To test our hypothesis, seeds from ten Festuca wagneri and five Festuca tomanii individuals, selected based on aesthetic criteria, were sown in six different substrates: a sand–peat mixture, sand, coconut fiber, peat, coconut fiber–sand mixture, and native sandy soil (Calcaric Arenosol). Contrary to our expectations, the growth and germination rates of seeds sown in peat and coconut fiber substrates were higher than those in native sandy soil. These results suggest that Festuca seeds germinate better on substrates resembling dead plant debris with a peat-like structure or on the surface of live mosses rather than on bare sand. Among the examined individuals, the seeds from the spreading Festuca wagneri group exhibited the highest germination rate, making this group particularly suitable for urban environments. Additionally, one of the upright Festuca wagneri individuals showed the highest leaf average length and should also be considered for urban planting. In contrast, despite their uniform appearance, the Festuca tomanii individuals did not demonstrate similar germination trends. In fact, the seeds from two clumps did not germinate at all, indicating that further research is necessary. Full article
Show Figures

Figure 1

20 pages, 8912 KiB  
Article
Short-Term Effects of Cenchrus fungigraminus/Potato or Broad Bean Interplanting on Rhizosphere Soil Fertility, Microbial Diversity, and Greenhouse Gas Sequestration in Southeast China
by Jing Li, Yufang Lei, Yeyan Wen, Jieyi Zhu, Xiaoyue Di, Yi Zeng, Xiao Han, Zuhui Que, Hatungimana Mediatrice, Christopher Rensing, Zhanxi Lin and Dongmei Lin
Microorganisms 2024, 12(8), 1665; https://doi.org/10.3390/microorganisms12081665 - 13 Aug 2024
Cited by 5 | Viewed by 1812
Abstract
Cenchrus fungigraminus is a new species and is largely used as forage and mushroom substrate. However, it can usually not be planted on farmland on account of local agricultural land policy. Interplanting Cenchrus fungigraminus with other crops annually (short-term) is an innovative strategy [...] Read more.
Cenchrus fungigraminus is a new species and is largely used as forage and mushroom substrate. However, it can usually not be planted on farmland on account of local agricultural land policy. Interplanting Cenchrus fungigraminus with other crops annually (short-term) is an innovative strategy to promote the sustainable development of the grass industry in southern China. To further investigate this, C. fungigraminus mono-planting (MC), C. fungigraminus–potato interplanting (CIP) and C. fungigraminus–broad bean interplanting (CIB) were performed. Compared to MC, soil microbial biomass carbon (SMBC), soil organic matter (SOM), ammoniacal nitrogen (AMN), pH and soil amino sugars had a positive effect on the rhizosphere soil of CIP and CIB, as well as enhancing soil nitrogenase, nitrite reductase, and peroxidase activities (p < 0.05). Moreover, CIP improved the root vitality (2.08 times) and crude protein (1.11 times). In addition, CIB enhanced the crude fiber of C. fungigraminus seedlings. These two interplanting models also improved the microbial composition and diversity (Actinobacteria, Firmicutes, and Bacteroidota, etc.) in the rhizosphere soil of C. fungigraminus seedlings. Among all the samples, 189 and 59 genes were involved in methane cycling and nitrogen cycling, respectively, which improved the presence of the serine cycle, ribulose monophosphate, assimilatory nitrate reduction, methane absorption, and glutamate synthesis and inhibited denitrification. Through correlation analysis and the Mantel test, the putative functional genes, encoding functions in both nitrogen and methane cycling, were shown to have a significant positive effect on pH, moisture, AMN, SOM, SMBC, and soil peroxidase activity, while not displaying a significant effect on soil nitrogenase activity and total amino sugar (p < 0.05). The short-term influence of the interplanting model was shown to improve land use efficiency and economic profitability per unit land area, and the models could provide sustainable agricultural production for rural revitalization. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling)
Show Figures

Figure 1

13 pages, 537 KiB  
Perspective
Kenaf: Opportunities for an Ancient Fiber Crop
by Conner C. Austin, Colleen N. Mondell, David G. Clark and Ann C. Wilkie
Agronomy 2024, 14(7), 1542; https://doi.org/10.3390/agronomy14071542 - 16 Jul 2024
Cited by 5 | Viewed by 6678
Abstract
Hibiscus cannabinus (kenaf) is an annual fiber crop grown in warm seasons and known for its remarkable productivity; it has been cultivated worldwide for thousands of years as a fiber source. While every part of the plant can be utilized for some purpose, [...] Read more.
Hibiscus cannabinus (kenaf) is an annual fiber crop grown in warm seasons and known for its remarkable productivity; it has been cultivated worldwide for thousands of years as a fiber source. While every part of the plant can be utilized for some purpose, its primary significance lies in the diverse applications of its cellulosic fiber. Kenaf features a blend of long bast and short core fibers, rendering it suitable for various industrial uses. Initially utilized for cordage and livestock feed, kenaf’s applications have expanded over the last century to encompass its utilization as paper pulp, biocomposites, textiles, biomass energy, seed oil, filtration aids, industrial absorbents, and even as a component of potting medium or as a potential source of medicine. Although traditionally a niche crop, the discovery of its diverse applications positions kenaf for rapid expansion in production in the upcoming decades. This article aims to explore the manifold applications of kenaf, highlighting those with the greatest future potential and discussing those that hold promise for commercial-level application with additional research. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

22 pages, 1735 KiB  
Review
The Role of Gut Microbiome in Sleep Quality and Health: Dietary Strategies for Microbiota Support
by Monika Sejbuk, Adam Siebieszuk and Anna Maria Witkowska
Nutrients 2024, 16(14), 2259; https://doi.org/10.3390/nu16142259 - 13 Jul 2024
Cited by 15 | Viewed by 22792
Abstract
Dietary components, including dietary fiber, unsaturated fatty acids, and polyphenols, along with meal timing and spacing, significantly affect the microbiota’s capacity to produce various metabolites essential for quality sleep and overall health. This review explores the role of gut microbiota in regulating sleep [...] Read more.
Dietary components, including dietary fiber, unsaturated fatty acids, and polyphenols, along with meal timing and spacing, significantly affect the microbiota’s capacity to produce various metabolites essential for quality sleep and overall health. This review explores the role of gut microbiota in regulating sleep through various metabolites such as short-chain fatty acids, tryptophan, serotonin, melatonin, and gamma-aminobutyric acid. A balanced diet rich in plant-based foods enhances the production of these sleep-regulating metabolites, potentially benefiting overall health. This review aims to investigate how dietary habits affect gut microbiota composition, the metabolites it produces, and the subsequent impact on sleep quality and related health conditions. Full article
Show Figures

Figure 1

24 pages, 3067 KiB  
Review
Cholesterol-Lowering Bioactive Foods and Nutraceuticals in Pediatrics: Clinical Evidence of Efficacy and Safety
by Federica Fogacci, Naif Saad ALGhasab, Valentina Di Micoli, Marina Giovannini and Arrigo Francesco Giuseppe Cicero
Nutrients 2024, 16(10), 1526; https://doi.org/10.3390/nu16101526 - 18 May 2024
Cited by 7 | Viewed by 3542
Abstract
Long-term exposure to even slightly elevated plasma cholesterol levels significantly increases the risk of developing cardiovascular disease. The latest evidence recommends an improvement in plasma lipid levels, even in children who are not affected by severe hypercholesterolemia. The risk–benefit profile of pharmacological treatments [...] Read more.
Long-term exposure to even slightly elevated plasma cholesterol levels significantly increases the risk of developing cardiovascular disease. The latest evidence recommends an improvement in plasma lipid levels, even in children who are not affected by severe hypercholesterolemia. The risk–benefit profile of pharmacological treatments in pediatric patients with moderate dyslipidemia is uncertain, and several cholesterol-lowering nutraceuticals have been recently tested. In this context, the available randomized clinical trials are small, short-term and mainly tested different types of fibers, plant sterols/stanols, standardized extracts of red yeast rice, polyunsaturated fatty acids, soy derivatives, and some probiotics. In children with dyslipidemia, nutraceuticals can improve lipid profile in the context of an adequate, well-balanced diet combined with regular physical activity. Of course, they should not be considered an alternative to conventional lipid-lowering drugs when necessary. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

Back to TopTop