Cholesterol-Lowering Bioactive Foods and Nutraceuticals in Pediatrics: Clinical Evidence of Efficacy and Safety
Abstract
:1. Introduction
2. Materials and Methods
3. Natural Cholesterol Absorption Inhibitors from the Bowel
3.1. Soluble Fibers
Nutraceuticals | Type of Study [Reference] | Primary Aim of the Study | Participants | Main Inclusion Criteria of the Study | Intervention | Follow-Up | Intolerance and/or Side Effects | Compliance | Main Effects of the Tested Nutraceutical on LDL-C | Main Effects of the Tested Nutraceutical on Other Lipid Fractions |
---|---|---|---|---|---|---|---|---|---|---|
PSYLLIUM | Randomized, double-blind, crossover, controlled clinical trial [35] | To assess the LDL-C lowering effect of psyllium-enriched breakfast cereal in children with hyperlipidemia | N. 32 children (6–18 years) | LDL-C > 90th percentile for age and sex at baseline | 58 g of a psyllium-enriched cereal/day for a total daily dose of 6.4 g soluble fiber from psyllium or placebo without psyllium | 6 weeks | N. 1 child experienced gastrointestinal effects with slight abdominal bloating | Good compliance |
|
|
Randomized, double-blind, placebo-controlled clinical trial [41] | To assess the LDL-C-lowering effect of psyllium in children with hypercholesterolemia | N. 20 children (5–17 years) | LDL-C > 110 mg/dL after ≥3 months of a controlled diet | 6 g/day ready-to-eat cereals with water-soluble psyllium fiber or placebo without psyllium | 4–5 weeks | No side effects | Good compliance (80%) |
|
| |
Randomized, clinical trial [50] | To assess the TC and LDL-C lowering effect of psyllium in children | N. 36 children (3–17 years) | Children with primary type IIa hypercholesterolemia |
| 8 ± 2.4 months | No side effects | Good compliance |
|
| |
Randomized, single-blind, placebo-controlled clinical trial [45] | To assess the TC and LDL-C lowering effect of psyllium in children | N. 50 children (2–11 years) | LDL-C ≥ 110 mg/dL | Psyllium-enriched cereal containing 3.2 g of soluble fiber, each box of placebo cereal containing < 0.5 g of soluble fiber | 12 weeks | No side effects | Good Compliance |
|
| |
Randomized, double-blind, placebo-controlled clinical trial [46] | To assess the LDL-C lowering effect of psyllium in Brazilian children and adolescents with mild-to-moderate dyslipidemia | N. 49 children (6–19 years) | TC > 4.40 mmol/L | 7.0 g/day psyllium or 7.0 g/day cellulose (placebo) | 8 weeks | No side effects | N. 2 children in the control group were excluded during follow up |
|
| |
GUM | Randomized, crossover, controlled clinical trial [29] | To assess the LDL-C lowering effect of locust bean gum | N. 17 adults and N. 11 children (N. 18 participants with FCH + N. 10 controls) (Adults: 22–53 years; children: 10–18 years) |
|
| No side effects | Good compliance in adults |
|
| |
GLUCOMANNAN | Randomized, double-blind, crossover, placebo-controlled clinical trial [47] | To assess the efficacy and tolerability of dietary supplementation with glucomannan in children | N. 36 children (6–15 years) | TC levels higher than the age- and sex-specific 90th percentile | 2/week capsule containing either 500 mg of glucomannan or placebo | 8 weeks | No side effects | Good compliance (92% compliance for the dietary supplement and 90% compliance for the placebo) |
|
|
PECTIN | Non randomized, controlled clinical trial [36] | To assess the efficacy of wheat bran and pectin mix on plasma lipids in children | N. 51 children (4–18 years) with high LDL-C and N. 33 controls (5–16 years) | LDL-C serum levels > 135 mg/dL after 6 months of dietary counselling (for the actively treated group) | Dietary counselling and dietary supplementation with 50% wheat bran + 50% of pectin, 2–3 tablets/day (50 mg × Kg/day) | 3 months | N. 2 children experienced abdominal discomfort and soft stools | Good compliance |
|
|
GLUCOMANNAN + POLICOSANOLS OR CHROMIUM POLYNICOTINATE | Randomized, double-blind, placebo-controlled clinical trial [51] | To assess the effect of low-dose chromium-polynicotinate (Group A) or policosanols (Group B), and their glucomannan combination (Group C and Group D, respectively) in children | N. 120 children (3–16 years; Male, N. 60–Female: N. 60) |
|
capsules each at lunch and dinner; children > 6 years: 3 capsules each at lunch and dinner | 8 weeks | No side effects |
|
|
|
3.2. Plant Sterols
3.3. Probiotics
4. Cholesterol-Lowering Dietary Components, and Nutraceuticals Acting through Different Mechanisms
4.1. Nuts
4.2. Soy
4.3. Polyunsaturated Fatty Acids (PUFAs)
4.4. Red Yeast Rice
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ference, B.A.; Kastelein, J.J.P.; Ray, K.K.; Ginsberg, H.N.; Chapman, M.J.; Packard, C.J.; Laufs, U.; Oliver-Williams, C.; Wood, A.M.; Butterworth, A.S.; et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 2019, 321, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pletcher, M.J.; Vittinghoff, E.; Clemons, A.M.; Jacobs, D.R.; Allen, N.B.; Alonso, A.; Bellows, B.K.; Oelsner, E.C.; Zeki Al Hazzouri, A.; et al. Association between cumulative low-density lipoprotein cholesterol exposure during young adulthood and middle age and risk of cardiovascular events. JAMA Cardiol. 2021, 6, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Martino, F.; Niglio, T.; Martino, E.; Paravati, V.; de Sanctis, L.; Guardamagna, O. Apolipoprotein B and Lipid Profile in Italian Children and Adolescents. J. Cardiovasc. Develop. Dis. 2024, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Patrono, D.; Mancini, R.; Ramazzotti, E.; Borghi, C.; D’Addato, S.; BLIP Study group. Application of the Sampson equation to estimate LDL-C in children: Comparison with LDL direct measurement and Friedewald equation in the BLIP study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1911–1915. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics Committee on Nutrition. American Academy of Pediatrics. Committee on Nutrition. Cholesterol in childhood. Pediatrics 1998, 101, 141–147. [Google Scholar] [CrossRef]
- Wu, F.; Jacobs, D.R., Jr.; Daniels, S.R.; Kähönen, M.; Woo, J.G.; Sinaiko, A.R.; Viikari, J.S.A.; Bazzano, L.A.; Steinberger, J.; Urbina, E.M.; et al. Non-High-Density Lipoprotein Cholesterol Levels From Childhood to Adulthood and Cardiovascular Disease Events. JAMA, 2024; advance online publication. [Google Scholar] [CrossRef]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart Lung and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128, S213e56. [Google Scholar]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Bove, M.; Debellis, G.; Borghi, C. Effect of quantitative and qualitative diet prescription on children behavior after diagnosis of heterozygous familial hypercholesterolemia. Int. J. Cardiol. 2019, 293, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Kwiterovich, P.O. Recognition and management of dyslipidemia in children and adolescents. J. Clin. Endocrinol. Metab. 2008, 93, 4200–4209. [Google Scholar] [CrossRef]
- D’Addato, S.; Fogacci, F.; Cicero, A.F.G.; Palmisano, S.; Baronio, F.; Biagi, C.; Borghi, C. Severe hypercholesterolaemia in a paediatric patient with congenital analbuminaemia. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 316–317. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Stoian, A.P.; Vrablik, M.; Al Rasadi, K.; Banach, M.; Toth, P.P.; Rizzo, M. Nutraceuticals in the management of dyslipidemia: Which, when, and for whom? Could nutraceuticals help low-risk individuals with non-optimal lipid levels? Curr. Atheroscler. Rep. 2021, 23, 57. [Google Scholar] [CrossRef]
- Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; et al. International Lipid Expert Panel (ILEP). The Role of Nutraceuticals in Statin Intolerant Patients. J. Am. Coll. Cardiol. 2018, 72, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016, 253, 281–344. [Google Scholar] [PubMed]
- Slavin, J.L. Carbohydrates, dietary fiber, and resistant starch in white vegetables: Links to health outcomes. Adv. Nutr. 2013, 4, 351S–355S. [Google Scholar] [CrossRef] [PubMed]
- Giacco, R.; Clemente, G.; Cipriano, D.; Luongo, D.; Viscovo, D.; Patti, L.; Di Marino, L.; Giacco, A.; Naviglio, D.; Bianchi, M.A.; et al. Effects of the regular consumption of wholemeal wheat foods on cardiovascular risk factors in healthy people. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 186–194. [Google Scholar] [CrossRef]
- Anderson, J.W.; Story, L.; Sieling, B.; Chen, W.J.; Petro, M.S.; Story, J. Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am. J. Clin. Nutr. 1984, 40, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.P.; Hectorne, K.; Reynolds, H.; Balm, T.K.; Hunninghake, D.B. Cholesterol lowering effects of Psyllium Hydrophilic Mucilloid: Adjunct therapy to a prudent diet for patient with mild to moderate hypercholesterolemia. JAMA 1989, 261, 3419–3423. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Scientific opinion on dietary reference values for carbohydrates and dietary fiber. EFSA J. 2010, 8, 1462. [Google Scholar]
- Food and Drug Administration. Food Labeling: Health Claims; Oats and Coronary Heart Disease; Health and Human Services; Food and Drug Administration: Washington, DC, USA, 1997. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of postprandial glycaemic responses (ID 821, 824), and “digestive function”. EFSA J. 2011, 9, 2207; 1 of Regulation (EC) No 1924/ 2006, (ID850) pursuant-to article 13.
- Shinozaki, K.; Okuda, M.; Sasaki, S.; Kunitsugu, I.; Shigeta, M. Dietary fiber consumption decreases the risks of overweight and hypercholesterolemia in Japanese children. Ann. Nutr. Metab. 2015, 67, 58–64. [Google Scholar] [CrossRef]
- Dwyer, J.T. Dietary fiber for children: How much? Pediatrics 1995, 96, 1019–1022. [Google Scholar]
- Kranz, S.; Brauchla, M.; Slavin, J.L.; Miller, K.B. What do we know about dietary fiber intake in children and health? The effects of fiber intake on constipation, obesity, and diabetes in children. Adv. Nutr. 2012, 3, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.A.; Xie, C.; Garcia, A.L. Dietary fibre and health in children and adolescents. Proc. Nutr. Soc. 2015, 74, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Greer, F.R.; Committee on Nutrition. Lipid screening and cardiovascular health in childhood. Pediatrics 2008, 122, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes: Applications in Dietary Assessment; National Academy Press: Washington, DC, USA, 2000; p. 306. [Google Scholar]
- Bollella, M.; Williams, C.L.; Strobino, B. Dietary predictors of cardiovascular risk factors among children in a 5-year health tracking study: Healthy Start. In Proceedings of the American Dietetic Association, Food & Nutrition Conference & Expo, San Antonio, TX, USA, 25–28 October 2003. [Google Scholar]
- Singh, B. Psyllium as therapeutic and drug delivery agent. Int. J. Pharm. 2007, 334, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dambuza, A.; Rungqu, P.; Oyedeji, A.O.; Miya, G.; Oriola, A.O.; Hosu, Y.S.; Oyedeji, O.O. Therapeutic Potential of Pectin and Its Derivatives in Chronic Diseases. Molecules 2024, 29, 896. [Google Scholar] [CrossRef] [PubMed]
- González Canga, A.; Fernandez Martınez, N.; Sahagún, A.M.; García Vieitez, J.J.; Díez Liébana, M.J.; Calle Pardo, A.P.; Castro Robles, L.J.; Sierra Vega, M. Glucomannan: Properties and therapeutic applications. Nutr. Hosp. 2004, 19, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Vuksan, V.; Jenkins, A.L.; Rogovik, A.L.; Fairgrieve, C.D.; Jovanovski, E.; Leiter, L.A. Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br. J. Nutr. 2011, 106, 1349–1352. [Google Scholar] [CrossRef]
- Sadiq Butt, M.S.; Tahir-Nadeem, M.; Khan, M.K.; Shabir, R.; Butt, M.S. Oat: Unique among the cereals. Eur. J. Nutr. 2008, 47, 68–79. [Google Scholar] [CrossRef]
- Jane, M.; McKay, J.; Pal, S. Effects of daily consumption of psyllium, oat bran and polyGlycopleX on obesity-related disease risk factors: A critical review. Nutrition 2019, 57, 84–91. [Google Scholar] [CrossRef]
- Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef]
- Davidson, M.H.; Dugan, L.D.; Burns, J.H.; Sugimoto, D.; Story, K.; Drennan, K. A psyllium-enriched cereal for the treatment of hypercholesterolemia in children: A controlled, double-blind, cross-over study. Am. J. Clin. Nutr. 1996, 63, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Bayle, M.; Gonzalez-Requejo, A.; Asensio-Anton, J.; Ruiz-Jarabo, C.; Fernandez-Ruiz, M.L.; Baeza, J. The effect of fiber supplementation on lipid profile in children with hypercholesterolemia. Clin. Pediatr. (Phila) 2001, 40, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Martino, F.; Martino, E.; Morrone, F.; Carnevali, E.; Forcone, R.; Niglio, T. Effect of dietary supplementation with glucomannan on plasma total cholesterol and low density lipoprotein cholesterol in hypercholesterolemic children. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Gold, K.; Wong, N.; Tong, A.; Bassin, S.; Iftner, C.; Nguyen, T.; Khoury, A.; Baker, S. Serum apolipoprotein and lipid profile effects of an oat-bran-supplemented, low-fat diet in children with elevated serum cholesterol. Ann. N. Y. Acad. Sci. 1991, 623, 429–431. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.L.; Bollella, M.C.; Strobino, B.A.; Boccia, L.; Campanaro, L. Plant stanol ester and bran fiber in childhood: Effects on lipids, stool weight and stool frequency in preschool children. J. Am. Coll. Nutr. 1999, 18, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Taneja, A.; Bhat, C.M.; Arora, A.; Kaur, A.P. Effect of incorporation of isabgol husk in a low fibre diet on faecal excretion and serum levels of lipids in adolescent girls. Eur. J. Clin. Nutr. 1989, 43, 197–202. [Google Scholar]
- Dennison, B.A.; Levine, D.M. Randomized, double-blind, placebo-controlled, two-period cross-over clinical trial of psyllium fiber in children with hypercholesterolemia. J. Pediatr. 1993, 123, 24–29. [Google Scholar] [CrossRef]
- Williams, J.K.; Vita, J.A.; Manuck, S.B.; Selwyn, A.P.; Kaplan, J.R. Psychosocial factors impair vascular responses of coronary arteries. Circulation 1991, 84, 2146–2153. [Google Scholar] [CrossRef] [PubMed]
- Clauss, S.B.; Kwiterovich, P.O. Long-term safety and efficacy of low-fat diets in children and adolescents. Minerva Pediatr. 2002, 54, 305–313. [Google Scholar]
- The DISC Collaborative Research Group: The efficacy and safety of lowering dietary intake of total fat, saturated fat, and cholesterol in children with elevated LDL-C: The Dietary Intervention Study in Children (DISC). JAMA 1995, 273, 1429–1435. [CrossRef]
- Williams, C.L.; Bollella, M.; Spark, A.; Puder, D. Soluble fiber enhances the hypocholesterolemic effect of the step I diet in childhood. J. Am. Coll. Nutr. 1995, 14, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Ribas, S.A.; Cunha, D.B.; Sichieri, R.; Santana da Silva, L.C. Effects of psyllium on LDL-cholesterol concentrations in Brazilian children and adolescents: A randomized, placebo-controlled, parallel clinical trial. Br. J. Nutr. 2015, 113, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Guardamagna, O.; Abello, F.; Cagliero, P.; Visioli, F. Could dyslipidemic children benefit from glucomannan intake? Nutrition 2013, 29, 1060–1065. [Google Scholar] [CrossRef]
- Livieri, C.; Novazi, F.; Lorini, R. The use of highly purified glucomannan- based fibers in childhood obesity. Pediatr. Med. Chir. 1992, 14, 195–198. [Google Scholar]
- Ho, H.V.T.; Jovanovski, E.; Zurbau, A.; Blanco Mejia, S.; Sievenpiper, J.L.; Au-Yeung, F.; Jenkins, A.L.; Duvnjak, L.; Leiter, L.; Vuksan, V. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am. J. Clin. Nutr. 2017, 105, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Glassman, M.; Spark, A.; Berezin, S.; Schwarz, S.; Medow, M.; Newman, L.J. Treatment of type IIa hyperlipidemia in childhood by a simplified American Heart Association diet and fiber supplementation. Am. J. Dis. Child. 1990, 144, 973–976. [Google Scholar] [CrossRef]
- Martino, F.; Puddu, P.E.; Pannarale, G.; Colantoni, C.; Martino, E.; Niglio, T.; Zanoni, C.; Barillà, F. Low dose chromium-polynicotinate or policosanol is effective in hypercholesterolemic children only in combination with glucomannan. Atherosclerosis 2013, 228, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Davidson, M.H.; Ingram, K.A.; Veith, P.E.; Bell, M.; Gugger, E. Lipid responses to consumption of a beta-glucan containing ready- to-eat cereal in children and adolescents with mild- to-moderate primary hypercholesterolemia. Nutr. Res. 2003, 23, 1527–1535. [Google Scholar] [CrossRef]
- Blumenschein, S.; Torres, E.; Kushmaul, E.; Crawford, J.; Fixler, D. Effect of oat bran/ soy protein in hypercholesterolemic children. Ann. N. Y. Acad. Sci. 1991, 623, 413–415. [Google Scholar] [CrossRef]
- Zavoral, J.H.; Hannan, P.; Fields, D.J.; Hanson, M.N.; Frantz, I.D.; Kuba, K.; Elmer, P.; Jacobs, D.R. The hypolipidemic effect of locust bean gum food products in familial hypercholesterolemic adults and children. Am. J. Clin. Nutr. 1983, 38, 285–294. [Google Scholar] [CrossRef]
- Kwiterovich, P.O.; Chen, S.C.; Virgil, D.G.; Schweitzer, A.; Arnold, D.R.; Kratz, L.E. Response of obligate heterozygotes for phytosterolemia to a low-fat diet and to a plant sterol ester dietary challenge. J. Lipid Res. 2003, 44, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) Final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Thompson, G.R.; Grundy, S.M. History and development of plant sterols and stanol esters for cholesterol lowering purposes. Am. J. Cardiol. 2005, 96, 3D–9D. [Google Scholar] [CrossRef] [PubMed]
- Clifton, P.M.; Noakes, M.; Sullivan, D.; Erichsen, N.; Ross, D.; Annison, G.; Fassoulakis, A.; Cehun, M.; Nestel, P. Cholesterol-lowering effects of plant sterol esters differ in milk, yoghurt, bread and cereal. Eur. J. Clin. Nutr. 2004, 58, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Gylling, H.; Miettinen, T.A. New biologically active lipids in food, health food and pharmaceuticals. Lipid-forum; Scandinavian forum for lipid research and technology. In Proceedings of the 19th Nordic Lipid Symposium, Ronneby, Sweden, 15–18 June 1997. [Google Scholar]
- Tammi, A.; Rönnemaa, T.; Gylling, H.; Rask-Nissilä, L.; Viikari, J.; Tuominen, J.; Pulkki, K.; Simell, O. Plant stanol ester margarine lowers serum total and low-density lipoprotein cholesterol concentrations of healthy children: The STRIP project. Special Turku Coronary Risk Factors Intervention Project. J. Pediatr. 2000, 136, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Gylling, H.; Miettinen, T.A. Inheritance of cholesterol metabolism of probands with high or low cholesterol absorption. J. Lipid Res. 2002, 43, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, T.A.; Tilvis, R.S.; Kesäniemi, Y.A. Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am. J. Epidemiol. 1990, 131, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Gylling, H.; Siimes, M.A.; Miettinen, T.A. Sitostanol ester margarine in dietary treatment of children with familial hypercholesterolemia. J. Lipid Res. 1995, 36, 1807–1812. [Google Scholar] [CrossRef] [PubMed]
- Ribas, S.A.; Sichieri, R.; Moreira, A.S.B.; Souza, D.O.; Cabral, C.T.F.; Gianinni, D.T.; Cunha, D.B. Phytosterol-enriched milk lowers LDL-cholesterol levels in Brazilian children and adolescents: Double-blind, cross-over trial. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 971–977. [Google Scholar] [CrossRef]
- Tammi, A.; Rönnemaa, T.; Miettinen, T.A.; Gylling, H.; Rask-Nissilä, L.; Viikari, J.; Tuominen, J.; Marniemi, J.; Simell, O. Effects of gender, apolipoprotein E phenotype and cholesterol lowering by plant stanol esters in children: The STRIP study. Special Turku coronary risk factor intervention project. Acta Paediatr. 2002, 91, 1155–1162. [Google Scholar] [CrossRef]
- Amundsen, A.L.; Ose, L.; Nenseter, M.S.; Ntanios, F.Y. Plant sterol ester-enriched spread lowers plasma total and LDL cholesterol in children with familial hypercholesterolemia. Am. J. Clin. Nutr. 2002, 76, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Amundsen, A.L.; Ntanios, F.; Put, N.V.; Ose, L. Long-term compliance and changes in plasma lipids, plant sterols and carotenoids in children and parents with FH consuming plant sterol ester-enriched spread. Eur. J. Clin. Nutr. 2004, 58, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Garoufi, A.; Vorre, S.; Soldatou, A.; Tsentidis, C.; Kossiva, L.; Drakatos, A.; Marmarinos, A.; Gourgiotis, D. Plant sterols–enriched diet decreases small, dense LDL-cholesterol levels in children with hypercholesterolemia: A prospective study. Ital. J. Pediatr. 2014, 40, 42. [Google Scholar] [CrossRef] [PubMed]
- Ketomäki, A.M.; Gylling, H.; Antikainen, M.; Siimes, M.A.; Miettinen, T.A. Red cell and plasma plant sterols are related during consumption of plant stanol and sterol ester spreads in children with hypercholesterolemia. J. Pediatr. 2003, 142, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Guardamagna, O.; Abello, F.; Baracco, V.; Federici, G.; Bertucci, P.; Mozzi, A.; Mannucci, L.; Gnasso, A.; Cortese, C. Primary hyperlipidemias in children: Effect of plant sterol supplementation on plasma lipids and markers of cholesterol synthesis and absorption. Acta Diabetol. 2011, 48, 127–133. [Google Scholar] [CrossRef]
- Jakulj, L.; Vissers, M.N.; Rodenburg, J.; Wiegman, A.; Trip, M.D.; Kastelein, J.J. Plant stanols do not restore endothelial function in prepubertal children with familial hypercholesterolemia despite reduction of low-density lipoprotein cholesterol levels. J. Pediatr. 2006, 148, 495–500. [Google Scholar] [CrossRef]
- de Jongh, S.; Vissers, M.N.; Rol, P.; Bakker, H.D.; Kastelein, J.J.; Stroes, E.S. Plant sterols lower LDL cholesterol without improving endothelial function in prepubertal children with familial hypercholesterolaemia. J. Inherit. Metab. Dis. 2003, 26, 343–351. [Google Scholar] [CrossRef]
- Mantovani, L.M.; Pugliese, C. Phytosterol supplementation in the treatment of dyslipidemia in children and adolescents: A systematic review. Rev. Paul. Pediatr. 2020, 39, e2019389. [Google Scholar] [CrossRef]
- AbuMweis, S.S.; Barake, R.; Jones, P.J. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized controlled trials. Food Nutr. Res. 2008, 52, 1–17. [Google Scholar] [CrossRef]
- Miettinen, T.A.; Puska, P.; Gylling, H.; Vanhanen, H.; Vartiainen, E. Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. N. Engl. J. Med. 1995, 333, 1308–1312. [Google Scholar] [CrossRef]
- Malhotra, A.; Shafiq, N.; Arora, A.; Singh, M.; Kumar, R.; Malhotra, S. Dietary interventions (plant sterols, stanols, omega-3 fatty acids, soy protein and dietary fibers) for familial hypercholesterolaemia [Review]. Cochrane Database Syst. Rev. 2014, 2014, CD001918. [Google Scholar] [CrossRef] [PubMed]
- Demonty, I.; Ras, R.T. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: A pooled analysis of 12 randomized controlled trials. Eur. J. Nutr. 2013, 52, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, T.A.; Gylling, H. Effect of statins on noncholesterol sterol levels: Implications for use of plant stanols and sterols. Am. J. Cardiol. 2005, 96, 40D–46D. [Google Scholar] [CrossRef] [PubMed]
- Vuorio, A.; Kovanen, P.T. Decreasing the cholesterol burden in heterozygous familial hypercholesterolemia children by dietary plant stanol esters. Nutrients 2018, 10, 1842. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Speirs, J.; Tracy, T.; Streicher, P.; Illig, E.; Vandegrift, J. Relationships of serum plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hyperphytosterolemic probands and their first-degree relatives. Metabolism 1991, 40, 842–848. [Google Scholar] [CrossRef]
- Assmann, G.; Cullen, P. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: Results of a nested case- control analysis of the Prospective cardiovascular Munster (PROCAM) study. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 13–21. [Google Scholar] [CrossRef]
- Thiery, J.; Ceglarek, U. Elevated campesterol serum levels—A significant predictor of incident myocardial infarction: Results of the population-based Monica/KORA follow-up study 1994–2005. Circulation 2006, 114, II-884. [Google Scholar]
- Tada, H.; Nomura, A.; Ogura, M.; Ikewaki, K.; Ishigaki, Y.; Inagaki, K.; Tsukamoto, K.; Dobashi, K.; Nakamura, K.; Hori, M.; et al. Diagnosis and management of sitosterolemia 2021. J. Atheroscler. Thromb. 2021, 28, 791–801. [Google Scholar] [CrossRef]
- Jones, M.L.; Tomaro-Duchesneau, C.; Martoni, C.J.; Prakash, S. Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin. Biol. Ther. 2013, 13, 631–642. [Google Scholar] [CrossRef]
- Bordoni, A.; Amaretti, A.; Leonardi, A.; Boschetti, E.; Danesi, F.; Matteuzzi, D.; Roncaglia, L.; Raimondi, S.; Rossi, M. Cholesterol-lowering probiotics: In vitro selection and in vivo testing of bifidobacteria. Appl. Microbiol. Biotechnol. 2013, 97, 8273–8281. [Google Scholar] [CrossRef]
- Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513. [Google Scholar] [CrossRef] [PubMed]
- Zarezadeh, M.; Musazadeh, V. Probiotics act as a potent intervention in improving lipid profile: An umbrella systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 145–158. [Google Scholar] [CrossRef]
- Guardamagna, O.; Amaretti, A.; Puddu, P.E.; Raimondi, S.; Abello, F.; Cagliero, P.; Rossi, M. Bifidobacteria supplementation: Effects on plasma lipid profiles in dyslipidemic children. Nutrition 2014, 30, 831–836. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFS J. 2012, 10, 3020. [Google Scholar]
- Guardamagna, O.; Abello, F.; Baracco, V.; Stasiowska, B.; Martino, F. The treatment of hypercholesterolemic children: Efficacy and safety of a combination of red yeast rice extract and policosanols. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Weghuber, D.; Widhalm, K. Effect of 3-month treatment of children and adolescents with familial and polygenic hypercholesterolaemia with a soya-substituted diet. Br. J. Nutr. 2008, 99, 281–286. [Google Scholar] [CrossRef]
- Widhalm, K.; Brazda, G.; Schneider, B.; Kohl, S. Effect of soy protein diet versus standard low fat, low cholesterol diet on lipid and lipoprotein levels in children with familial or polygenic hypercholesterolemia. J. Pediatr. 1993, 123, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Laurin, D.; Jacques, H.; Moorjani, S.; Steinke, F.H.; Gagné, C.; Brun, D.; Lupien, P.J. Effects of a soy-protein beverage on plasma lipoproteins in children with familial hypercholesterolemia. Am. J. Clin. Nutr. 1991, 54, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Del Bo’, C.; Deon, V.; Abello, F.; Massini, G.; Porrini, M.; Riso, P.; Guardamagna, O. Eight-week hempseed oil intervention improves the fatty acid composition of erythrocyte phospholipids and the omega-3 index, but does not affect the lipid profile in children and adolescents with primary hyperlipidemia. Food Res. Int. 2019, 119, 469–476. [Google Scholar] [CrossRef]
- Guaraldi, F.; Deon, V.; Del Bo’, C.; Vendrame, S.; Porrini, M.; Riso, P.; Guardamagna, O. Effect of short-term hazelnut consumption on DNA damage and oxidized LDL in children and adolescents with primary hyperlipidemia: A randomized controlled trial. J. Nutr. Biochem. 2018, 57, 206–211. [Google Scholar] [CrossRef]
- Gargari, G.; Deon, V.; Taverniti, V.; Gardana, C.; Denina, M.; Riso, P.; Guardamagna, O.; Guglielmetti, S. Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS Microbiol. Ecol. 2018, 94, fiy045. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef]
- Deon, V.; Del bo’, C. Effect of hazelnut on serum lipid profile and fatty acid composition of erythrocyte phospholipids in children and adolescents with primary hyperlipidemia: A randomized controlled trial. Clin. Nutr. 2018, 37, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, C.; Ciudad, C.J.; Noé, V.; Izquierdo-Pulido, M. Health benefits of walnut polyphenols: An exploration beyond their lipid profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 3373–3383. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Baroni, L. Soy, Soy foods and their role in vegetarian diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Helk, O.; Widhalm, K. Effects of a low-fat dietary regimen enriched with soy in children affected with heterozygous familial hypercholesterolemia. Clin. Nutr. ESPEN 2020, 36, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Schwab, U.S.; Callaway, J.C.; Erkkilä, A.T.; Gynther, J.; Uusitupa, M.I.; Järvinen, T. Effects of hempseed and flaxseed oils on the profile of serum lipids, serum total and lipoprotein lipid concentrations and haemostatic factors. Eur. J. Nutr. 2006, 45, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Patch, C.S.; Tapsell, L.C.; Mori, T.A.; Meyer, B.J.; Murphy, K.J.; Mansour, J.; Noakes, M.; Clifton, P.M.; Puddey, I.B.; Beilin, L.J.; et al. The use of novel foods enriched with longchain n-3 fatty acids to increase dietary intake: A comparison of methodologies assessing nutrient intake. J. Am. Diet. Assoc. 2005, 105, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Glickstein, S.B.; Rowe, J.D.; Soni, P.N. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: A review. J. Clin. Lipidol. 2012, 6, 5–18. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83 (Suppl. S6), 1505S–1519S. [Google Scholar] [CrossRef]
- Romeo, J.; Wärnberg, J.; García-Mármol, E.; Rodríguez-Rodríguez, M.; Diaz, L.E.; Gomez-Martínez, S.; Cueto, B.; López-Huertas, E.; Cepero, M.; Boza, J.J.; et al. Daily consumption of milk enriched with fish oil, oleic acid, minerals and vitamins reduces cell adhesion molecules in healthy children. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Fogacci, F.; Stoian, A.P.; Toth, P.P. Red Yeast Rice for the Improvement of Lipid Profiles in Mild-to-Moderate Hypercholesterolemia: A Narrative Review. Nutrients 2023, 15, 2288. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Zambon, A. Red yeast rice for hypercholesterolemia: JACC focus seminar. J. Am. Coll. Cardiol. 2021, 77, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group, & International Lipid Expert Panel (ILEP). Safety of red yeast rice supplementation: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2019, 143, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R0860 (accessed on 1 September 2022).
- Massini, G.; Capra, N.; Buganza, R.; Nyffenegger, A.; de Sanctis, L.; Guardamagna, O. Mediterranean dietary treatment in hyperlipidemic children: Should it be an option? Nutrients 2022, 14, 1344. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Di Micoli, V.; Sabouret, P.; Giovannini, M.; Cicero, A.F.G. Lifestyle and Lipoprotein(a) Levels: Does a Specific Counseling Make Sense? J. Clin. Med. 2024, 13, 751. [Google Scholar] [CrossRef] [PubMed]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Capra, M.E.; Biasucci, G.; Banderali, G.; Vania, A.; Pederiva, C. Diet and Lipid-Lowering Nutraceuticals in Pediatric Patients with Familial Hypercholesterolemia. Children 2024, 11, 250. [Google Scholar] [CrossRef]
- Banderali, G.; Capra, M.E.; Viggiano, C.; Biasucci, G.; Pederiva, C. Nutraceuticals in Paediatric Patients with Dyslipidaemia. Nutrients 2022, 14, 569. [Google Scholar] [CrossRef]
Type of Study [Reference] | Primary Aim of the Study | Participants | Main Inclusion Criteria of the Study | Active Intervention | Follow-Up | Intolerance and/or Side Effects | Compliance | Main Effect of Dietary Supplementation with Phytosterols/Stanols |
---|---|---|---|---|---|---|---|---|
Controlled clinical trial [66] | To assess the effect of the daily consumption of 2 g of plant sterols on sdLDL-C levels in children | N. 59 children (4.5–15.9 years; N. 25 with LDL-C ≥ 130 mg/dL and N. 34 with LDL-C < 130 mg/dL) | Not specified | Yogurt enriched with 2 g/day plant sterols | 6–12 months | No serious adverse event | Good compliance (86.6%) |
|
Double-blind, crossover, controlled clinical trial [62] | To assess the effect of the daily consumption of milk enriched with 1.2 g/day of plant sterol on cholesterol in children | N. 30 children (6–9 years) |
| Milk enriched with 1.2 g/day of plant sterol | 8 weeks | No serious adverse events. N. 1 child experienced nausea | Good compliance |
|
Randomized, double-blind, crossover, controlled clinical trial [69] | To assess the effect of plant stanols on lipids and endothelial function in pre-puberal children | N. 40 children (7–12 years) | Diagnosis of FH by detecting mutation or an LDL-C > 95th percentile for age and sex and one parent with FH | 500 mL of a low-fat yogurt enriched with 2.0 g of plant stanols | 4 weeks | No serious adverse events | Good compliance (98% during the plant stanol consumption group and 96% in the control group) |
|
Randomized, clinical trial [68] | To assess the efficacy, tolerability, and safety following dietary supplementation with plant sterol in children | N. 52 children (8–16 years) | Outpatients with primary hyperlipidemia (e.g., HeFH, FCH or primary hypercholesterolemia) | Plant sterol-enriched yogurt (100 mL, 1.6–2.0 g/day of sterol) | 12 weeks | N. 1 child experienced abdominal discomfort | N. 2 children had poor adherence to the diet program; N. 2 children had difficulties drinking the yogurt |
|
Randomized, crossover, clinical trial [65] | To assess changes in plasma lipids, plant sterols, fat-soluble vitamins and carotenoids in children and parents with FH consuming plant sterol ester-enriched spread | N. 37 children (7–13 years) and their parents (N. 20; 32–51 years) | Diagnosis “definite” or “possible” HeFH (for children and their parents) |
| 26 weeks | No serious adverse events | Good compliance |
|
Randomized, double-blind, crossover, placebo-controlled clinical trial [63] | To assess the effects of sex, Apo-E phenotype, cholesterol absorption, and synthesis on the cholesterol-lowering effect of plant stanol esters in children | N. 81 children (6 years) | Children recruited from the STRIP study | Replacement of dietary fat intake with 20 g/day of plant stanol ester margarine | 3 months | No serious adverse events | Good compliance |
|
Randomized, double-blind, crossover, placebo-controlled clinical trial [64] | To assess the effect of the sterol ester-enriched spread on serum lipids, lipoproteins, carotenoids, fat-soluble vitamins, and physiologic variables in children | N. 38 children (7–12 years) | Diagnosis “definitive” or “possible” HeFH | Child 1 diet + 18.2 ± 1.5 g/day of sterol ester-enriched spread (1.60 ± 0.13 g sterol ester) | 8 weeks | No serious adverse events | Good compliance (91.7% in the actively treated group and 90.9% in the control group) |
|
Randomized, double-blind, crossover, placebo-controlled clinical trial [67] | To assess whether the ratios of squalene and cholesterol precursor sterols to cholesterol, cholestanol, and plant sterols to cholesterol differently change in the plasma of children after dietary supplementation with stanol esters | N. 23 children (2–9 years) | TC > 194 mg/dL and TG < 176 mg/dL | 19.9 g/day of stanol ester-enriched spread (1.6 g stanol esters) and 21 g/day of stanol ester-enriched spread (1.7 g stanol esters) | 5 weeks | No serious adverse events | Good compliance |
|
Randomized, double-blind, crossover, placebo-controlled clinical trial [70] | Effect of plant sterols on cholesterol and vascular function in prepuberal children with FH | N. 61 children (5–12 years) |
| 15 g of plant sterol-enriched spread (2.3 g plant sterols) | 4 weeks | No serious adverse events | Good compliance |
|
Randomized, double-blind, clinical trial [61] | Effects of sitostanol (3 g/day) ester dissolved in rapeseed oil margarine as a hypocholesterolemic agent in one child with homozygous and 14 children with He-FH maintained on a low cholesterol diet for 6 weeks | N. 15 children with FH (i.e., HeFH and HoFH; 2–15 years) | FH diagnosis established in children and in one of the parents by DNA technique | 24 g/day of rapeseed oil-rich margarine with sitostanol ester (mean sitostanol intake of 2.76 ± 0.15 g/day) | 6 weeks | No serious adverse events | Good compliance |
|
Nutraceutical | Type Of Study [Reference] | Primary Aim of the Study | Participants | Main Inclusion Criteria of the Study | Intervention | Follow-Up | Intolerance and/or Side Effect | Compliance | Main Observations |
---|---|---|---|---|---|---|---|---|---|
RED YEAST RICE EXTRACT AND POLICOSANOLS | Randomized, double-blind, crossover, placebo-controlled clinical trial [90] | To assess the efficacy, tolerability and safety of treatment with a dietary supplement containing red yeast rice extract and policosanols in children | N. 40 children (8–16 years) | Hypercholesterolemia (i.e., FH, FCH or polygenic hypercholesterolemia) | 200 mg/day red yeast rice extract (~3 mg/day of monacolins) and 10 mg/day policosanols | 8 weeks |
| Good compliance |
|
SOY PROTEINS | Randomized, clinical trial [91] | To assess the effect on serum lipids and lipoproteins of 3-month treatment with a soya-substituted diet in children | N. 16 children (4–18 years) | Diagnosis of FH in children and at least one family member with FH | Diet substituting soy protein (≥0.25 g/Kg body weight) for animal protein | 3 months |
| Good compliance |
|
Randomized, crossover, controlled, clinical trial [92] | To assess the effect on plasma lipid and lipoprotein levels of a standard low-fat and -cholesterol diet compared with a low-fat and -cholesterol diet substituting soy protein for animal protein | N. 23 children with FH or polygenic hypercholesterolemia (N. 12 male children and N. 11 female children; 9.3 ± 4.5 years) | FH or polygenic hypercholesterolemia | Soy proteins in diet | 8 weeks | Not relevant adverse effects | Not assessed |
| |
Randomized, double-blind, crossover, placebo-controlled clinical trial [93] | To assess the effect on plasma lipoprotein concentrations of soy proteins and cow milk proteins in children | Children | FH |
| 4 weeks | No relevant adverse effects | Not indicated |
| |
PUFA | Randomized, controlled, clinical trial [94] | To assess the effect of dietary supplementation with hempseed oil on plasma lipid profile and FA composition of RBCs in children | N. 36 children | Polygenic hypercholesterolemia and compliance with dietary guidelines | 3 g hempseed oil (1.4 g LA and 0.7 g/day ALA) | 8 weeks | No relevant adverse effects | Not indicated |
|
NUTS | Randomized, single-blind, controlled, clinical trial [91] | To assess the effect of dietary intervention with hazelnuts on plasma lipids, anthropometric parameters, and FAs composition of erythrocyte phospholipids | N. 60 children (11.6 years) | Primary hyperlipidemia, with TC and/or TG > 90th percentile | 15–20 g/day hazelnuts | 8 weeks | No relevant adverse effects | Not indicated |
|
Randomized, controlled, clinical trial [95] | To assess the effect of a dietary intervention with hazelnuts on selected oxidative stress markers in children | N. 60 children |
| 15–20 g/day hazelnuts | 8 weeks | No relevant adverse effects | Not indicated |
| |
Randomized, controlled clinical trial [96] | To assess the effects of regular hazelnut intake on microbiota composition and SCFA levels in children | N. 32 children (7–17 years) |
| 0.43 g/kg hazelnuts body weight (≤30 g) | 8 weeks | No relevant adverse effects | Not indicated |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogacci, F.; ALGhasab, N.S.; Di Micoli, V.; Giovannini, M.; Cicero, A.F.G. Cholesterol-Lowering Bioactive Foods and Nutraceuticals in Pediatrics: Clinical Evidence of Efficacy and Safety. Nutrients 2024, 16, 1526. https://doi.org/10.3390/nu16101526
Fogacci F, ALGhasab NS, Di Micoli V, Giovannini M, Cicero AFG. Cholesterol-Lowering Bioactive Foods and Nutraceuticals in Pediatrics: Clinical Evidence of Efficacy and Safety. Nutrients. 2024; 16(10):1526. https://doi.org/10.3390/nu16101526
Chicago/Turabian StyleFogacci, Federica, Naif Saad ALGhasab, Valentina Di Micoli, Marina Giovannini, and Arrigo Francesco Giuseppe Cicero. 2024. "Cholesterol-Lowering Bioactive Foods and Nutraceuticals in Pediatrics: Clinical Evidence of Efficacy and Safety" Nutrients 16, no. 10: 1526. https://doi.org/10.3390/nu16101526
APA StyleFogacci, F., ALGhasab, N. S., Di Micoli, V., Giovannini, M., & Cicero, A. F. G. (2024). Cholesterol-Lowering Bioactive Foods and Nutraceuticals in Pediatrics: Clinical Evidence of Efficacy and Safety. Nutrients, 16(10), 1526. https://doi.org/10.3390/nu16101526