Evaluation of Native Festuca Taxa for Sustainable Application in Urban Environments: Their Characteristics, Ornamental Value, and Germination in Different Growing Media
Abstract
:1. Introduction
Hypothesis and Questions
2. Materials and Methods
2.1. Studied Species
2.1.1. Festuca wagneri
2.1.2. Festuca tomanii
2.2. Observed Data
- Sand–peat mixture (EC (mS/cm): 0.56; pH: 5.71; O.M. (%) (organic matter): 16.5; composition: 57% peat, 43% river sand);
- Sand (EC (mS/cm): 0.2 4; pH: 7.56; O.M. (%) (organic matter): 0.5; composition: 100% sand);
- Coconut coir (EC (mS/cm): 0.61; pH: 5.02; O.M. (%) (organic matter): 62.3; composition: 100% coconut fiber);
- Peat (EC (mS/cm): 0.82; pH: 3.64; O.M. (%) (organic matter): 35; composition: 100% peat);
- Sand–coconut coir mixture (EC (mS/cm): 0.46; pH: 7.54; O.M. (%) (organic matter): 37; composition: 64% coconut fiber, 36% sand);
- Natural sandy soil (Calcaric Arenosol) from the substrate of Festuca wagneri (EC (mS/cm): 0.1; pH: 7.61; O.M. (%) (organic matter): 2.7; composition: [not specified]);
- Natural sandy soil (Calcaric Arenosol) from the substrate of Festuca tomanii (Homoktövis TVT) (EC (mS/cm): 0.35; pH: 7.23; O.M. (%) (organic matter): 3.5; composition: [not specified]).
2.3. Statistical Analysis
3. Results
- Leaves and inflorescence are densely upright (W4, W17, and W22);
- Inflorescence shoots are spread out (W5, W15, and W20);
- Low ‘dwarf’ form plants that are compact and dense but short in stature (W9, W10, W14, and W16).
3.1. Result of Festuca wagneri Germination
3.1.1. Normality Analysis Results
3.1.2. Kruskal–Wallis H Test Results by Growing Media
3.2. Results for Festuca tomanii
Kruskal–Wallis Test Results by Growing Media of Festuca tomanii
3.3. Genotype and Environmental Interactions
4. Discussion
Germination Rate and Plant Height
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Staub, J.E.; Robbins, M.D.; Larson, S.R.; Johnson, P.G. Multicolored Ornamental Festuca Grass Cultivars Freedom Fire Francy, Vida, Heidi, and Kim for Low-input Applications in Semiarid Environments. Hortscience 2017, 52, 925–931. [Google Scholar] [CrossRef]
- Loram, A.; Warren, P.H.; Gaston, K.J. Urban domestic gardens (XIV): The characteristics of gardens in five cities. Environ. Mgt. 2008, 42, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Clayton, W.D.; Harman, K.T.; Williamson, H. World Grass Species—Synonymy database; The Board of Trustees of the Royal Botanic Gardens, Kew: London, UK, 2006. [Google Scholar]
- Beard, J.B.; Green, R.L. The role of turfgrasses in environmental protection and their benefits to humans. J. Environ. Qual. 1994, 23, 452–460. [Google Scholar] [CrossRef]
- Fender, D. Urban perennial grasses in time of water crisis: Benefits and concerns. In Water Quality and Quantity Issues for Turfgrasses in Urban Landscapes; Council for Agricultural Science and Technology (CAST): Las Vegas, NV, USA, 2006; pp. 33–53. [Google Scholar]
- Hockenberry, M.M.; White, D.B.; Pellett, H. Ornamental Grasses For Minnesota. J. Environ. Hort. 1994, 12, 159–163. [Google Scholar]
- Steinegger, D.; Fech, J.C.; Lindgren, D.T.; Streich, A. Ornamental Grasses in Nebraska Landscapes; Historical Materials from University of Nebraska-Lincoln Extension: Lincoln, NE, USA, 1996. [Google Scholar]
- Botelho, F.C.; Rodrigues, S.; Bruzi, A. Ornamental Plant Breeding. Horticulture 2015, 21, 9–16. [Google Scholar] [CrossRef]
- Meyer, H.M.; White, D.B.; Pellet, H. Ornamental Grasses for Cold Climates; Department of Horicultural Science, University of Minnesota: Minneapolis, MN, USA, 2020. [Google Scholar]
- Stukonis, V.; Lemežienė, N.; Kanapeckas, J. Suitability of narrow-leaved Festuca species for turf. Agron. Res. 2010, 8, 729–734. [Google Scholar]
- Love, S.L.; Noble, K.; Parkinson, S.; Bell, S. Herbaceous Ornamentals Annuals, Perennials, and Ornamental Grasses; University of Idaho: Moscow, ID, USA, 2009. [Google Scholar]
- Meyer, H.M.; Mower, G.R. Ornamental Grasses for the Home and Garden; Cornell University: New York, NY, USA, 1986. [Google Scholar]
- Staub, J.E.; Robbins, M.D. Phenotypic and Genotypic Analysis of a U.S. Native Fine-leaved Festuca Population Reveals Its Potential Use for Low-input Urban Landscapes. J. Am. Soc. Hort. Sci. 2014, 139, 706–715. [Google Scholar] [CrossRef]
- Dobignard, D.; Chatelain, C. Index Synonymique de la Flore d’Afrique du Nord; Éditions des Conservatoire et Jardin Botaniques Genève: Geneva, Switzerland, 2010; pp. 401–441. [Google Scholar]
- Giraldo-Cañas, D. Catálogo de la familia Poaceae en Colombia. Darwiniana 2011, 49, 139–247. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea 5; Cambridge University Press: Cambridge, UK, 1980; pp. 1–494. [Google Scholar]
- Stace, C. New Flora of the British Isles 4; C & M: Cambridge, UK, 2019. [Google Scholar]
- Patzke, E. Zur Kenntnis der Sammelart Festuca ovina L. im südlichen Niedersachsen. Götting. Flor. Rundbr. 1968, 4, 14–17. [Google Scholar]
- Pils, G. Systematik, Karyologie und Verbreitung der Festuca valesiaca-gruppe (Poaceae) in Österreich und Südtirol. Phyton 1984, 24, 35–77. [Google Scholar]
- Dostal, J. Nová Kvetena ČSSR I-II; Academia: Praha, Czech Republic, 1989. [Google Scholar]
- Adler, W.; Oswald, K.; Fischer, R. Exkursionflora von Österreich; Ulmer: Stuttgart, Germany; Vienna, Austria, 1994. [Google Scholar]
- Rothmaler, W.; Echerhart, J.; Jäger, E.J.; Klaus, W. Exkursionflora von Deutschland. Band 4 Kritischer Band; Spektrum Akademischer Verlag Heidelberg: Berlin, Germany, 2002. [Google Scholar]
- Săvulescu, T. Flora Reipublicae Socialisticae Romania XII; Edit. Academiae Reipublicae Socialisticae Romănia: București, Romania, 1972. [Google Scholar]
- Brookes, J. Book of Gardens; Officina Nova Kiadó: Budapest, Hungary, 1991. [Google Scholar]
- Dąbrowska, A. Evaluation of the decorative value of wild-grown Festuca trachyphylla (Hack.) Krajina in the southeastern part of Poland. Folia Hort. 2013, 25, 13–19. [Google Scholar] [CrossRef]
- Tomaškin, J.; Tomaškinová, J.; Kizekova, M. Ornamental grasses as part of public green, their ecosystem services and use in vegetative arrangements in urban environment. Thaiszia J. Bot. 2015, 25, 1–13. [Google Scholar]
- Schmidt, G. Cultivation, Knowledge and Use of Perennial Ornamental Plants; Corvinus Kiadó: Budapest, Hungary, 2005. [Google Scholar]
- Zsohár, C.S.; Zsohárné Ambrus, M. Perennial Ornamental Plants; Botanika Kft.: Budapest, Hungary, 2001. [Google Scholar]
- Stewart, A. The potential for domestication and seed propagation of native New Zealand grasses for turf. In Greening the City: Bringing Diversity Back into the Urban Environment; Royal New Zealand Institute of Horticulture: Lincoln, New Zealand, 2005; pp. 277–284. [Google Scholar]
- Nawrocki, A.; Popek, R.; Przybysz, A. Where Trees Cannot Grow—Herbaceous Plants as Filters in Air Purification from PM. 2024. Available online: https://doi.org/10.24326/ICDSUPL2.E026 (accessed on 21 May 2024).
- Souri, M.K. Influence of N-forms and changes in nutrient solution pH on growth of Palisadegrass plants. J. Plant Nutr. 2022, 45, 1827–1836. [Google Scholar] [CrossRef]
- Török, P.; Schmidt, D.; Bátori, Z.; Aradi, E.; Kelemen, A.; Hábenczyus, A.A.; Diaz, C.P.; Tölgyesi, C.; Pál, R.W.; Balogh, N.; et al. Invasion of the North American sand dropseed (Sporobolus cryptandrus)—A new pest in Eurasian sand areas? Glob. Ecol. Conserv. 2021, 32, e01942. [Google Scholar] [CrossRef]
- Tilley, D.; St. John, L.; Ogle, D. Plant Guide for Sand Dropseed (Sporobolus cryptandrus); USDA Natural Resources Conservation Service, Idaho Plant Materials Center: Aberdeen, ID, USA, 2009.
- Penksza, K.; Engloner, A. Taxonomic study of Festuca wagneri (Degen Thaisz et Flatt) Degen, Thaisz et Flatt. 1905. Acta Bot. Acad. Sci. Hung. 1999/2000, 42, 257–264. [Google Scholar]
- Korneck, D.; Gregor, T. Festuca tomanii sp. nov., ein Dünen-Schwingel des nördlichen oberrhein-, des mittleren main- und des böhmischen Elbetales. Kochia 2015, 9, 37–58. [Google Scholar] [CrossRef]
- Wilson, B.L.; Darris, D.C.; Fiegener, R.; Johnson, R.; Horning, M.E.; Kuykendall, K. Seed transfer zones for a native grass (Festuca roemeri): Genecological evidence. Nativ. Plants J. 2008, 9, 287–303. [Google Scholar] [CrossRef]
- Ushey, K.; Allaire, J.; Tang, Y. Reticulate: Interface to ‘Python’. R Package Version 1.38.0. 2024. Available online: https://github.com/rstudio/reticulate (accessed on 13 May 2024).
- Virtanen, P.; Reddy, T.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, J.N.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Waskom, M. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin, Germany, 2016. [Google Scholar]
- Tarnawa, Á.; Kende, Z.; Sghaier, A.H.; Kovács, G.P.; Gyuricza, C.; Khaeim, H. Effect of Abiotic Stresses from Drought, Temperature, and Density on Germination and Seedling Growth of Barley (Hordeum vulgare L.). Plants 2023, 12, 1792. [Google Scholar] [CrossRef] [PubMed]
- Meixue, Q.; Duan, W.; Chen, L. The role of cryptogams in soil property regulation and vascular plant regeneration A review. Appl. Sci. 2024, 14, 2. [Google Scholar] [CrossRef]
- Kitir, N.; Yildirim, E.; Şahin, Ü.; Turan, M.; Ekinci, M.; Ors, S.; Kul, R.; Ünlü, H.; Ünlü, H. Peat use in horticulture. In Peat; IntechOpen: London, UK, 2018; pp. 75–90. [Google Scholar] [CrossRef]
- Zhong, Z.; Bian, F.; Zhang, X. Testing composted bamboo residues with and without added effective microorganisms as a renewable alternative to peat in horticultural production. Ind. Crops Prod. 2018, 112, 602–607. [Google Scholar] [CrossRef]
- Bewley, J.D. Seed Germination and Dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef]
- Larsen, S.U.; Bailly, C.; Côme, D.; Corbineau, F. Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Sci. Res. 2004, 14, 35–50. [Google Scholar] [CrossRef]
- Pócs, T. Die Vegetation des “Akademischen Waldes” in Rákoskeresztúr. Bot. Közlemények 1954, 45, 283–294. [Google Scholar]
- Csáky, P.A. Important plant species of the northern part of Turjánvidék from a floristic point of view. In Nature Conservation and Research in the Northern Part of Turjánvidék Rosalia; Duna–Ipoly Nemzeti Park Igazgatóság: Budapest, Hungary, 2018; Volume 10, pp. 145–252. [Google Scholar]
- Nimbalkar, M.S.; Pawar, N.V.; Pai, S.R.; Dixit, G.B. Synchronized variations in levels of essential amino acids during germination in grain Amaranth. Braz. J. Bot. 2020, 43, 481–491. [Google Scholar] [CrossRef]
- Aldana, S.; López, D.R.; López, M.V.; Arana, D.; Batlla Marchelli, B. Germination response to water availability in populations of Festuca pallescens along a Patagonian rainfall gradient based on hydrotime model parameters. Sci. Rep. 2021, 11, 10653. [Google Scholar] [CrossRef]
- Eshghi, S.; Bahadoran, M.; Salehi, H. Growth of tall fescue (Festuca arundinacea Schreb.) seedling sown in soil mixed with nitrogen and natural zeolite. Adv. Hortic. Sci. 2014, 28, 20–24. [Google Scholar] [CrossRef]
- Vivanco, P.; Oliveira, J.A.; Martín, I. Optimal germination conditions for monitoring seed viability in wild populations of fescues. Span. J. Agric. Res. 2021, 19, e0804. [Google Scholar] [CrossRef]
- Gregorie, G. Effects of Organic Fertilizers on Turfgrass Quality and Growth. Master’s Thesis, The University of Guelph, Ottawa, ON, Canada, 2004. [Google Scholar]
- Liu, Y.; Zhang, S.; De Boeck, H.J.; Hou, F. Effects of Temperature and Salinity on Seed Germination of Three Common Grass Species. Plant Sci. Sec. Funct. Plant Ecol. 2021, 12, 731433. [Google Scholar] [CrossRef] [PubMed]
- Bewley, D.J.; Bradford, K.J.; Hilhorst, K.J.; Henk, W.M.; Nonogaki, H. Seeds, Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Zhang, T.; Liu, M.; Huang, X.; Hu, W.; Qiao, N.; Song, H.; Zhang, B.; Zhang, R.; Yang, Z.; Liu, Y.; et al. Direct effects of nitrogen addition on seed germination of eight semi-arid grassland species. Ecol. Evol. 2020, 10, 8793–8800. [Google Scholar] [CrossRef]
- Shiade, S.R.G.; Boelt, B. Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress. Acta Agric. Scand. Sestion B. Soil Plant Sci. 2020, 70, 485–494. [Google Scholar] [CrossRef]
- Ali, A.H.; Marghany, M.R.; Atito, E.; BaruÇular, C.; Kamel, N.M.; Mohamed, M.M.; Ahmed, M.M.; El-Sayed, M.A. Desert plants seeds morphology and germination strategy. Int. J. Conserv. Sci. 2022, 13, 1249–1260. [Google Scholar]
- Stanisavljević, R.S.; Vucković, S.M.; Simić, A.S.; Marković, J.P.; Lakić, Z.P.; Terzić, D.V.; Dokić, D.J. Acid and Temperature Treatments Result in Increased Germination of Seeds of Three Fescue Species. Not. Bot. Horti Agrobot. Cluj Napoca 2012, 40, 220–226. [Google Scholar] [CrossRef]
- Nematollahi, F.; Tehranifara, A.; Nematia, S.H.; Kazemia, F.; Gazanchianb, G.A. Improving early growing stage of Festuca arundinacea Schreb. using media amendments under water stress conditions. Desert 2018, 23, 295–306. [Google Scholar]
- Danielson, H.R.; Toole, V.K. Action of Temperature and Light on the Control of Seed Germination in Alta Tall Fescue (Festuca arundinacea Schreb.). Crop Sci. 1976, 16, 296–300. [Google Scholar] [CrossRef]
- Al-Qahtani Alhajhoj, M.R. Effect of Addition of Sand and Soil Amendments to Loam and Brick Grit Media on the Growth of Two Turf Grass Species (Lolium perenne and Festuca rubra). J. Appl. Sci. 2009, 9, 2485–2489. [Google Scholar] [CrossRef]
- Çelikler, S.; Güleryüz, G.; Bilaloğlu, R. Germination Responses to GA3 and Stratification of Threatened Festuca L. Species from Eastern Mediterranean. Z. Naturforschung C 2006, 61, 372–376. [Google Scholar] [CrossRef]
- Zargar Shooshtari, F.; Souri, M.K.; Hasandokht, M.R.; Jari, S.K. Glycine mitigates fertilizer requirements of agricultural crops Case study with cucumber as a high fertilizer demanding crop. Chem. Biol. Technol. Agric. 2020, 7, 19. [Google Scholar] [CrossRef]
Variable | Shapiro–Wilk Test Statistic | p-Value |
---|---|---|
Germination rate (%) | 0.8409 | <0.001 |
Plant height (cm) | 0.8511 | <0.001 |
Growing Media | Variable | Kruskal–Wallis H Test Statistic |
---|---|---|
Germination rate (%) | 34.625 * | |
Plant height (cm) | 24.690 * | |
substrate sand (Calcaric Arenosol) | Germination rate (%) | 28.761 * |
Plant height (cm) | 26.338 * | |
peat & river sand | Germination rate (%) | 35.230 * |
Plant height (cm) | 25.245 * | |
river sand | Germination rate (%) | 32.462 * |
Plant height (cm) | 24.795 * | |
coconut fiber & river sand | Germination rate (%) | 34.452 NS |
Plant height (cm) | 29.556 * | |
coconut fiber | Germination rate (%) | 31.532 * |
Plant height (cm) | 11.339 NS |
Growing Medium | Metric | Kruskal–Wallis H Test Statistic | p-Value |
---|---|---|---|
peat | Germination rate (%) | 17.0999 | 0.001 |
peat | Plant height (cm) | 16.0264 | 0.002 |
substrate sand | Germination rate (%) | 9.23978 | 0.055 |
substrate sand | Plant height (cm) | 7.58664 | 0.107 |
Germination Rate | Plant Height | ||||
---|---|---|---|---|---|
H | p | H | p | ||
Festuca wagneri | Genotype | 786.15 * | <0.001 | 167.29 * | <0.001 |
Growing medium | 121.97 * | <0.001 | 67.53 * | <0.001 | |
Genotype × Growing medium | 242.51 * | <0.001 | 121.39 * | <0.001 | |
Festuca tomanii | Genotype | 82.02 * | <0.001 | 71.97 * | <0.001 |
Growing medium | 5.58 * | <0.001 | 7.69 * | <0.001 | |
Genotype × Growing medium | 0.92 | 0.056 | 22.62 * | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó-Szöllösi, T.; Baracsi, É.H.; Csontos, P.; Papp, L.; Kisvarga, S.; Orlóci, L.; Házi, J.; Kende, Z.; Saláta, D.; Fuchs, M.; et al. Evaluation of Native Festuca Taxa for Sustainable Application in Urban Environments: Their Characteristics, Ornamental Value, and Germination in Different Growing Media. Soil Syst. 2024, 8, 99. https://doi.org/10.3390/soilsystems8030099
Szabó-Szöllösi T, Baracsi ÉH, Csontos P, Papp L, Kisvarga S, Orlóci L, Házi J, Kende Z, Saláta D, Fuchs M, et al. Evaluation of Native Festuca Taxa for Sustainable Application in Urban Environments: Their Characteristics, Ornamental Value, and Germination in Different Growing Media. Soil Systems. 2024; 8(3):99. https://doi.org/10.3390/soilsystems8030099
Chicago/Turabian StyleSzabó-Szöllösi, Tünde, Éva Horváthné Baracsi, Péter Csontos, László Papp, Szilvia Kisvarga, László Orlóci, Judit Házi, Zoltán Kende, Dénes Saláta, Márta Fuchs, and et al. 2024. "Evaluation of Native Festuca Taxa for Sustainable Application in Urban Environments: Their Characteristics, Ornamental Value, and Germination in Different Growing Media" Soil Systems 8, no. 3: 99. https://doi.org/10.3390/soilsystems8030099
APA StyleSzabó-Szöllösi, T., Baracsi, É. H., Csontos, P., Papp, L., Kisvarga, S., Orlóci, L., Házi, J., Kende, Z., Saláta, D., Fuchs, M., Keleti, J. R., Tarnawa, Á., Rusvai, K., & Penksza, K. (2024). Evaluation of Native Festuca Taxa for Sustainable Application in Urban Environments: Their Characteristics, Ornamental Value, and Germination in Different Growing Media. Soil Systems, 8(3), 99. https://doi.org/10.3390/soilsystems8030099