Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Sampling, Measurements, and Methods
2.3. Statistical Analysis
3. Results
3.1. Soil Characteristics of the Experimental Sites
3.2. Agronomic Traits and Yield Parameters of Cotton
3.3. Fiber Quality Parameters of Cotton
3.4. Principal Component Analysis (PCA) of Evaluated Variable
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ELG | Elongation |
LAI | Leaf area index |
MAT | Maturity |
MIC | Micronaire |
MWD | Mean weight diameter |
N | Nitrogen |
PCA | Principal component analysis |
Rd | Fiber reflectance |
RLD | Root length density |
SCI | Spinning consistency index |
SFI | Short fiber index |
SOM | Soil organic matter |
STN | Soil total nitrogen |
STR | Fiber strength |
TP | Total porosity |
TrAr | Trash area |
TrID | Trash grade |
UHML | Upper half mean length |
UI | Uniformity index |
References
- Khan, M.A.; Wahid, A.; Ahmad, M.; Tahir, M.T.; Ahmed, M.; Ahmad, S.; Hasanuzzaman, M. World cotton production and consumption: An overview. In Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies; Springer: Singapore, 2020. [Google Scholar]
- Ali, M.A.; Farooq, J.; Batool, A.; Zahoor, A.; Azeem, F.; Mahmood, A.; Jabran, K. Cotton production in Pakistan. In Cotton Production; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; Volume 249. [Google Scholar]
- Sarwar, G.; Nazir, A.; Rizwan, M.; Shahzadi, E.; Mahmood, A. Genetic diversity among cotton genotypes for earliness, yield and fiber quality traits using correlation, principal component and cluster analyses. Sarhad J. Agric. 2021, 37, 307–314. [Google Scholar] [CrossRef]
- Yasar, M. Yield and fiber quality traits of cotton (Gossypium hirsutum L.) cultivars analyzed by biplot method. J. King Saud Univ. Sci. 2023, 35, 102632. [Google Scholar] [CrossRef]
- Hussain, K.; Ilyas, A.; Ali, S.; Bibi, I.; Shakil, Q.; Farid, M.U.; Saqib, Z.A.; Habib, A.; Hakki, E.E. Impacts of nitrogen fertilizer application and mulching on the morpho-physiological and yield-related traits in cotton. Agriculture 2023, 13, 12. [Google Scholar] [CrossRef]
- Tariq, M.; Afzal, M.N.; Muhammad, D.; Ahmad, S.; Shahzad, A.N.; Kiran, A.; Wakeel, A. Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crops Res. 2018, 229, 37–43. [Google Scholar] [CrossRef]
- Dhakal, C.; Lange, K.; Parajulee, M.N.; Segarra, E. Dynamic optimization of nitrogen in plateau cotton yield functions with nitrogen carryover considerations. J. Agric. Appl. Econ. 2019, 51, 385–401. [Google Scholar] [CrossRef]
- Iqbal, A.; Qiang, D.; Zhun, W.; Xiangru, W.; Huiping, G.; Hengheng, Z.; Nianchang, P.; Xiling, Z.; Meizhen, S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. Plant Physiol. Biochem. 2020, 149, 61–74. [Google Scholar] [CrossRef]
- Shah, A.N.; Javed, T.; Singhal, R.K.; Shabbir, R.; Wang, D.; Hussain, S.; Anuragi, H.; Jinger, D.; Pandey, H.; Abdelsalam, N.R.; et al. Nitrogen use efficiency in cotton: Challenges and opportunities against environmental constraints. Front. Plant Sci. 2022, 13, 970339. [Google Scholar] [CrossRef]
- Devkota, M.; Martius, C.; Lamers, J.P.A.; Sayre, K.D.; Devkota, K.P.; Vlek, P.L.G. Tillage and nitrogen fertilization effects on yield and nitrogen use efficiency of irrigated cotton. Soil Till Res. 2013, 134, 72–82. [Google Scholar] [CrossRef]
- Chen, B.L.; Yang, H.K.; Song, W.C.; Liu, C.Y.; Xu, J.; Zhao, W.Q.; Zhou, Z. Effect of N fertilization rate on soil alkali-hydrolyzable N, subtending leaf N concentration, fiber yield, and quality of cotton. Crop J. 2016, 4, 323–330. [Google Scholar] [CrossRef]
- Chen, Z.; Tao, X.; Khan, A.; Tan, D.K.; Luo, H. Biomass accumulation, photosynthetic traits and root development of cotton as affected by irrigation and nitrogen-fertilization. Front. Plant Sci. 2018, 9, 173. [Google Scholar] [CrossRef]
- Niu, J.; Gui, H.; Iqbal, A.; Zhang, H.; Dong, Q.; Pang, N.; Wang, S.; Wang, Z.; Wang, X.; Yang, G.; et al. N-use efficiency and yield of cotton (G. hirsutumn L.) are improved through the combination of N-fertilizer reduction and N-efficient cultivar. Agronomy 2021, 11, 55. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Li, W.P.; Zhao, Q.; Dai, J.L.; Tian, L.W.; Dong, H. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Poll. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Hussain, I.; Tahir, M.; Shahid, M.; Ul-Allah, S.; Zafar, M.; Rasheed, I.; Nawaz, A. Alternatives to synthetic fertilizers. In Agricultural Waste; Apple Academic Press: Palm Bay, FL, USA, 2021. [Google Scholar]
- Ahmad, S.; Hussain, I.; Ghaffar, A.; Rahman, M.H.U.; Saleem, M.Z.; Yonas, M.W.; Hussnain, H.; Ikram, R.M.; Arslan, M. Organic amendments and conservation tillage improve cotton productivity and soil health indices under arid climate. Sci. Rep. 2022, 12, 14072. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of zeolites in agriculture and other potential uses: A review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An overview of natural soil amendments in agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Grifasi, N.; Ziantoni, B.; Fino, D.; Piumetti, M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M.; et al. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Jarosz, R.; Szerement, J.; Gondek, K.; Mierzwa-Hersztek, M. The use of zeolites as an addition to fertilisers—A review. Catena 2022, 213, 106125. [Google Scholar] [CrossRef]
- Legese, W.; Taddesse, A.M.; Kibret, K.; Wogi, L. Effects of natural and modified zeolite based composite fertilizers on slow release and nutrient use efficiency. Heliyon 2024, 10, e25524. [Google Scholar] [CrossRef]
- Kakabouki, I.; Roussis, I.; Mavroeidis, A.; Stavropoulos, P.; Kanatas, P.; Pantaleon, K.; Folina, A.; Beslemes, D.; Tigka, E. Effects of zeolite application and inorganic nitrogen fertilization on growth, productivity, and nitrogen and water use efficiency of maize (Zea mays L.) cultivated under Mediterranean conditions. Sustainability 2025, 17, 2178. [Google Scholar] [CrossRef]
- Kathade, P.; Age, A.B.; Kankal, D.S.; Bhoyar, S.M.; Gaikwad, G.; Solanke, P.S. Effect of natural zeolite on yield, nutrient uptake of cotton and available fertility status of soil in saline tract of Purna Valley. Int. J. Adv. Biochem. Res. 2024, 8, 662–667. [Google Scholar] [CrossRef]
- HNMS. Climate atlas of Greece. Available online: http://climatlas.hnms.gr/sdi/?lang=EN (accessed on 10 March 2025).
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Greek Ministry of Rural Development and Food. National Plant Variety Catalogue. Available online: https://www.minagric.gr/for-farmer-2/crop-production/polylikomenu/549-nomothesia-polyliko/553-cat-poik-polyliko (accessed on 11 March 2025). (In Greek).
- Greek Payment Authority of Common Agricultural Policy (C.A.P.). Aid Schemes (OPEKEPE). Available online: https://www.opekepe.gr/en/ (accessed on 11 March 2025).
- Aygün, Y.Z.; Mert, M. Effects of soil conditioners and nitrogen applications on cotton (Gossypium hirsutum L.) yield and fiber technological properties. Biol. Divers. Conserv. 2020, 3, 290–297. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Tsadilas, C.; Samaras, V.C.; Schepers, J.S.; Eskridge, K.M. Nitrogen uptake and N-use efficiency of Mediterranean cotton under varied deficit irrigation and N fertilization. Eur. J. Agron. 2016, 73, 144–151. [Google Scholar] [CrossRef]
- Karydogianni, S.; Darawsheh, M.K.; Kakabouki, I.; Zisi, C.; Folina, A.E.; Roussis, I.; Tselia, Z.; Bilalis, D. Effect of nitrogen fertilizations, with and without inhibitors, on cotton growth and fiber quality. Agron. Res. 2020, 18, 432–449. [Google Scholar]
- IERSD/NOA. Weather Data. Available online: https://meteosearch.meteo.gr/data/index.cfm (accessed on 11 March 2025).
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by Kjedahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Van Bavel, C.M. MWD of soil aggregates as a statistical index of aggregation. Soil Sci. Soc. Am. Proc. 1949, 14, 20–23. [Google Scholar] [CrossRef]
- Lutz, J.F. Apparatus for collecting undisturbed soil samples. Soil Sci. 1947, 64, 399–401. [Google Scholar] [CrossRef]
- Kokko, E.G.; Volkmar, K.M.; Gowen, B.; Entz, T. Determination of total root surface area in soil core samples by image analysis. Soil Tillage Res. 1993, 26, 33–43. [Google Scholar] [CrossRef]
- Kakabouki, I.; Karydogianni, S.; Roussis, I.; Bilalis, D. Effect of organic and inorganic fertilization on weed flora and seed yield in black mustard [Brassica nigra (L.) Koch] crops. Int. J. Agric. Nat. Resour. 2020, 47, 79–89. [Google Scholar] [CrossRef]
- Pei, W.; Song, J.; Wang, W.; Ma, J.; Wu, M.; Yu, J. Quantitative trait locus analysis and identification of candidate genes for micronaire in an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Front. Plant Sci. 2021, 12, 763016. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tao, F.; Yao, H.; Kincaid, R. Feasibility study of assessing cotton fiber maturity from near infrared hyperspectral imaging technique. J. Cotton Res. 2023, 6, 21. [Google Scholar] [CrossRef]
- Mathangadeera, R.W.; Hequet, E.F.; Kelly, B.; Dever, J.K.; Kelly, C.M. Importance of cotton fiber elongation in fiber processing. Ind. Crop. Prod. 2020, 147, 112217. [Google Scholar] [CrossRef]
- Gundim, C.P.; Cardoso, D.B.O.; Miranda, M.C.C.D.; Silveira, V.M.D.; Medeiros, L.A.; Sousa, L.B.D. Productivity and quality of cotton fiber in different planting seasons. Biosci. J. 2020, 36, 2068–2077. [Google Scholar] [CrossRef]
- Darawsheh, M.K.; Beslemes, D.; Kouneli, V.; Tigka, E.; Bilalis, D.; Roussis, I.; Karydogianni, S.; Mavroeidis, A.; Triantafyllidis, V.; Kosma, C.; et al. Environmental and regional effects on fiber quality of cotton cultivated in Greece. Agronomy 2022, 12, 943. [Google Scholar] [CrossRef]
- Günaydin, G.K.; Soydan, A.S.; Palamutçu, S. Evaluation of cotton fibre properties in compact yarn spinning processes and investigation of fibre and yarn properties. Fibres Text. East. Eur. 2018, 3, 23–34. [Google Scholar] [CrossRef]
- Sahar, A.; Zafar, M.M.; Razzaq, A.; Manan, A.; Haroon, M.; Sajid, S.; Rehman, A.; Mo, H.; Ashraf, M.; Ren, M.; et al. Genetic variability for yield and fiber related traits in genetically modified cotton. J. Cotton Res. 2021, 4, 19. [Google Scholar] [CrossRef]
- Çopur, O.; Polat, D.; Odabaşioğlu, C. Effect of different sowing dates on cotton (Gossypium hirsutum L.) fiber color at double crop growing conditions. Harran Tarım Gıda Bilim. Derg. 2018, 22, 67–72. [Google Scholar] [CrossRef]
- Yusupaliyeva, U.N.; Yuldashev, N.N. Color quality control in the production of cotton fiber. Eur. Chem. Bull. 2022, 11, 55–58. [Google Scholar]
- Karami, Z.; Sharifi, Z.; Renella, G. Determining the most sensitive indicators of soil carbon transformation to the land use change from intact rangeland to cropland, western Iran. Int. J. Environ. Res. 2023, 17, 37. [Google Scholar] [CrossRef]
- Rahmani, R.; Khalesro, S.; Heidari, G.; Mokhatssi-Bidgoli, A. Vermicompost and zeolite improve yield, nutrient uptake, essential and fixed oil production, and composition of Nigella sativa L. Front. Sustain. Food Syst. 2023, 7, 1214691. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess. Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
- Amato, M.A.; Ladd, J.N. Decomposition of 14C-labelled glucose and legume material in soils: Properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol. Biochem. 1992, 24, 455–464. [Google Scholar] [CrossRef]
- Kavvadias, V.; Ioannou, Z.; Vavoulidou, E.; Paschalidis, C. Short term effects of chemical fertilizer, compost and zeolite on yield of lettuce, nutrient composition and soil properties. Agriculture 2023, 13, 1022. [Google Scholar] [CrossRef]
- Wang, C.; Wan, S.; Xing, X.; Zhang, L.; Han, X. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol. Biochem. 2006, 38, 1101–1110. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Change Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Brye, K.R.; Norman, J.M.; Foley, J.A.; Gower, S.T.; Bundy, L.G. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 years. Ecosystems 2001, 4, 237–258. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V.; Phillips, S.B.; Westerman, R.L. Effect of long-term N fertilization on soil organic C and total N in continuous wheat under conventional tillage in Oklahoma. Soil Tillage Res. 1998, 47, 323–330. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Jantalia, C.P. Nitrogen fertilization effects on irrigated no-till corn production and soil carbon and nitrogen. Agron. J. 2011, 103, 1423–1431. [Google Scholar] [CrossRef]
- Aiyuk, S.; Xu, H.; Van Haandel, A. Removal of ammonium nitrogen from pretreated domestic sewage using a natural ion exchanger. Environ. Technol. 2004, 25, 1321–1330. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L.; Šimek, M.; Nawaz, S.; Khan, M.J.; Babar, M.N.; Zaman, S. Emissions of nitrous oxide (N2O) and di-nitrogen (N2) from the agricultural landscapes, sources, sinks, and factors affecting N2O and N2 ratios. In Greenhouse Gases-Emission, Measurement and Management; Liu, G., Ed.; InTech Europe: Rijeka, Croatia, 2012; pp. 1–32. [Google Scholar]
- Belviso, C.; Satriani, A.; Lovelli, S.; Comegna, A.; Coppola, A.; Dragonetti, G.; Cavalcante, F.; Rivelli, A.R. Impact of zeolite from coal fly ash on soil hydrophysical properties and plant growth. Agriculture 2022, 12, 356. [Google Scholar] [CrossRef]
- Louhar, G.; Devi, S.; Dahiya, G. Zeolites: A potential source of soil amendments to improve soil properties. Chem. Sci. Rev. Lett. 2020, 9, 777–785. [Google Scholar]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Greco, S. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresour. Technol. 2000, 72, 9–17. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Konvalina, P.; Moudrý, J.; Bárta, J.; Kopecký, M.; Teodorescu, R.I.; Bucur, R.D. Comparative Influence of Biochar and Zeolite on Soil Hydrological Indices and Growth Characteristics of Corn (Zea mays L.). Water 2022, 14, 3506. [Google Scholar] [CrossRef]
- Kukowska, S.; Szewczuk-Karpisz, K. Management of the soil environment using biochar and zeolite in various combinations: Impact on soil condition and economical aspects. J. Soils Sediments 2025, 25, 77–102. [Google Scholar] [CrossRef]
- Majumder, B.; Ruehlmann, J.; Kuzyakov, Y. Effects of aggregation processes on distribution of aggregate size fractions and organic C content of a long-term fertilized soil. Eur. J. Soil Biol. 2010, 46, 365–370. [Google Scholar]
- Costa, C.; Dwyer, L.M.; Zhou, X.; Dutilleul, P.; Hamel, C.; Reid, L.M.; Smith, D.L. Root morphology of contrasting maize genotypes. Agron. J. 2002, 94, 96–101. [Google Scholar] [CrossRef]
- Gregory, P.J. Root growth and activity. In Physiology and Determination of Crop Yield; Peterson, G.A., Ed.; ASA, CSSA, and SSSA: Madison, WI, USA, 1994; pp. 65–93. [Google Scholar]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar]
- Głąb, T.; Gondek, K.; Marcińska-Mazur, L.; Jarosz, R.; Mierzwa-Hersztek, M. Effect of organic/inorganic composites as soil amendments on the biomass productivity and root architecture of spring wheat and rapeseed. J. Environ. Manag. 2023, 344, 118628. [Google Scholar] [CrossRef]
- Wu, Q.; Xia, G.; Chen, T.; Zheng, J.; Bu, F.; Chi, D. Effects of nitrogen and zeolite on rice grain yield, water and nitrogen use, and soil total nitrogen in coastal region of Northeast China. Commun. Soil Sci. Plant Anal. 2016, 47, 2103–2114. [Google Scholar] [CrossRef]
- Ippolito, A.J.; Tarkalson, D.D.; Lehrsch, G.A. Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Sci. 2011, 176, 136–142. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Leggo, P. An investigation of plant growth in an organo-zeolitic substrate and its ecological significance. Plant Soil. 2000, 219, 135–146. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Cwalina-Ambroziak, B.; Bogucka, B. The effect of nitrogen fertilization on yield and macronutrient concentrations in three cultivars of Jerusalem artichoke (Helianthus tuberosus L.). Agronomy 2021, 11, 2161. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; Laghari, A.H.; Bhabhan, G.M.; Hussain-Talpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Wei, S.; Wang, X.; Li, G.; Jiang, D.; Dong, S. Maize canopy apparent photosynthesis and 13C-photosynthate reallocation in response to different density and N rate combinations. Front. Plant Sci. 2019, 10, 1113. [Google Scholar] [CrossRef]
- Wu, L.H.; Li, H.; Luo, Y.M.; Christie, P. Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Environ. Geochem. Health 2004, 26, 331–335. [Google Scholar] [CrossRef]
- Yu, F.; Liu, K.; Li, M.; Zhou, Z.; Deng, H.; Chen, B. Effects of cadmium on enzymatic and non-enzymatic antioxidative defenses of rice (Oryza sativa L.). Int. J. Phytoremediat. 2013, 15, 513–521. [Google Scholar] [CrossRef]
- Butorac, A.; Filipan, T.; Bašic, F.; Butorac, J.; Mesić, M.; Kisić, I. Crop response to the application of special natural amendments based on zeolite tuff. Rostl. Výroba 2002, 48, 118–124. [Google Scholar] [CrossRef]
- Szatanik-Kloc, A.; Szerement, J.; Adamczuk, A.; Józefaciuk, G. Effect of low zeolite doses on plants and soil physicochemical properties. Materials 2021, 14, 2617. [Google Scholar] [CrossRef]
- Zaman, I.; Ali, M.; Shahzad, K.; Tahir, M.S.; Matloob, A.; Ahmad, W.; Alamri, S.; Khurshid, M.R.; Qureshi, M.M.; Wasaya, A.; et al. Effect of plant spacings on growth, physiology, yield and fiber quality attributes of cotton genotypes under nitrogen fertilization. Agronomy 2021, 11, 2589. [Google Scholar] [CrossRef]
- Kazama, E.H.; Morelli Ferreira, F.; da Silva, R.P.; da Silva, A.R.B.; Augusto Fiorese, D. Multivariate analysis of fiber characteristics of dense cotton in different harvest systems. Aust. J. Crop Sci. 2015, 9, 1075–1081. [Google Scholar]
- Veloso, L.L.d.S.A.; Azevedo, C.A.V.d.; Nobre, R.G.; Lima, G.S.d.; Bezerra, J.R.C.; Silva, A.A.R.d.; Fátima, R.T.d.; Gheyi, H.R.; Soares, L.A.d.A.; Fernandes, P.D.; et al. Production and fiber characteristics of colored cotton cultivars under salt stress and H2O2. Plants 2023, 12, 2090. [Google Scholar] [CrossRef] [PubMed]
- da Silva Ribeiro, J.E.; de Lima Tartaglia, F.; Caetano, L.P.; dos Santos Coêlho, E.; dos Santos, G.L.; de Oliveira, A.K.S.; da Silva, E.F.; de Almeida Oliveira, P.H.; da Silva, A.G.C.; da Silveira, L.M.; et al. Effect of nitrogen fertilization on the quality of colored cotton fibers in the Brazilian semi-arid region. J. Nat. Fibers 2024, 21, 2391010. [Google Scholar] [CrossRef]
- Nie, J.; Qin, D.; Mao, L.; Liu, Y.; Dong, H.; Song, X.; Sun, X. Genotypic variance in 13C-photosynthate partitioning and within-plant boll distribution in cotton. J. Cotton Res. 2020, 3, 15. [Google Scholar] [CrossRef]
- Korra, C.G.; Kura, A.B.; Tiliksew, A.D. Study of Ethiopian genetically modified and organic cotton fiber quality compared with conventional cotton. Cogent Food Agric. 2024, 10, 2301144. [Google Scholar] [CrossRef]
- Sarwar, M.; Farrukh Saleem, M.; Ullah, N.; Rizwan, M.; Ali, S.; Rizwan Shahid, M.; Alamri, S.A.; Nasser Alyemeni, M.; Ahmad, P. Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Sci. Rep. 2018, 8, 17086. [Google Scholar] [CrossRef]
- Leal, A.J.F.; Piati, G.L.; Leite, R.C.; Zanella, M.S.; Osorio, C.R.W.S.; Lima, S.F. Nitrogen and mepiquat chloride can affect fiber quality and cotton yield. Rev. Bras. Eng. Agric. Ambient. 2020, 24, 238–243. [Google Scholar] [CrossRef]
- Khan, N.; Han, Y.; Wang, Z.; Wang, G.; Feng, L.; Yang, B.; Li, Y. Role of proper management of nitrogen in cotton growth and development. Int. J. Biosci. 2019, 14, 5. [Google Scholar]
- Chen, J.; Liu, L.; Wang, Z.; Sun, H.; Zhang, Y.; Bai, Z.; Song, S.; Lu, Z.; Li, C. nitrogen fertilization effects on physiology of the cotton boll–leaf system. Agronomy 2019, 9, 271. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, M.; Zhang, H.; Ren, T.; Liu, C.; He, N. Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Glob. Change Biol. 2023, 29, 1144–1159. [Google Scholar] [CrossRef] [PubMed]
- Noor, H.; Ding, P.; Ren, A.; Sun, M.; Gao, Z. Effects of nitrogen fertilizer on photosynthetic characteristics and yield. Agronomy 2023, 13, 1550. [Google Scholar] [CrossRef]
- Elmogahzy, Y.; Farag, R. Tensile Properties of Cotton Fibers: Importance, Research, and Limitations. In Handbook of Properties of Textile and Technical Fibres; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Zhai, Z.; Zhang, K.; Fang, Y.; Yang, Y.; Cao, X.; Liu, L.; Tian, Y. Systematically and comprehensively understanding the regulation of cotton fiber initiation: A review. Plants 2023, 12, 3771. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.; Liu, Z.; Guo, C.; Sun, X. Molecular regulation of cotton fiber development: A review. Int. J. Mol. Sci. 2022, 23, 5004. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kumar Pareek, N.; Kumar, U.; Javed, T.; Al-Huqail, A.A.; Rathore, V.S.; Nangia, V.; Choudhary, A.; Nanda, G.; Ali, H.M. Coupling effects of nitrogen and irrigation levels on growth attributes, nitrogen use efficiency, and economics of cotton. Front. Plant Sci. 2022, 13, 890181. [Google Scholar] [CrossRef]
- Bradow, J.M.; Davidonis, G.H. Quantitation of fiber quality and the cotton production-processing interface: A physiologist’s perspective. J. Cotton Sci. 2000, 4, 34–64. [Google Scholar]
- Porter, P.M.; Sullivan, M.J.; Harvey, L.H. Cotton cultivar response to planting date on the southeastern coastal plain. J. Prod. Agric. 1996, 9, 223–227. [Google Scholar] [CrossRef]
- van der Sluijs, M.H.J. Effect of nitrogen application level on cotton fibre quality. J. Cotton Res. 2022, 5, 9. [Google Scholar] [CrossRef]
- Tian, J.S.; Hu, Y.Y.; Gan, X.X.; Zhang, Y.L.; Hu, X.B.; Ling, G.O.U.; Luo, H.H.; Zhang, W.F. Effects of increased night temperature on cellulose synthesis and the activity of sucrose metabolism enzymes in cotton fiber. J. Integr. Agric. 2013, 12, 979–988. [Google Scholar] [CrossRef]
- Reddy, K.N.; Burke, I.C.; Boykin, J.C.; Williford, J. Narrow-row cotton production under irrigated and non-irrigated environment: Plant population and lint yield. J. Cotton Sci. 2009, 13, 48–55. [Google Scholar]
Name | Athens (ATH) | Messolonghi (MES) | Karditsa (KAR) |
---|---|---|---|
Geographical location (Lat., Long.) | 37°59′ N, 23°42′ E | 38°36′ N, 21°48′ E | 39°35′ N, 22°04′ E |
Altitude (m above sea level) | 29 | −1.5 | 108 |
Regional Unit | Central Athens | Aetolia–Akarnania | Karditsa |
Administrative Region | Attica | Western Greece | Thessaly |
Geographical Region | East-Central Greece | Western Greece | Central Greece |
Köppen Climate Classification Category [26] | Csa | Csa | Csa |
Soil Properties (0–30 cm) | |||
Soil Order [27] | Cambisol | Fluvisol | Cambisol |
Soil Type | Clay Loam (CL) | Clay Loam (CL) | Clay Loam (CL) |
Clay (%) | 29.6 | 37.0 | 39.1 |
Silt (%) | 34.8 | 20.7 | 24.2 |
Sand (%) | 35.6 | 42.3 | 36.7 |
pH (1:1 H2O) | 7.41 | 7.89 | 7.36 |
Organic Matter (%) | 1.733 | 1.699 | 1.842 |
CaCO3 (%) | 14.57 | 18.43 | 13.19 |
Total Nitrogen (%) | 0.124 | 0.111 | 0.138 |
Phosphorus—Olsen P (mg kg−1 soil) | 13.4 | 14.2 | 15.5 |
Potassium (mg kg−1 soil) | 215 | 342 | 277 |
Main Plot Treatment | Zeolite (Clinoptilolite Granules) |
1 | 0 t ha−1 |
2 | 5 t ha−1 |
3 | 7.5 t ha−1 |
Sub-plot treatment | N Fertilization (Urea Fertilizer) |
1 | 0 kg N ha−1 |
2 | 100 kg N ha−1 |
3 | 150 kg N ha−1 |
4 | 200 kg N ha−1 |
Trait Group | Trait | Description | Method | Reference |
---|---|---|---|---|
Fiber Maturity Traits | Micronaire (MIC) | An indicative measurement of the air permeability of compressed cotton fibers | Via evaluating the resistance of airflow in a specific amount of cotton fibers | [40] |
Maturity (MAT) | The probability of breakage and entanglement | Measure of secondary walls’ thickness | [41] | |
Fiber Strength (STR) | The needed strength for fiber breakage | Exert force until the breakage of a bundle of fibers | [42] | |
Elongation (ELG) | The percentage of fiber’s extension before the breakage | Pull fibers and measure the length right before the breakage | [43] | |
Fiber Length Traits | Upper Half Mean Length (UHML) | A measurement of the length of fiber | The mean length of fiber’s longer half | [44] |
Uniformity Index (UI) | The ratio of the Upper-Half Mean Length (UHML) to the mean length of the fibers | Uniformity Index = Mean Length/Upper Half Mean Length | [45] | |
Short Fiber Index (SFI) | The amount of fibers < 12.5 mm | Via HVI instrument | [46] | |
Color Traits | Fiber Reflectance (Rd) | The value of reflectance (Rd) | Measurement of the reflectance of the fiber using the Nickerson–Huntercolor chart | [47] |
Spinning Consistency Index (SCI) | An indicator that classifies fibers according to their quality and spinnability | SCI = −414.67 + 2.9 × Str − 9.32 × MIC + 49.17 × UHML + 4.74 × UI + 0.65 × Rd + 0.36 × (+b) | [48] | |
Trash Traits | Trash Area (TrAr) | The area covered with trash | Counting the pieces of trash that are exposed to the glass window | [44] |
Trash Grade (TrID) | The trash grade | Determined by calibrating HVI with known samples | [44] |
Source of Variance | Df | Soil Organic Matter (SOM) | Soil Total Nitrogen (STN) | Total Porosity (TP) | Mean Weight Diameter (MWD) | Root Length Density (RLD) | Plant Height |
Location (L) | 2 | 10.259 *** | 286.807 *** | 58.993 *** | 4.438 * | 2.366 ns | 7.694 ** |
Zeolite (Z) | 2 | 17.264 *** | 11.798 *** | 9.878 *** | 14.350 *** | 27.635 *** | 27.707 *** |
Fertilization (F) | 3 | 5.423 ** | 17.429 *** | 18.754 *** | 19.796 *** | 63.851 *** | 20.384 *** |
L × Z | 4 | 0.887 ns | 0.188 ns | 0.317 ns | 0.882 ns | 0.036 ns | 0.207 ns |
L × F | 6 | 0.318 ns | 1.213 ns | 1.289 ns | 0.337 ns | 0.854 ns | 0.923 ns |
Z × F | 6 | 0.338 ns | 4.616 *** | 4.799 *** | 0.183 ns | 2.725 * | 0.566 ns |
L × Z × F | 12 | 0.299 ns | 0.079 ns | 0.115 ns | 0.161 ns | 0.393 ns | 0.229 ns |
Source of Variance | Df | Leaf Area Index (LAI) | Dry Weight | Boll Number | Boll Weight | Seed Cotton Yield | Lint Yield |
Location (L) | 2 | 25.779 *** | 12.258 *** | 99.934 *** | 3.029 ns | 187.244 *** | 34.636 *** |
Zeolite (Z) | 2 | 24.837 *** | 19.382 *** | 2.541 ns | 17.707 *** | 20.911 *** | 25.167 *** |
Fertilization (F) | 3 | 61.184 *** | 46.739 *** | 3.868 * | 18.949 *** | 26.174 *** | 27.718 *** |
L × Z | 4 | 0.239 ns | 0.115 ns | 0.068 ns | 0.428 ns | 0.347 ns | 1.212 ns |
L × F | 6 | 0.829 ns | 0.472 ns | 0.329 ns | 0.096 ns | 0.717 ns | 0.104 ns |
Z × F | 6 | 0.379 ns | 1.052 ns | 0.639 ns | 0.953 ns | 1.586 ns | 1.557 ns |
L × Z × F | 12 | 0.156 ns | 0.125 ns | 0.467 ns | 0.215 ns | 0.843 ns | 1.248 ns |
Source of Variance | Df | Lint Percentage | Micronaire (MIC) | Maturity (MAT) | Fiber Strength (STR) | Elongation (ELG) | Upper Half Mean Length (UHML) |
Location (L) | 2 | 3.795 * | 9.851 *** | 37.615 *** | 3.878 * | 5.485 ** | 26.662 *** |
Zeolite (Z) | 2 | 19.968 *** | 117.189 *** | 17.389 *** | 24.594 *** | 37.619 *** | 36.950 *** |
Fertilization (F) | 3 | 20.564 *** | 9.111 *** | 10.805 *** | 9.539 *** | 13.484 *** | 10.484 *** |
L × Z | 4 | 1.932 ns | 0.522 ns | 0.184 ns | 0.214 ns | 0.851 ns | 0.611 ns |
L × F | 6 | 0.298 ns | 0.122 ns | 0.406 ns | 0.235 ns | 0.237 ns | 0.449 ns |
Z × F | 6 | 1.474 ns | 2.102 ns | 3.408 ** | 0.918 ns | 3.137 ** | 2.891 * |
L × Z × F | 12 | 1.399 ns | 0.068 ns | 0.506 ns | 0.239 ns | 0.198 ns | 0.351 ns |
Source of Variance | Df | Uniformity Index (UI) | Short Fiber Index (SFI) | Fiber Reflectance (Rd) | Spinning Consistency Index (SCI) | Trash Area (TrAr) | Trash Grade (TrID) |
Location (L) | 2 | 53.781 *** | 0.030 ns | 36.952 *** | 39.552 *** | 0.184 ns | 0.052 ns |
Zeolite (Z) | 2 | 17.102 *** | 15.057 *** | 63.189 *** | 45.484 *** | 31.359 *** | 11.229 *** |
Fertilization (F) | 3 | 11.005 *** | 9.354 *** | 13.172 *** | 15.035 *** | 9.583 *** | 0.679 ns |
L × Z | 4 | 0.149 ns | 0.134 ns | 0.098 ns | 0.582 ns | 0.293 ns | 1.507 ns |
L × F | 6 | 0.138 ns | 0.069 ns | 0.172 ns | 0.378 ns | 0.216 ns | 0.012 ns |
Z × F | 6 | 2.827 * | 2.721 * | 2.047 ns | 3.648 ** | 1.426 ns | 1.294 ns |
L × Z × F | 12 | 0.108 ns | 0.094 ns | 0.067 ns | 0.241 ns | 0.251 ns | 1.438 ns |
Soil Organic Matter (SOM) (%) | Soil Total Nitrogen (STN) (%) | Total Porosity (TP) (%) | Mean Weight Diameter (MWD) (mm) | |
---|---|---|---|---|
ATH | ||||
Zeolite (t ha−1) | ||||
0 | 1.818 ± 0.017 B | 0.121 ± 0.001 B | 43.16 ± 0.44 B | 7.91 ± 0.14 A |
5 | 1.916 ± 0.032 A | 0.127 ± 0.002 A | 44.63 ± 0.73 AB | 7.79 ± 0.16 AB |
7.5 | 1.895 ± 0.025 AB | 0.129 ± 0.002 A | 45.12 ± 0.71 A | 7.44 ± 0.10 B |
N Fertilization (kg N ha−1) | ||||
0 | 1.833 ± 0.033 a | 0.120 ± 0.001 b | 42.67 ± 0.54 b | 7.27 ± 0.08 c |
100 | 1.876 ± 0.035 a | 0.125 ± 0.002 ab | 44.01± 0.69 ab | 7.65 ± 0.16 bc |
150 | 1.882 ± 0.037 a | 0.128 ± 0.002 a | 44.76 ± 0.85 ab | 7.86 ± 0.18 ab |
200 | 1.914 ± 0.019 a | 0.129 ± 0.003 a | 45.78 ± 0.64 a | 8.09 ± 0.11 a |
Source of Variation | ||||
FZeolite | 3.653 * | 5.845 ** | 3.890 * | 4.280 * |
FFertilization | 1.144 ns | 4.564 * | 4.766 ** | 6.541 ** |
FZeolite×Fertilization | 0.416 ns | 1.676 ns | 1.838 ns | 0.265 ns |
MES | ||||
Zeolite (t ha−1) | ||||
0 | 1.727 ± 0.019 B | 0.104 ± 0.001 B | 38.84 ± 0.42 B | 8.30 ± 0.23 A |
5 | 1.845 ± 0.029 A | 0.108 ± 0.001 A | 40.43 ± 0.71 AB | 7.88 ± 0.21 AB |
7.5 | 1.901 ± 0.035 A | 0.110 ± 0.002 A | 40.72 ± 0.64 A | 7.41 ± 0.15 B |
N Fertilization (kg N ha−1) | ||||
0 | 1.775 ± 0.036 a | 0.103 ± 0.001 b | 38.36 ± 0.41 b | 7.33 ± 0.14 b |
100 | 1.815 ± 0.039 a | 0.107 ± 0.001 ab | 39.82 ± 0.70 ab | 7.70 ± 0.24 ab |
150 | 1.830 ± 0.043 a | 0.109 ± 0.002 ab | 40.49 ± 0.78 ab | 8.01 ± 0.21 ab |
200 | 1.775 ± 0.038 a | 0.111 ± 0.002 a | 41.32 ± 0.59 a | 8.48 ± 0.27 a |
Source of Variation | ||||
FZeolite | 7.365 ** | 4.828 * | 4.274 * | 6.362 ** |
FFertilization | 1.225 ns | 4.388 * | 4.871 ** | 5.975 ** |
FZeolite×Fertilization | 0.070 ns | 2.216 ns | 1.396 ns | 0.040 ns |
KAR | ||||
Zeolite (t ha−1) | ||||
0 | 1.854 ± 0.021 B | 0.136 ± 0.001 A | 41.68 ± 0.48 A | 7.80 ± 0.16 A |
5 | 1.946 ± 0.027 A | 0.141 ± 0.002 A | 42.48 ± 0.67 A | 7.46 ± 0.17 AB |
7.5 | 1.986 ± 0.030 A | 0.142 ± 0.003 A | 42.90 ± 0.81 A | 7.29 ± 0.14 B |
N Fertilization (kg N ha−1) | ||||
0 | 1.840 ± 0.037 b | 0.130 ± 0.002 b | 39.66 ± 0.68 b | 6.94 ± 0.14 c |
100 | 1.944 ± 0.034 a | 0.141 ± 0.003 a | 43.04 ± 0.52 a | 7.49 ± 0.12 b |
150 | 1.959 ± 0.029 a | 0.142 ± 0.002 a | 43.18 ± 0.46 a | 7.70 ± 0.15 ab |
200 | 1.970 ± 0.031 a | 0.145 ± 0.003 a | 43.79 ± 0.59 a | 7.94 ± 0.16 a |
Source of Variation | ||||
FZeolite | 7.867 ** | 2.392 ns | 2.078 ns | 4.293 * |
FFertilization | 4.623 * | 9.214 *** | 12.874 *** | 8.817 *** |
FZeolite×Fertilization | 0.634 ns | 1.214 ns | 1.795 ns | 0.346 ns |
Root Length Density (RLD) (cm cm−3) | Plant Height (cm) | Leaf Area Index (LAI) (m3 m−3) | Dry Weight (kg ha−1) | |
---|---|---|---|---|
ATH | ||||
Zeolite (t ha−1) | ||||
0 | 0.665 ± 0.037 B | 94.2 ± 3.2 B | 2.50 ± 0.08 B | 4185 ± 221 B |
5 | 0.754 ± 0.046 A | 107.4 ± 2.9 A | 2.74 ± 0.07 A | 4546 ± 296 AB |
7.5 | 0.813 ± 0.051 A | 113.3 ± 3.0 A | 2.83 ± 0.08 A | 5014 ± 308 A |
N Fertilization (kg N ha−1) | ||||
0 | 0.561 ± 0.019 c | 95.3 ± 3.5 c | 2.39 ± 0.06 c | 3450 ± 153 c |
100 | 0.721 ± 0.026 b | 102.6 ± 3.6 bc | 2.63 ± 0.07 b | 4345 ± 182 b |
150 | 0.792 ± 0.050 ab | 107.0 ± 4.8 ab | 2.70 ± 0.08 b | 4984 ± 247 a |
200 | 0.902 ± 0.049 a | 114.9 ± 3.2 a | 3.04 ± 0.06 a | 5549 ± 244 a |
Source of Variation | ||||
FZeolite | 8.053 ** | 17.539 *** | 14.751 *** | 6.115 ** |
FFertilization | 21.354 *** | 9.324 ** | 27.909 *** | 21.533 *** |
FZeolite×Fertilization | 1.498 ns | 0.816 ns | 0.545 ns | 0.239 ns |
MES | ||||
Zeolite (t ha−1) | ||||
0 | 0.635 ± 0.037 C | 95.9 ± 3.8 B | 2.46 ± 0.07 B | 3979 ± 252 B |
5 | 0.732 ± 0.039 B | 107.2 ± 3.6 A | 2.64 ± 0.08 A | 4204 ± 299 AB |
7.5 | 0.797 ± 0.048 A | 110.1 ±3.9 A | 2.75 ± 0.06 A | 4844 ± 308 A |
N Fertilization (kg N ha−1) | ||||
0 | 0.521 ± 0.024 b | 87.7 ± 4.0 b | 2.29 ± 0.05 c | 3265 ± 158 c |
100 | 0.759 ± 0.027 a | 106.6 ± 3.8 a | 2.62 ± 0.07 b | 4151 ± 249 b |
150 | 0.774 ± 0.029 a | 110.7 ± 2.9 a | 2.67 ± 0.10 ab | 4584 ± 297 b |
200 | 0.828 ± 0.038 a | 112.5 ± 3.2 a | 2.91 ± 0.07 a | 5368 ± 243 a |
Source of Variation | ||||
FZeolite | 14.714 *** | 8.049 ** | 7.175 ** | 5.394 * |
FFertilization | 30.816 *** | 13.963 *** | 11.548 *** | 15.484 *** |
FZeolite×Fertilization | 2.210 ns | 0.344 ns | 0.281 ns | 0.494 ns |
KAR | ||||
Zeolite (t ha−1) | ||||
0 | 0.688 ± 0.029 B | 102.8 ± 3.2 B | 2.76 ± 0.08 B | 4610 ± 220 B |
5 | 0.770 ± 0.047 AB | 114.6 ± 4.0 AB | 2.97 ± 0.07 A | 4948 ± 239 B |
7.5 | 0.839 ± 0.052 A | 120.7 ± 3.4 A | 3.01 ± 0.09 A | 5593 ± 213 A |
N Fertilization (kg N ha−1) | ||||
0 | 0.593 ± 0.021 c | 103.6 ± 3.7 b | 2.50 ± 0.07 c | 4223 ± 165 c |
100 | 0.739 ± 0.032 b | 112.1 ± 4.1 ab | 2.94 ± 0.05 b | 4877 ± 249 b |
150 | 0.831± 0.045 ab | 115.0 ± 4.9 ab | 3.00 ± 0.05 ab | 5327 ± 292 ab |
200 | 0.900 ± 0.043 a | 120.2 ± 3.8 a | 3.19 ± 0.06 a | 5775 ± 207 a |
Source of Variation | ||||
FZeolite | 7.164 ** | 6.599 ** | 9.009 ** | 8.369 ** |
FFertilization | 16.389 *** | 2.974 * | 34.360 *** | 11.056 *** |
FZeolite×Fertilization | 0.305 ns | 0.146 ns | 0.230 ns | 0.542 ns |
Boll Number (m−2) | Boll Weight (g) | Seed Cotton Yield (kg ha−1) | Lint Yield (kg ha−1) | Lint Percentage (%) | |
---|---|---|---|---|---|
ATH | |||||
Zeolite (t ha−1) | |||||
0 | 75.9 ± 0.3 A | 6.11 ± 0.02 B | 4639 ± 14 C | 1627 ± 31 B | 35.1 ± 0.6 B |
5 | 76.4 ± 0.2 A | 6.14 ± 0.01 AB | 4695 ± 19 B | 1759 ± 24 A | 37.4 ± 0.3 A |
7.5 | 76.8 ± 0.4 A | 6.18 ± 0.02 A | 4745 ± 26 A | 1808 ± 34 A | 38.1 ± 0.5 A |
N Fertilization (kg N ha−1) | |||||
0 | 75.9 ± 0.3 a | 6.09 ± 0.03 c | 4633 ± 10 c | 1641 ± 30 b | 35.4 ± 0.6 b |
100 | 76.2 ± 0.2 a | 6.12 ± 0.01 bc | 4669 ± 11 bc | 1695 ± 28 b | 36.3 ± 0.5 b |
150 | 76.3 ± 0.4 a | 6.18 ± 0.02 ab | 4712 ± 25 ab | 1786 ± 33 a | 37.8± 0.5 a |
200 | 76.9 ± 0.5 a | 6.19 ± 0.02 a | 4759 ± 34 a | 1804 ± 53 a | 37.9 ± 0.9 a |
Source of Variation | |||||
FZeolite | 1.588 ns | 5.291 * | 14.008 *** | 18.334 *** | 15.410 *** |
FFertilization | 1.095 ns | 5.406 ** | 11.110 *** | 9.367 *** | 6.861 ** |
FZeolite×Fertilization | 1.194 ns | 0.216 ns | 1.989 ns | 1.741 ns | 1.230 ns |
MES | |||||
Zeolite (t ha−1) | |||||
0 | 73.7 ± 0.4 A | 6.12 ± 0.02 B | 4512 ± 25 B | 1617 ± 35 B | 35.8 ± 0.6 B |
5 | 74.3 ± 0.5 A | 6.15 ± 0.02 AB | 4576 ± 31 AB | 1703 ± 38 A | 37.2 ± 0.6 A |
7.5 | 74.4 ± 0.3 A | 6.19 ± 0.01 A | 4597 ± 26 A | 1723 ± 29 A | 37.5 ± 0.5 A |
N Fertilization (kg N ha−1) | |||||
0 | 73.6 ± 0.3 a | 6.08 ± 0.02 c | 4478 ± 22 b | 1572 ± 31 c | 35.1 ± 0.6 b |
100 | 74.1 ± 0.4 a | 6.14 ± 0.01 b | 4557 ± 14 ab | 1657 ± 25 bc | 36.4 ± 0.4 ab |
150 | 74.3 ± 0.7 a | 6.18 ± 0.02 ab | 4577 ± 39 a | 1729 ± 47 ab | 37.7 ± 0.7 a |
200 | 74.7 ± 0.4 a | 6.20 ± 0.01 a | 4634 ± 36 a | 1768 ± 35 a | 38.1 ± 0.6 a |
Source of Variation | |||||
FZeolite | 0.685 ns | 5.494 * | 3.568 * | 3.869 * | 3.886 * |
FFertilization | 0.869 ns | 10.750 *** | 5.593 ** | 6.760 ** | 7.192 ** |
FZeolite×Fertilization | 0.423 ns | 0.521 ns | 0.648 ns | 0.918 ns | 1.028 ns |
KAR | |||||
Zeolite (t ha−1) | |||||
0 | 78.5 ± 0.5 A | 6.12 ± 0.02 B | 4805 ± 39 B | 1776 ± 36 B | 36.9 ± 0.5 B |
5 | 79.2 ± 0.3 A | 6.18 ± 0.01 A | 4895 ± 17 A | 1862 ± 24 A | 38.0 ± 0.4 A |
7.5 | 79.1 ± 0.4 A | 6.22 ± 0.02 A | 4921 ± 29 A | 1847 ± 15 A | 37.8 ± 0.2 A |
N Fertilization (kg N ha−1) | |||||
0 | 77.9 ± 0.3 a | 6.11 ± 0.03 b | 4768 ± 32 c | 1742 ± 28 c | 36.5 ± 0.5 c |
100 | 78.6 ± 0.4 a | 6.16 ± 0.02 ab | 4844 ± 34 b | 1798 ± 30 b | 37.1± 0.4 bc |
150 | 79.3 ± 0.6 a | 6.20 ± 0.02 a | 4919 ± 23 a | 1882 ± 19 a | 38.2 ± 0.3 ab |
200 | 79.8 ± 0.5 a | 6.22 ± 0.03 a | 4964 ± 27 a | 1911 ± 14 a | 38.5 ± 0.4 a |
Source of Variation | |||||
FZeolite | 0.735 ns | 7.167 ** | 8.726 ** | 9.253 ** | 3.601 * |
FFertilization | 2.385 ns | 4.920 ** | 12.992 *** | 17.021 *** | 7.095 ** |
FZeolite×Fertilization | 0.271 ns | 0.605 ns | 1.243 ns | 1.985 ns | 2.579 * |
Fiber Maturity Traits | ||||
---|---|---|---|---|
Micronaire (MIC) | Maturity (MAT) (%) | Fiber Strength (STR) (g text−1) | Elongation (ELG) (%) | |
ATH | ||||
Zeolite (t ha−1) | ||||
0 | 3.58 ± 0.06 C | 0.818 ± 0.02 B | 28.94 ± 0.77 B | 9.29 ± 0.16 C |
5 | 4.24 ± 0.11 B | 0.832 ± 0.01 AB | 31.55 ± 0.74 A | 10.61 ± 0.38 B |
7.5 | 4.55 ± 0.08 A | 0.857 ± 0.01 A | 33.58 ± 0.79 A | 11.44 ± 0.29 A |
N Fertilization (kg N ha−1) | ||||
0 | 3.90 ± 0.16 b | 0.817 ± 0.01 b | 29.43 ± 0.69 b | 9.50 ± 0.28 b |
100 | 4.11 ± 0.15 ab | 0.833 ± 0.02 ab | 30.94 ± 0.96 ab | 10.06 ± 0.30 b |
150 | 4.22 ± 0.17 a | 0.837 ± 0.01 ab | 32.35 ± 1.17 a | 11.04 ± 0.46 a |
200 | 4.27 ± 0.19 a | 0.855 ± 0.02 a | 32.72 ± 1.20 a | 11.17 ± 0.51 a |
Source of Variation | ||||
FZeolite | 40.438 *** | 7.204 ** | 10.347 *** | 25.919 *** |
FFertilization | 3.266 * | 3.217 * | 3.232 * | 10.480 *** |
FZeolite×Fertilization | 0.798 ns | 1.953 ns | 0.650 ns | 1.471 ns |
MES | ||||
Zeolite (t ha−1) | ||||
0 | 3.35 ± 0.06 B | 0.797 ± 0.01 B | 28.92 ± 0.99 B | 8.67 ± 0.22 B |
5 | 4.14 ± 0.11 A | 0.820 ± 0.01 AB | 32.11 ± 1.32 AB | 10.10 ± 0.34 A |
7.5 | 4.48 ± 0.14 A | 0.834 ± 0.02 A | 33.76 ± 0.86 A | 10.98 ± 0.46 A |
N Fertilization (kg N ha−1) | ||||
0 | 3.74 ± 0.15 b | 0.793 ± 0.01 b | 29.05 ± 1.15 b | 9.10 ± 0.26 b |
100 | 3.94 ± 0.18 ab | 0.819 ± 0.02 ab | 31.17 ± 1.02 ab | 9.79 ± 0.44 ab |
150 | 4.03 ± 0.19 ab | 0.821 ± 0.01 ab | 31.94 ± 1.83 ab | 10.09± 0.47 ab |
200 | 4.23 ± 0.26 a | 0.836 ± 0.01 a | 34.23 ± 1.07 a | 10.67 ± 0.70 a |
Source of Variation | ||||
FZeolite | 32.127 *** | 4.359 * | 5.566 * | 13.501 *** |
FFertilization | 3.072 * | 3.126 * | 3.149 * | 3.169 * |
FZeolite×Fertilization | 0.819 ns | 1.321 ns | 0.443 ns | 1.207 ns |
KAR | ||||
Zeolite (t ha−1) | ||||
0 | 3.62 ± 0.08 B | 0.853 ± 0.01 B | 29.99 ± 0.94 B | 9.96 ± 0.24 B |
5 | 4.52 ± 0.11 A | 0.871 ± 0.01 A | 33.71 ± 1.19 A | 10.55 ± 0.37 AB |
7.5 | 4.81 ± 0.10 A | 0.886 ± 0.01 A | 36.10 ± 0.83 A | 11.43 ± 0.31 A |
N Fertilization (kg N ha−1) | ||||
0 | 4.09 ± 0.18 b | 0.851 ± 0.02 c | 30.44 ± 1.26 b | 9.85 ± 0.18 b |
100 | 4.26 ± 0.16 ab | 0.858 ± 0.01 bc | 33.08 ± 1.21 ab | 10.48 ± 0.39 ab |
150 | 4.40 ± 0.19 ab | 0.882 ± 0.01 ab | 34.31 ± 1.64 a | 10.93 ± 0.43 a |
200 | 4.52 ± 0.24 a | 0.888 ± 0.01 a | 35.24 ± 1.18 a | 11.33 ± 0.51 a |
Source of Variation | ||||
FZeolite | 48.052 *** | 7.258 ** | 10.552 *** | 6.172 ** |
FFertilization | 4.067 * | 6.339 ** | 3.624 * | 3.363 * |
FZeolite×Fertilization | 0.613 ns | 1.092 ns | 0.386 ns | 0.996 ns |
Fiber Length Traits | |||
---|---|---|---|
Upper Half Mean Length (UHML) (mm) | Uniformity Index (UI) (%) | Short Fiber Index (SFI) (<12.5 in mm) | |
ATH | |||
Zeolite (t ha−1) | |||
0 | 27.56 ± 0.17 C | 79.48 ± 0.49 B | 8.02 ± 0.49 B |
5 | 28.88 ± 0.33 B | 80.94 ± 0.51 AB | 9.43 ± 0.57 AB |
7.5 | 29.73 ± 0.26 A | 82.35 ± 0.70 A | 10.97 ± 0.78 A |
N Fertilization (kg N ha−1) | |||
0 | 27.87 ± 0.32 b | 79.75 ± 0.51 b | 8.29 ± 0.38 c |
100 | 28.81 ± 0.28 a | 80.04 ± 0.46 b | 8.58 ± 0.53 bc |
150 | 29.04 ± 0.46 a | 81.94 ± 0.64 a | 10.42 ± 0.62 ab |
200 | 29.17 ± 0.51 a | 81.97 ± 1.02 a | 10.60 ± 0.49 a |
Source of Variation | |||
FZeolite | 25.959 *** | 7.995 ** | 6.771 ** |
FFertilization | 5.619 ** | 4.133 * | 3.415 * |
FZeolite×Fertilization | 1.429 ns | 1.032 ns | 1.058 ns |
MES | |||
Zeolite (t ha−1) | |||
0 | 26.82 ± 0.27 B | 78.05 ± 0.52 B | 7.91 ± 0.59 B |
5 | 28.33 ± 0.34 A | 79.71 ± 0.48 A | 9.52 ± 0.62 AB |
7.5 | 29.21 ± 0.44 A | 81.14 ± 0.79 A | 10.86 ± 0.77 A |
N Fertilization (kg N ha−1) | |||
0 | 27.20 ± 0.31 b | 78.39 ± 0.59 c | 8.27 ± 0.67 c |
100 | 28.09 ± 0.47 ab | 78.86 ± 0.51 bc | 8.53 ± 0.60 bc |
150 | 28.53 ± 0.39 a | 80.51 ± 0.57 ab | 10.33 ± 0.73 ab |
200 | 28.67 ± 0.70 a | 80.77 ± 0.74 a | 10.61 ± 1.02 a |
Source of Variation | |||
FZeolite | 13.766 *** | 8.001 ** | 6.295 ** |
FFertilization | 3.138 * | 3.514 * | 4.128 * |
FZeolite×Fertilization | 1.007 ns | 1.194 ns | 0.893 ns |
KAR | |||
Zeolite (t ha−1) | |||
0 | 29.08 ± 0.29 B | 83.39 ± 0.59 B | 8.43 ± 0.62 B |
5 | 29.73 ± 0.48 AB | 84.18 ± 0.70 AB | 9.16 ± 0.68 AB |
7.5 | 30.83 ± 0.37 A | 85.96 ± 0.73 A | 11.09 ± 0.59 A |
N Fertilization (kg N ha−1) | |||
0 | 28.96 ± 0.21 b | 83.07 ± 0.53 b | 8.24 ± 0.40 b |
100 | 29.73 ± 0.69 ab | 83.21 ± 0.27 b | 8.31 ± 0.42 b |
150 | 30.04 ± 0.42 ab | 85.72 ± 0.72 a | 10.55 ± 0.91 ab |
200 | 30.80 ± 0.40 a | 86.04 ± 0.89 a | 11.13 ± 1.24 a |
Source of Variation | |||
FZeolite | 6.614 ** | 3.409 * | 3.407 * |
FFertilization | 3.671 * | 3.715 * | 3.048 * |
FZeolite×Fertilization | 1.279 ns | 0.899 ns | 0.967 ns |
Color Traits | Trash Traits | |||
---|---|---|---|---|
Fiber Reflectance (Rd) | Spinning Consistency Index (SCI) | Trash Area (TrAr) (%) | Trash Grade (TrID) (1–7 index) | |
ATH | ||||
Zeolite (t ha−1) | ||||
0 | 71.39 ± 0.93 C | 141.75 ± 0.94 C | 0.343 ± 0.06 C | 3.8 ± 0.4 C |
5 | 74.88 ± 0.57 B | 149.28 ± 1.72 B | 0.622 ± 0.11 B | 4.9 ± 0.2 B |
7.5 | 78.56 ± 0.63 A | 154.69 ± 1.68 A | 0.916 ± 0.07 A | 5.8 ± 0.2 A |
N Fertilization (kg N ha−1) | ||||
0 | 73.57 ± 1.06 b | 143.38 ± 1.90 b | 0.520 ± 0.11 b | 4.7 ± 0.5 a |
100 | 73.95 ± 0.93 b | 148.40 ± 1.61 a | 0.533 ± 0.13 b | 4.8 ± 0.4 a |
150 | 75.43 ± 1.19 ab | 150.86 ± 2.24 a | 0.609 ± 0.14 ab | 4.9 ± 0.3 a |
200 | 76.83 ± 1.73 a | 151.64 ± 3.13 a | 0.848 ± 0.08 a | 5.1 ± 0.4 a |
Source of Variation | ||||
FZeolite | 29.273 *** | 35.435 *** | 14.625 *** | 11.703 *** |
FFertilization | 3.802 * | 8.748 *** | 3.094 * | 0.315 ns |
FZeolite×Fertilization | 0.832 ns | 1.912 ns | 1.077 ns | 1.072 ns |
MES | ||||
Zeolite (t ha−1) | ||||
0 | 69.04 ± 0.79 C | 137.51 ± 1.53 B | 0.353 ± 0.05 B | 4.3 ± 0.3 B |
5 | 72.71 ± 0.66 B | 146.12 ± 1.80 A | 0.698 ± 0.13 A | 5.3 ± 0.3 A |
7.5 | 76.18 ± 1.02 A | 151.54 ± 2.60 A | 0.851 ± 0.10 A | 5.0 ± 0.2 AB |
N Fertilization (kg N ha−1) | ||||
0 | 70.92 ± 1.10 c | 139.28 ± 1.98 b | 0.437 ± 0.07 b | 4.7 ± 0.5 a |
100 | 71.29 ± 1.15 bc | 144.37 ± 2.50 ab | 0.491 ± 0.13 b | 4.9 ± 0.2 a |
150 | 73.44 ± 1.33 ab | 147.59 ± 2.41 a | 0.709 ± 0.16 ab | 4.9 ± 0.2 a |
200 | 74.93 ± 1.56 a | 148.98 ± 4.04 a | 0.901 ± 0.12 a | 5.0 ± 0.4 a |
Source of Variation | ||||
FZeolite | 23.188 *** | 16.389 *** | 6.941 ** | 3.901 * |
FFertilization | 4.857 ** | 4.553 * | 3.621 * | 0.222 ns |
FZeolite×Fertilization | 0.620 ns | 1.151 ns | 0.359 ns | 2.389 ns |
KAR | ||||
Zeolite (t ha−1) | ||||
0 | 74.81 ± 0.83 C | 151.59± 1.63 B | 0.246 ± 0.06 B | 4.3 ± 0.5 A |
5 | 77.59 ± 0.89 B | 155.56 ± 2.12 B | 0.649 ± 0.12 A | 4.8 ± 0.3 A |
7.5 | 81.65 ± 0.97 A | 162.50 ± 2.86 A | 0.884 ± 0.10 A | 5.3 ± 0.3 A |
N Fertilization (kg N ha−1) | ||||
0 | 76.13 ± 0.99 b | 150.60 ± 1.18 b | 0.418 ± 0.08 b | 4.6 ± 0.6 a |
100 | 76.31 ± 0.86 b | 156.59 ± 2.28 ab | 0.454 ± 0.12 b | 4.7 ± 0.3 a |
150 | 78.91 ± 1.51 ab | 156.67 ± 2.44 ab | 0.679 ± 0.18 ab | 4.9 ± 0.3 a |
200 | 80.72 ± 1.92 a | 162.34 ± 4.23 a | 0.822 ± 0.14 a | 5.0 ± 0.6 a |
Source of Variation | ||||
FZeolite | 15.121 *** | 8.359 ** | 12.099 *** | 1.338 ns |
FFertilization | 4.654 * | 4.722 * | 3.188 * | 0.196 ns |
FZeolite×Fertilization | 0.743 ns | 1.391 ns | 0.669 ns | 1.123 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roussis, I.; Mavroeidis, A.; Stavropoulos, P.; Baginetas, K.; Kanatas, P.; Pantaleon, K.; Folina, A.; Beslemes, D.; Kakabouki, I. Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region. Crops 2025, 5, 27. https://doi.org/10.3390/crops5030027
Roussis I, Mavroeidis A, Stavropoulos P, Baginetas K, Kanatas P, Pantaleon K, Folina A, Beslemes D, Kakabouki I. Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region. Crops. 2025; 5(3):27. https://doi.org/10.3390/crops5030027
Chicago/Turabian StyleRoussis, Ioannis, Antonios Mavroeidis, Panteleimon Stavropoulos, Konstantinos Baginetas, Panagiotis Kanatas, Konstantinos Pantaleon, Antigolena Folina, Dimitrios Beslemes, and Ioanna Kakabouki. 2025. "Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region" Crops 5, no. 3: 27. https://doi.org/10.3390/crops5030027
APA StyleRoussis, I., Mavroeidis, A., Stavropoulos, P., Baginetas, K., Kanatas, P., Pantaleon, K., Folina, A., Beslemes, D., & Kakabouki, I. (2025). Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region. Crops, 5(3), 27. https://doi.org/10.3390/crops5030027