Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = short lipopeptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2113 KB  
Article
Daptomycin-Loaded Nano-Drug Delivery System Based on Biomimetic Cell Membrane Coating Technology: Preparation, Characterization, and Evaluation
by Yuqin Zhou, Shihan Du, Kailun He, Beilei Zhou, Zixuan Chen, Cheng Zheng, Minghao Zhou, Jue Li, Yue Chen, Hu Zhang, Hong Yuan, Yinghong Li, Yan Chen and Fuqiang Hu
Pharmaceuticals 2025, 18(8), 1169; https://doi.org/10.3390/ph18081169 - 6 Aug 2025
Cited by 1 | Viewed by 998
Abstract
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short [...] Read more.
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short half-life, toxic side effects, and increasingly severe drug resistance issues. This study aimed to develop a biomimetic nano-drug delivery system to enhance targeting ability, prolong blood circulation, and mitigate resistance of DAP. Methods: DAP-loaded chitosan nanocomposite particles (DAP-CS) were prepared by electrostatic self-assembly. Macrophage membrane vesicles (MM) were prepared by fusion of M1-type macrophage membranes with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). A biomimetic nano-drug delivery system (DAP-CS@MM) was constructed by the coextrusion process of DAP-CS and MM. Key physicochemical parameters, including particle diameter, zeta potential, encapsulation efficiency, and membrane protein retention, were systematically characterized. In vitro immune escape studies and in vivo zebrafish infection models were employed to assess the ability of immune escape and antibacterial performance, respectively. Results: The particle size of DAP-CS@MM was 110.9 ± 13.72 nm, with zeta potential +11.90 ± 1.90 mV, and encapsulation efficiency 70.43 ± 1.29%. DAP-CS@MM retained macrophage membrane proteins, including functional TLR2 receptors. In vitro immune escape assays, DAP-CS@MM demonstrated significantly enhanced immune escape compared with DAP-CS (p < 0.05). In the zebrafish infection model, DAP-CS@MM showed superior antibacterial efficacy over both DAP and DAP-CS (p < 0.05). Conclusions: The DAP-CS@MM biomimetic nano-drug delivery system exhibits excellent immune evasion and antibacterial performance, offering a novel strategy to overcome the clinical limitations of DAP. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

11 pages, 1512 KB  
Article
A dePEGylated Lipopeptide-Based Pan-Coronavirus Fusion Inhibitor Exhibits Potent and Broad-Spectrum Anti-HIV-1 Activity without Eliciting Anti-PEG Antibodies
by Ling Xu, Chao Wang, Wei Xu, Lixiao Xing, Jie Zhou, Jing Pu, Mingming Fu, Lu Lu, Shibo Jiang and Qian Wang
Int. J. Mol. Sci. 2023, 24(11), 9779; https://doi.org/10.3390/ijms24119779 - 5 Jun 2023
Cited by 2 | Viewed by 2550
Abstract
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral [...] Read more.
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These results suggest that HR1 is a common target for the development of broad-spectrum viral fusion inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses. Full article
(This article belongs to the Collection Feature Papers in Molecular Immunology)
Show Figures

Figure 1

15 pages, 2720 KB  
Article
Synthetic Cationic Lipopeptide Can Effectively Treat Mouse Mastitis Caused by Staphylococcus aureus
by Jie Peng, Qiangsheng Lu, Lvfeng Yuan and Hecheng Zhang
Biomedicines 2023, 11(4), 1188; https://doi.org/10.3390/biomedicines11041188 - 17 Apr 2023
Cited by 9 | Viewed by 2248
Abstract
Mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows is one of the most common clinical diseases in dairy cattle. Unfortunately, traditional antibiotic treatment has resulted in the emergence of drug-resistant strains of bacteria, making this disease more difficult to [...] Read more.
Mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows is one of the most common clinical diseases in dairy cattle. Unfortunately, traditional antibiotic treatment has resulted in the emergence of drug-resistant strains of bacteria, making this disease more difficult to treat. Therefore, novel lipopeptide antibiotics are becoming increasingly important in treating bacterial diseases, and developing novel antibiotics is critical in controlling mastitis in dairy cows. We designed and synthesized three cationic lipopeptides with palmitic acid, all with two positive charges and dextral amino acids. The lipopeptides’ antibacterial activity against S. aureus was determined using MIC and scanning electron microscopy. The safety concentration range of lipopeptides for clinical usage was then estimated using the mouse erythrocyte hemolysis assay and CCK8 cytotoxicity. Finally, lipopeptides with high antibacterial activity and minimal cytotoxicity were selected for the treatment experiments regarding mastitis in mice. The observation of histopathological changes, bacterial tissue load and expression of inflammatory factors determined the therapeutic effects of lipopeptides on mastitis in mice. The results showed that all three lipopeptides displayed some antibacterial activity against S. aureus, with C16dKdK having a strong antibacterial impact and being able to treat the mastitis induced by S. aureus infection in mice within a safe concentration range. The findings of this study can be used as a starting point for the development of new medications for the treatment of mastitis in dairy cows. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

19 pages, 1615 KB  
Article
Synthesis and Antimicrobial Activity of Short Analogues of the Marine Antimicrobial Peptide Turgencin A: Effects of SAR Optimizations, Cys-Cys Cyclization and Lipopeptide Modifications
by Hymonti Dey, Danijela Simonovic, Ingrid Norberg-Schulz Hagen, Terje Vasskog, Elizabeth G. Aarag Fredheim, Hans-Matti Blencke, Trude Anderssen, Morten B. Strøm and Tor Haug
Int. J. Mol. Sci. 2022, 23(22), 13844; https://doi.org/10.3390/ijms232213844 - 10 Nov 2022
Cited by 11 | Viewed by 3239
Abstract
We have synthesised short analogues of the marine antimicrobial peptide Turgencin A from the colonial Arctic ascidian Synoicum turgens. In this study, we focused on a central, cationic 12-residue Cys-Cys loop region within the sequence. Modified (tryptophan- and arginine-enriched) linear peptides were compared [...] Read more.
We have synthesised short analogues of the marine antimicrobial peptide Turgencin A from the colonial Arctic ascidian Synoicum turgens. In this study, we focused on a central, cationic 12-residue Cys-Cys loop region within the sequence. Modified (tryptophan- and arginine-enriched) linear peptides were compared with Cys-Cys cyclic derivatives, and both linear and Cys-cyclic peptides were N-terminally acylated with octanoic acid (C8), decanoic acid (C10) or dodecanoic acid (C12). The highest antimicrobial potency was achieved by introducing dodecanoic acid to a cyclic Turgencin A analogue with low intrinsic hydrophobicity, and by introducing octanoic acid to a cyclic analogue displaying a higher intrinsic hydrophobicity. Among all tested synthetic Turgencin A lipopeptide analogues, the most promising candidates regarding both antimicrobial and haemolytic activity were C12-cTurg-1 and C8-cTurg-2. These optimized cyclic lipopeptides displayed minimum inhibitory concentrations of 4 µg/mL against Staphylococcus aureus, Escherichia coli and the fungus Rhodothorula sp. Mode of action studies on bacteria showed a rapid membrane disruption and bactericidal effect of the cyclic lipopeptides. Haemolytic activity against human erythrocytes was low, indicating favorable selective targeting of bacterial cells. Full article
Show Figures

Figure 1

28 pages, 4289 KB  
Article
Understanding the Role of Self-Assembly and Interaction with Biological Membranes of Short Cationic Lipopeptides in the Effective Design of New Antibiotics
by Oktawian Stachurski, Damian Neubauer, Aleksandra Walewska, Emilia Iłowska, Marta Bauer, Sylwia Bartoszewska, Karol Sikora, Aleksandra Hać, Dariusz Wyrzykowski, Adam Prahl, Wojciech Kamysz and Emilia Sikorska
Antibiotics 2022, 11(11), 1491; https://doi.org/10.3390/antibiotics11111491 - 27 Oct 2022
Cited by 9 | Viewed by 3065
Abstract
This study investigates short cationic antimicrobial lipopeptides composed of 2–4 amino acid residues and C12-C18 fatty acids attached to the N-terminal part of the peptides. The findings were discussed in the context of the relationship among biological activity, self-assembly, stability, [...] Read more.
This study investigates short cationic antimicrobial lipopeptides composed of 2–4 amino acid residues and C12-C18 fatty acids attached to the N-terminal part of the peptides. The findings were discussed in the context of the relationship among biological activity, self-assembly, stability, and membrane interactions. All the lipopeptides showed the ability to self-assemble in PBS solution. In most cases, the critical aggregation concentration (CAC) much surpassed the minimal inhibitory concentration (MIC) values, suggesting that monomers are the main active form of lipopeptides. The introduction of β-alanine into the peptide sequence resulted in a compound with a high propensity to fibrillate, which increased the peptide stability and activity against S. epidermidis and C. albicans and reduced the cytotoxicity against human keratinocytes. The results of our study indicated that the target of action of lipopeptides is the bacterial membrane. Interestingly, the type of peptide counterion may affect the degree of penetration of the lipid bilayer. In addition, the binding of the lipopeptide to the membrane of Gram-negative bacteria may lead to the release of calcium ions necessary for stabilization of the lipopolysaccharide layer. Full article
Show Figures

Graphical abstract

23 pages, 4189 KB  
Article
Design and Characterization of Myristoylated and Non-Myristoylated Peptides Effective against Candida spp. Clinical Isolates
by Francesca Bugli, Federica Massaro, Francesco Buonocore, Paolo Roberto Saraceni, Stefano Borocci, Francesca Ceccacci, Cecilia Bombelli, Maura Di Vito, Rosalba Marchitiello, Melinda Mariotti, Riccardo Torelli, Maurizio Sanguinetti and Fernando Porcelli
Int. J. Mol. Sci. 2022, 23(4), 2164; https://doi.org/10.3390/ijms23042164 - 16 Feb 2022
Cited by 16 | Viewed by 3489
Abstract
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated [...] Read more.
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens. Full article
Show Figures

Figure 1

8 pages, 963 KB  
Communication
Can Immobilized Artificial Membrane Chromatography Support the Characterization of Antimicrobial Peptide Origin Derivatives?
by Krzesimir Ciura, Natalia Ptaszyńska, Hanna Kapica, Monika Pastewska, Anna Łęgowska, Krzysztof Rolka, Wojciech Kamysz, Wiesław Sawicki and Katarzyna E. Greber
Antibiotics 2021, 10(10), 1237; https://doi.org/10.3390/antibiotics10101237 - 12 Oct 2021
Cited by 7 | Viewed by 2436
Abstract
The emergence and spread of multiple drug-resistant bacteria strains caused the development of new antibiotics to be one of the most important challenges of medicinal chemistry. Despite many efforts, the commercial availability of peptide-based antimicrobials is still limited. The presented study aims to [...] Read more.
The emergence and spread of multiple drug-resistant bacteria strains caused the development of new antibiotics to be one of the most important challenges of medicinal chemistry. Despite many efforts, the commercial availability of peptide-based antimicrobials is still limited. The presented study aims to explain that immobilized artificial membrane chromatography can support the characterization of antimicrobial peptides. Consequently, the chromatographic experiments of three groups of related peptide substances: (i) short cationic lipopeptides, (ii) citropin analogs, and (iii) conjugates of ciprofloxacin and levofloxacin, with a cell-penetrating peptide were discussed. In light of the discussion of the mechanisms of action of these compounds, the obtained results were interpreted. Full article
(This article belongs to the Special Issue Mechanisms of Antimicrobial Peptides on Pathogens)
Show Figures

Graphical abstract

14 pages, 2137 KB  
Article
Effects of Lipidation on a Proline-Rich Antibacterial Peptide
by Federica Armas, Adriana Di Stasi, Mario Mardirossian, Antonello A. Romani, Monica Benincasa and Marco Scocchi
Int. J. Mol. Sci. 2021, 22(15), 7959; https://doi.org/10.3390/ijms22157959 - 26 Jul 2021
Cited by 37 | Viewed by 3558
Abstract
The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria [...] Read more.
The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria by inhibiting protein synthesis after its internalization, which is mainly supported by the bacterial transporter SbmA. In this study, we tested two different lipidated forms of Bac7(1-16) with the aim of extending its activity against those bacterial species that lack SbmA. We linked a C12-alkyl chain or an ultrashort cationic lipopeptide Lp-I to the C-terminus of Bac7(1-16). Both the lipidated Bac-C12 and Bac-Lp-I forms acquired activity at low micromolar MIC values against several Gram-positive and Gram-negative bacteria. Moreover, unlike Bac7(1-16), Bac-C12, and Bac-Lp-I did not select resistant mutants in E. coli after 14 times of exposure to sub-MIC concentrations of the respective peptide. We demonstrated that the extended spectrum of activity and absence of de novo resistance are likely related to the acquired capability of the peptides to permeabilize cell membranes. These results indicate that C-terminal lipidation of a short proline-rich peptide profoundly alters its function and mode of action and provides useful insights into the design of novel broad-spectrum antibacterial agents. Full article
(This article belongs to the Special Issue Peptide Antimicrobial Agents)
Show Figures

Figure 1

11 pages, 2781 KB  
Article
Synthesis and Self-Assembly Properties of Bola-Amphiphilic Glycosylated Lipopeptide-Type Supramolecular Hydrogels Showing Colour Changes Along with Gel–Sol Transition
by Naoki Tsutsumi, Akitaka Ito, Azumi Ishigamori, Masato Ikeda, Masayuki Izumi and Rika Ochi
Int. J. Mol. Sci. 2021, 22(4), 1860; https://doi.org/10.3390/ijms22041860 - 13 Feb 2021
Cited by 11 | Viewed by 4157
Abstract
Supramolecular hydrogels formed by self-assembly of low-molecular-weight amphiphiles (hydrogelators) have attracted significant attention, as smart and soft materials. However, most of the observed stimuli-responsive behaviour of these supramolecular hydrogels are limited to gel–sol transitions. In this study, we present bola-amphiphilic glycosylated lipopeptide-type supramolecular [...] Read more.
Supramolecular hydrogels formed by self-assembly of low-molecular-weight amphiphiles (hydrogelators) have attracted significant attention, as smart and soft materials. However, most of the observed stimuli-responsive behaviour of these supramolecular hydrogels are limited to gel–sol transitions. In this study, we present bola-amphiphilic glycosylated lipopeptide-type supramolecular hydrogelators that exhibit reversible thermochromism along with a gel–sol transition. The bola-amphiphiles have mono-, di-, tri- or tetra-phenylalanine (F) as a short peptide moiety. We investigate and discuss the effects of the number of F residues on the gelation ability and the morphology of the self-assembled nanostructures. Full article
(This article belongs to the Special Issue Self-Assembly Mechanism and Connection of Peptides and Proteins)
Show Figures

Figure 1

18 pages, 2997 KB  
Article
Genome Sequences of Serratia Strains Revealed Common Genes in Both Serratomolides Gene Clusters
by Catarina Marques-Pereira, Diogo Neves Proença and Paula V. Morais
Biology 2020, 9(12), 482; https://doi.org/10.3390/biology9120482 - 20 Dec 2020
Cited by 12 | Viewed by 5535
Abstract
Serratia strains are ubiquitous microorganisms with the ability to produce serratomolides, such as serrawettins. These extracellular lipopeptides are described as biocides against many bacteria and fungi and may have a nematicidal activity against phytopathogenic nematodes. Serrawettins W1 and W2 from different strains have [...] Read more.
Serratia strains are ubiquitous microorganisms with the ability to produce serratomolides, such as serrawettins. These extracellular lipopeptides are described as biocides against many bacteria and fungi and may have a nematicidal activity against phytopathogenic nematodes. Serrawettins W1 and W2 from different strains have different structures that might be correlated with distinct genomic organizations. This work used comparative genomics to determine the distribution and the organization of the serrawettins biosynthetic gene clusters in all the 84 publicly available genomes of the Serratia genus. The serrawettin W1 and W2 gene clusters’ organization was established using antiSMASH software and compared with single and short data previously described for YD25TSerratia. Here, the serrawettin W1 gene clusters’ organization is reported for the first time. The serrawettin W1 biosynthetic gene swrW was present in 17 Serratia genomes. Eighty different coding sequence (CDS) were assigned to the W1 gene cluster, 13 being common to all clusters. The serrawettin W2 swrA gene was present in 11 Serratia genomes. The W2 gene clusters included 68 CDS with 24 present in all the clusters. The genomic analysis showed the swrA gene constitutes five modules, four with three domains and one with four domains, while the swrW gene constitutes one module with four domains. This work identified four genes common to all serrawettin gene clusters, highlighting their essential potential in the serrawettins biosynthetic process. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

8 pages, 393 KB  
Brief Report
The Short Lipopeptides (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 Protect HaCaT Keratinocytes from Bacterial Damage Caused by Staphylococcus aureus Infection in a Co-Culture Model
by Kirsten Reddersen, Katarzyna E. Greber, Izabela Korona-Glowniak and Cornelia Wiegand
Antibiotics 2020, 9(12), 879; https://doi.org/10.3390/antibiotics9120879 - 8 Dec 2020
Cited by 5 | Viewed by 3228
Abstract
The search for new antimicrobial strategies is of major importance since there is a growing resistance of both bacteria and fungi to existing antimicrobials. Lipopeptides are promising and potent antimicrobial compounds. For translation into clinically useful molecules, effectiveness of peptide treatment against human [...] Read more.
The search for new antimicrobial strategies is of major importance since there is a growing resistance of both bacteria and fungi to existing antimicrobials. Lipopeptides are promising and potent antimicrobial compounds. For translation into clinically useful molecules, effectiveness of peptide treatment against human infections must be proved in complex in vitro wound models. The aim of this study was to examine if the synthesized short lipopeptides (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 can protect HaCaT keratinocytes from bacterial damage caused by Staphylococcus aureus infection in a coculture model. After 1 h, 24 h, and 48 h incubation, cellular ATP level and release of the cytotoxicity marker LDH as well as the proinflammatory cytokines interleukin-6 and interleukin-1α were measured. Infection of the keratinocytes resulted in strong bacterial damage of HaCaT cells along with low cellular ATP levels and high release of LDH, IL-6, and IL-1α after 24 h and 48 h. Incubation of the infected human keratinocytes with (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 resulted in protection of the keratinocytes from bacterial damage caused by Staphylococcus aureus infection with ATP, LDH, IL-6, and IL-1α levels comparable to the untreated control. Hence, both synthesized lipopeptides are promising candidates with high therapeutic potential in dermatology for the treatment of topical infections. Full article
(This article belongs to the Special Issue Therapeutic Use of Antimicrobial Peptides: Joys and Sorrows)
Show Figures

Figure 1

30 pages, 7780 KB  
Article
Effect of Disulfide Cyclization of Ultrashort Cationic Lipopeptides on Antimicrobial Activity and Cytotoxicity
by Damian Neubauer, Maciej Jaśkiewicz, Emilia Sikorska, Sylwia Bartoszewska, Marta Bauer, Małgorzata Kapusta, Magdalena Narajczyk and Wojciech Kamysz
Int. J. Mol. Sci. 2020, 21(19), 7208; https://doi.org/10.3390/ijms21197208 - 29 Sep 2020
Cited by 19 | Viewed by 4953
Abstract
Ultrashort cationic lipopeptides (USCLs) are considered to be a promising class of antimicrobials with high activity against a broad-spectrum of microorganisms. However, the majority of these compounds are characterized by significant toxicity toward human cells, which hinders their potential application. To overcome those [...] Read more.
Ultrashort cationic lipopeptides (USCLs) are considered to be a promising class of antimicrobials with high activity against a broad-spectrum of microorganisms. However, the majority of these compounds are characterized by significant toxicity toward human cells, which hinders their potential application. To overcome those limitations, several approaches have been advanced. One of these is disulfide cyclization that has been shown to improve drug-like characteristics of peptides. In this article the effect of disulfide cyclization of the polar head of N-palmitoylated USCLs on in vitro biological activity has been studied. Lipopeptides used in this study consisted of three or four basic amino acids (lysine and arginine) and cystine in a cyclic peptide. In general, disulfide cyclization of the lipopeptides resulted in peptides with reduced cytotoxicity. Disulfide-cyclized USCLs exhibited improved selectivity between Candida sp., Gram-positive strains and normal cells in contrast to their linear counterparts. Interactions between selected USCLs and membranes were studied by molecular dynamics simulations using a coarse-grained force field. Moreover, membrane permeabilization properties and kinetics were examined. Fluorescence and transmission electron microscopy revealed damage to Candida cell membrane and organelles. Concluding, USCLs are strong membrane disruptors and disulfide cyclization of polar head can have a beneficial effect on its in vitro selectivity between Candida sp. and normal human cells. Full article
(This article belongs to the Special Issue Creation of New Antimicrobial Peptides)
Show Figures

Graphical abstract

14 pages, 1434 KB  
Article
Activity of Temporin A and Short Lipopeptides Combined with Gentamicin against Biofilm Formed by Staphylococcus aureus and Pseudomonas aeruginosa
by Malgorzata Anna Paduszynska, Katarzyna Ewa Greber, Wojciech Paduszynski, Wieslaw Sawicki and Wojciech Kamysz
Antibiotics 2020, 9(9), 566; https://doi.org/10.3390/antibiotics9090566 - 2 Sep 2020
Cited by 21 | Viewed by 3917
Abstract
The formation of biofilms on biomaterials causes biofilm-associated infections. Available treatments often fail to fight the microorganisms in the biofilm, creating serious risks for patient well-being and life. Due to their significant antibiofilm activities, antimicrobial peptides are being intensively investigated in this regard. [...] Read more.
The formation of biofilms on biomaterials causes biofilm-associated infections. Available treatments often fail to fight the microorganisms in the biofilm, creating serious risks for patient well-being and life. Due to their significant antibiofilm activities, antimicrobial peptides are being intensively investigated in this regard. A promising approach is a combination therapy that aims to increase the efficacy and broaden the spectrum of antibiotics. The main goal of this study was to evaluate the antimicrobial efficacy of temporin A and the short lipopeptides (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 in combination with gentamicin against biofilm formed by Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). Peptides were synthesized with solid-phase temperature-assisted synthesis methodology. The minimum inhibitory concentrations (MICs), fractional inhibitory concentrations (FICs), minimum biofilm eradication concentrations (MBECs), and the influence of combinations of compounds with gentamicin on bacterial biofilm were determined for reference strains of SA (ATCC 25923) and PA (ATCC 9027). The peptides exhibited significant potential to enhance the antibacterial activity of gentamicin against SA biofilm, but there was no synergy in activity against planktonic cells. The antibiotic applied alone demonstrated strong activity against planktonic cells and poor effectiveness against SA biofilm. Biofilm formed by PA was much more sensitive to gentamicin, but some positive influences of supplementation with peptides were noticed. The results of the performed experiments suggest that the potential application of peptides as adjuvant agents in the treatment of biofilm-associated infections should be studied further. Full article
(This article belongs to the Special Issue Development of Antimicrobial Peptides from Amphibian)
Show Figures

Figure 1

17 pages, 1888 KB  
Review
A Non-Canonical Calmodulin Target Motif Comprising a Polybasic Region and Lipidated Terminal Residue Regulates Localization
by Benjamin M. M. Grant, Masahiro Enomoto, Mitsuhiko Ikura and Christopher B. Marshall
Int. J. Mol. Sci. 2020, 21(8), 2751; https://doi.org/10.3390/ijms21082751 - 15 Apr 2020
Cited by 21 | Viewed by 4529
Abstract
Calmodulin (CaM) is a Ca2+-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic ‘anchor’ residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca2+-binding [...] Read more.
Calmodulin (CaM) is a Ca2+-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic ‘anchor’ residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca2+-binding motifs that form a Ca2+-induced hydrophobic pocket that binds an anchor residue. A central flexible linker allows CaM to accommodate diverse targets. Several reported CaM interactors lack these anchors but contain Lys/Arg-rich polybasic sequences adjacent to a lipidated N- or C-terminus. Ca2+-CaM binds the myristoylated N-terminus of CAP23/NAP22 with intimate interactions between the lipid and a surface comprised of the hydrophobic pockets of both lobes, while the basic residues make electrostatic interactions with the negatively charged surface of CaM. Ca2+-CaM binds farnesylcysteine, derived from the farnesylated polybasic C-terminus of KRAS4b, with the lipid inserted into the C-terminal lobe hydrophobic pocket. CaM sequestration of the KRAS4b farnesyl moiety disrupts KRAS4b membrane association and downstream signaling. Phosphorylation of basic regions of N-/C-terminal lipidated CaM targets can reduce affinity for both CaM and the membrane. Since both N-terminal myristoylated and C-terminal prenylated proteins use a Singly Lipidated Polybasic Terminus (SLIPT) for CaM binding, we propose these polybasic lipopeptide elements comprise a non-canonical CaM-binding motif. Full article
(This article belongs to the Special Issue Calmodulin Function in Health and Disease)
Show Figures

Figure 1

15 pages, 316 KB  
Article
Influence of Short Cationic Lipopeptides with Fatty Acids of Different Chain Lengths on Bacterial Biofilms Formed on Polystyrene and Hydrogel Surfaces
by Malgorzata Anna Paduszynska, Magdalena Maciejewska, Damian Neubauer, Krzysztof Golacki, Magdalena Szymukowicz, Marta Bauer and Wojciech Kamysz
Pharmaceutics 2019, 11(10), 506; https://doi.org/10.3390/pharmaceutics11100506 - 1 Oct 2019
Cited by 21 | Viewed by 4085
Abstract
Nowadays, biomaterials are applied in many different branches of medicine. They significantly improve the patients’ comfort and quality of life, but also constitute a significant risk factor for biofilm-associated infections. Currently, intensive research on the development of novel materials resistant to microbial colonization [...] Read more.
Nowadays, biomaterials are applied in many different branches of medicine. They significantly improve the patients’ comfort and quality of life, but also constitute a significant risk factor for biofilm-associated infections. Currently, intensive research on the development of novel materials resistant to microbial colonization as well as new compounds that are active against biofilms is being carried out. Within this research, antimicrobial peptides (AMPs) and their analogues are being intensively investigated due to their promising antimicrobial activities. The main goal of this study was to synthesize and evaluate the antimicrobial efficacy of short cationic lipopeptides that were designed to imitate the features of AMPs responsible for antimicrobial activities: positive net charge and amphipacity. The positive charge of the molecules results from the presence of basic amino acid residues: arginine and lysine. Amphipacity is provided by the introduction of decanoic, dodecanoic, tetradecanoic, and hexadecanoic acid chains to the molecules. Lipopeptides (C16-KR-NH2, C16-KKK-NH2, C16-KKC-NH2, C16-KGK-NH2, C14-KR-NH2, C14-KKC-NH2, C12-KR-NH2, C12-KKC-NH2, and (C10)2-KKKK-NH2) were synthesized using a novel solid-phase temperature-assisted methodology. The minimum inhibitory concentrations (MICs), minimum biofilm eradication concentrations (MBECs), and minimum biofilm formation inhibitory concentrations (MBFICs) were determined for the following bacterial strains: Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 14990, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 9027, and Proteus mirabilis PCM 543. The biofilms were cultured on two types of surfaces: polystyrene plates (PS) and contact lenses (CL). The lipopeptides exhibited the ability to inhibit the growth of bacteria in a liquid medium as well as on the PS and CL. The compounds also eliminated the bacterial biofilm from the surface of both materials. In general, the activity against gram-positive bacteria was stronger in comparison to that against gram-negative strains. There were certain discrepancies between the activity of compounds against the biofilm cultured on PS and CL. This was especially noticeable for staphylococci—the lipopeptides presented much higher activity against biofilm formed on the PS surface. It is worth noting that the obtained MBEC values for lipopeptides were usually only a few times higher than the MICs. The results of the performed experiments suggest that further studies on lipopeptides and their potential application in the treatment and prophylaxis of biofilm-associated infections should be conducted. Full article
(This article belongs to the Special Issue Breakthroughs in Antimicrobial Peptides)
Show Figures

Graphical abstract

Back to TopTop