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Abstract: The emergence and spread of multiple drug-resistant bacteria strains caused the develop-
ment of new antibiotics to be one of the most important challenges of medicinal chemistry. Despite
many efforts, the commercial availability of peptide-based antimicrobials is still limited. The pre-
sented study aims to explain that immobilized artificial membrane chromatography can support
the characterization of antimicrobial peptides. Consequently, the chromatographic experiments of
three groups of related peptide substances: (i) short cationic lipopeptides, (ii) citropin analogs, and
(iii) conjugates of ciprofloxacin and levofloxacin, with a cell-penetrating peptide were discussed.
In light of the discussion of the mechanisms of action of these compounds, the obtained results
were interpreted.

Keywords: IAM-HPLC; antimicrobial peptide; cell-penetrating peptide (CPP); transportan 10 (TP10-
NH2); short cationic lipopeptides

1. Introduction

The development of new antimicrobial agents is one of the most critical challenges
of medicinal chemistry. Several natural and synthetic compounds have been explored
and investigated to find new, effective, and safe antimicrobial agents. The antimicrobial
peptides, lipopeptides, and other peptide origin derivatives, such as peptidomimetics, are
very promising structures among the tested substances. They showed severe therapeutic
potential due to their broad spectrum of activity, rapid bacterial killing, and synergy with
classical antibiotics [1–3]. Generally, the antibacterial mechanism of action of peptides and
lipopeptides is mainly connected with the interactions between peptides and bacterial
membranes [4], but some studies showed different results [5]. Nonetheless, the most
recognized mechanisms of action are the barrel-stave model, carpet model, and toroidal
model for killing pathogenic bacteria organisms [6].

Understanding the physicochemical and structural properties of peptides is an essen-
tial requisite for the rational design of active derivatives. Nevertheless, their lipophilicity is
challenging to analyze using traditional in silico or octanol/water partition coefficients.
Consequently, the estimation of their in vivo distribution and permeability is also diffi-
cult [7]. Except for family cell-penetrating peptides (CPP) [8], their peptide derivatives
also often showed limited cell permeability due to their polar nature. For this reason, the
assessment of phospholipid’s affinity for peptide derivatives is critical. Generally, the parti-
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tioning systems containing phospholipids as the organic phase, like liposomes or cell culture
techniques, can mimic the interactions between peptides and biological membranes [9].

Nevertheless, nowadays, the most popular approach involves immobilized artificial
membrane HPLC (IAM-HPLC). Several advantages of IAM-HPLC include complete au-
tomation, a short analysis time, and excellent lab-to-lab reproducibility. What is more,
Valko and coworkers reported promising results of an phospholipid-binding study of
potential peptide therapeutics using IAM-HPLC [10–16].

This study continues our research program focused on assessing the physicochem-
ical properties of drug candidates using chromatographic and biochromatographic ap-
proaches [17–24]. In this study, we investigated the possibility of using IAM-HPLC for the
characterization of three groups of related peptide substances: (i) short cationic lipopep-
tides, (ii) citropin analogs, and (iii) conjugates of ciprofloxacin (CIP) and levofloxacin (LVX)
with a cell-penetrating peptide named transoprtan 10 (TP10-NH2) and its analog extended
at N-terminus by L-cysteine synthesized in our and collaborated laboratories.

2. Results

In Table 1, the experimentally determined time of retention in the investigated IAM-
HPLC system and calculated using calibration cure chromatographic hydrophobicity in-
dices of IAM (CHIIAM) was noticed. In short, cationic lipopeptides have strong interactions
between the stationary phase and analytes occurring and do not migrate. The conjugates of
ciprofloxacin and levofloxacin with a cell-penetrating peptide behaved completely contarry.
All target derivatives (six conjugates of CIP and LVX with TP10-NH2) migrated to the
front of the mobile phase. The retention time of the citropin analogs ranged from 3.349 to
4.495 min, which referred to 27.85–45.95 CHIIAM, respectively.

Table 1. The obtained retention times and calculated CHIIAM for the target citropin analogs and
fluoroquinolone antibiotics.

Analyte TR1 TR2 TR3 Mean TR CHIIAM

(4–16) Citropin 3.987 3.979 3.985 3.984 38.24
(8–16) Citropin 4.482 4.496 4.506 4.495 45.95
(1–7) Citropin 4.240 4.244 4.244 4.243 42.15
(4–14) Citropin 3.305 3.289 3.293 3.295 27.85

(1–7)–(10–16) Citropin 3.888 3.901 3.934 3.908 37.09
(1–5)–(12–16) Citropin 3.349 3.348 3.351 3.349 28.66

Levofloxacin 3.087 3.089 3.101 3.092 24.88
Ciprofloxacin 2.886 2.921 2.899 2.902 19.70

3. Discussion

Several pharmaceutical and biotechnological companies are currently looking for new
modalities outside the traditional small molecular drug space [7]. However, the obtained
results seem to look disappointing, as typical negative experiments since the quantitative
data were obtained for only one series of the tested compounds. It could be beneficial to
understand the possible mechanisms of action better. In the case of short cationic lipopep-
tides, there are probably occurring simultaneous hydrophobic interactions between the
hydrocarbon chains and interactions between the positively charged amino acid head and
the negatively charged phosphate group present in the structure of phosphatidylcholine.
The combination of these interactions causes very strong interactions with the phospho-
lipids. Interestingly, both active and nonactive substances can not be eluted from IAM
only using the 100% organic phase [5,25]. This finding suggested that the mechanism of
action of short cationic lipopeptides is not trivial and meets our earlier results as to its
more complex nature than just the simple surfactant [5,25]. An interesting situation was
observed in the case of the conjugates of CIP and LVX with transportan 10. The parent
fluoroquinolone antibiotics showed a moderate affinity to the phospholipids: 24.88 and
19.70 CHIIAM for LVX and CIP. However, when covalently linked with TP10-NH2, they lost
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their affinity to the phospholipids. At the same time, the synthesized conjugates remained
highly biologically active [26]. It is worth highlighting that fluoroquinolone antibiotics may
also penetrate bacterial cells in a hydrophilic way using porin channels [27,28]. The latter
can explain the visible activity of the tested conjugates. This assumption is supported by
the observation of improved dissolution in the water of the designed conjugates compared
to the started fluoroquinolone antibiotics structures. Among the tested substances, citropin
analogs characterized a moderate to relatively high affinity to stationary IAM. These results
indicated that the citropin derivatives should penetrate the biological membranes.

4. Materials and Methods
4.1. Materials and Analytes
4.1.1. Short Cationic Lipopeptides

The lipopeptides sequences were de novo designed and synthesized using the
9-fluorenylmetoxycarbonyl (Fmoc) methodology on the Fmoc-Rink Amide AM resin
(0.59 mmol/g, IrisBiotech, Marktredwitz, Germany) [29]. To remove the Fmoc group from
the protected amino acid residue, a 20% solution of piperidine in N,N-dimethyloformamide
(DMF) was used. A peptide bond was created by in situ activation with the
diizopropylocarbodoimide/1-hydroxybenzotriazole (DIC/HOBT) procedure. Deanchor-
ing of the lipopeptides from the solid support and deprotection of the amino acid side
chains were achiewed by treating the lipopeptidyl resin with the mixture of trifluoroacethic
acid (TFA; 95%), triizopropylosilane (TIS; 2.5%), and water (2.5%) for 1 h. The deanchoring
mixture was then drained, concentrated on a rotary evaporator (Heidolph, Schwabach, Ger-
many), and treated with cold diethyl ether to precipitate the lipopeptides. The precipitated
lipopeptides were dissolved in water and freeze-dried (Christ, Martinsried, Germany).

Purification of the synthesized lipopeptides was carried out by semipreparative
reverse-phase high-performance liquid chromatography (RP-HPLC) on a C8e column
(Macharey-Nagel, Düren, Germany) with a linear gradient (20–60%) of acetonitrile in
water (both solvents contained 0.1% TFA). The identity of the obtained lipopeptides was
confirmed via mas spectrometry (MALDI-TOF, Bruker Daltonics, Ettlingen, Germany). The
sequences of the target antimicrobial lipopeptides are presented in Table 2.

Table 2. Amino acid sequences of the studied antimicrobial lipopeptides.

Double Fatty Acid Chain
Lipopeptides

Tetradecanoic Fatty Acid
Lipopeptides

Hexadecanoic Fatty Acid
Lipopeptides

(C8)2-KKKK-NH2 C14-K-NH2 C16-K-NH2
(C10)2-KKKK-NH2 C14-KG-NH2 C16-KGK-NH2
(C12)2-KKKK-NH2 C14-KGK-NH2 C16-KGKG-NH2
(C14)2-KKKK-NH2 C14-KGKG-NH2 C16-KK-NH2
(C16)2-KKKK-NH2 C14-KKK-NH2 C16-KKKK-NH2

C14-KKKK-NH2 C16-KKY-NH2
C16-KKS-NH2
C16-KKD-NH2

4.1.2. Citropin Analogs

The citropin analogs were assembled manually by solid-phase procedures on a
polystyrene AM-RAM resin (0.66 mmol/g, Rapp Polymere, Tuebingen, Germany) using
9-fluorenylmetoxycarbonyl (Fmoc) methodology [29].

The Fmoc group was removed from the protected amino acid residue by a 20% so-
lution of piperidine in N,N-dimethyloformamide (DMF). A peptide bond was created by
the in situ activation with the 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexaflu-
orophosphate/N,N-diisopropylethylamine (HBTU/DIPEA) procedure. Deanchoring of
the peptides from the solid support and deprotection of the amino acid side chains were
achieved by treating the peptidyl resin with the mixture of trifluoroacethic acid (TFA; 95%),
triizopropylosilane (TIS; 2.5%), and water (2.5%) for 2 h. The deanchoring mixture was
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then drained, concentrated on a rotary evaporator (Heidolph, Schwabach, Germany), and
treated with cold diethyl ether to precipitate the peptides. The precipitated peptides were
dissolved in 2% ACN and freeze-dried (Christ, Martinsried, Germany).

Purification of the synthesized peptides was carried out by semipreparative reverse-
phase high-performance liquid chromatography (RP-HPLC) on a C18e column (Macharey-
Nagel, Düren, Germany) with a linear gradient (20–40%) of acetonitrile in water (both
solvents contained 0.1% TFA). Each citropin analog was analyzed by RP-HPLC and matrix-
assisted laser-desorption ionization time-of-flight mass spectrometry MALDI-TOF (Bruker
Daltonics, Ettlingen, Germany). The sequences of the investigated citropin analogs are
presented in Table 3.

Table 3. Amino acid sequences of the studied analogs of citropin 1.1.

Antimicrobial Peptides Amino Acid Sequences

Citropin 1.1 GLFDVIKKVASVIGGL-NH2
(4–16) Citropin DVIKKVASVIGGL-NH2
(8–16) Citropin KVASVIGGL-NH2
(1–7) Citropin GLFDVIK-NH2
(4–14) Citropin DVIKKVASVIG-NH2

(1–7)–(10–16) Citropin GLFDVIKASVIGGL-NH2
(1–5)–(12–16) Citropin GLFDVVIGGL-NH2

4.1.3. Conjugates of Ciprofloxacin (CIP) and Levofloxacin (LVX) with a Cell-Penetrating Peptide

TP10-NH2 and CTP10-NH2 were obtained using the standard Fmoc chemistry solid-
phase peptide synthesis (SPPS) utilizing an automatic prelude peptide synthesizer ((Gyros)
Protein Technology Inc., Tucson, AZ, USA) and have been described previously [26]. The
peptides were synthesized on a TentaGel S RAM resin (substitution 0.24 meq/g, Rapp
Polymere, Germany) to obtain peptides with an amide group on the C-terminus after
cleavage. After completing the synthesis, the peptides were removed from the resin in
a one-step procedure using a mixture of TFA:phenol:triisopropylosilane:H2O (88:5:2:5,
v/v/v/v). The obtained peptides were purified using PLC 2050 Gilson HPLC with Gilson
Glider Prep. software (Gilson, Villiers le bel, France). The device was provided with a
Grace Vydac C18 (218TP) HPLC column (22 mm × 250 mm, 10 µm, 300 Å, Resolution
Systems). The solvent systems were 0.1% TFA in water (A) and 80% acetonitrile in A (B).
Different linear gradients were applied (flow rate 20 mL min−1 monitored at 226 nm). The
homogeneity of the compounds was examined with the HPLC Pro Star system (Varian,
Mulgrave, Australia) and using a Kinetex 5-µm XB-C18 100 Å column (4.6 mm × 150 mm,
Phenomenex®®, Torrance, CA, USA). A linear gradient from 10 to 90% B for 40 min with
a flow rate of 1 mL min−1 monitored at 226 nm was utilized. The synthesized peptides
had a purity of at least 95%. The correctness of the molecular masses of the synthesized
compounds was confirmed by a mass spectrometry analysis using MALDI-TOF MS (Biflex
III MALDI-TOF spectrometer, Bruker Daltonics, Ettlingen, Germany or MALDI TOF/TOF
5800+ spectrometer, AB SCIEX, Framingham, Massachusetts, USA), with an α-cyano-4-
hydroxycinnamic acid (CCA) and/or 2,5-dihydroxybenzoic acid (DHB) matrix.

All conjugates were synthesized according to the methodology described previ-
ously [26,30]. In the case of conjugates 2 and 4, CIP and LVX were manually added to the
peptidyl resin. N,N’-diisopropylcarbodiimide (DIC), N,N’-diisopropylethylamine, and LVX
or Boc-CIP (3 equiv. of each) were dissolved in an equimolar amount of DMF/DCM, put in
the SPPS vessel with the peptidyl resin, and mixed for 90 min. This procedure was repeated
until the chloranil test gave a negative result. To synthesize conjugate 2, the submonomeric
approach [30] was utilized. In the first step, bromoacetic acid and DIC (5 equiv. of each) in
DCM/DMF (1/1; v/v) were added to the peptidyl resin and stirred in the SPPS vessel for
30 min. This procedure was repeated twice. The coupling of ciprofloxacin to the peptidyl
resin was achieved by adding a suspension of CIP (1.5 equiv.) and triethylamine (1.5 equiv.)
in DCM/DMF. The coupling reaction took 24 h at room temperature. Conjugate 3 was ob-
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tained in a two-step procedure. Firstly, Lomant’s reagent (DSP) (1.2 equiv.) was dissolved
in DMF, added to the SPPS vessel with the peptidyl resin, and shaken 24 h. This procedure
was repeated twice. In the next step, ciprofloxacin and triethylamine (1.5 equiv. each) were
dissolved in an equimolar amount of DMF/DCM and added to the peptidyl resin with
an attached DSP. The coupling took another 24 h at room temperature. Finally, all the
conjugates were cleaved from the resin and purified as described before. In order to obtain
conjugates 5 and 6, the disulfide bridge formation between LVX and CIP and CTP10-NH2
was preceded by the coupling of the antibiotic to the Cys derivative. To obtain conjugate
5, LVX-Cys (Npys) (12 mg, 0.02 mmol) was dissolved in 5 mL of DMF, and CTP10-NH2
(46 mg, 0.02 mmol) was added, and the reaction was mixed for 4 h at room temperature.
The progress of the reaction was examined by analytical HPLC. After 4 h, the solvent was
removed in vacuo, and the conjugate was purified by semipreparative HPLC. In the case
of conjugate 6, the disulfide bridge was formed during the reaction of CTP10-NH2 and
Cys(Npys)-CIP, as described above for 5. In Figure 1, the structures of the CIP and LVX
conjugates are presented.
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Figure 1. Chemical structures of the CIP and LVX conjugates with transportan 10 and their constituents [26].

4.2. HPLC Analysis

All HPLC experiments were carried out using a Prominence-1 LC-2030C 3D HPLC sys-
tem (Shimadzu, Tokyo, Japan) equipped with an IAM.PC.DD2 column (10 mm × 4.6 mm;
particle size 10.0 µm with an IAM guard column; Regis Technologies, Austin Ave, Morton
Grove, IL, USA) and diode array detection (DAD). The HPLC system was controlled by
LabSolution software (version 5.90, Shimadzu, Japan). The stock solutions of the solutes
were diluted to obtain 100-µg/mL concentrations, and the injected volume was 10 µL,
which was used for the analytes. The IAM-HPLC analyses were performed with a linear
gradient of 0–85% in phase B (where phase A was 10-mM phosphoric buffer at pH 7.4, and
phase B was acetonitrile) at a flow rate of 1.5 mL/min. The ultrapure water used for the
mobile phase preparation was purified by the Millipore Direct-Q 3 UVWater Purification
System (Millipore Corporation, Bedford, MA, USA). The other reagents used for the prepa-
ration of the mobile phase: acetonitrile, sodium phosphate dibasic dehydrate, and sodium
phosphate monobasic monohydrate (Sigma-Aldrich, Steinheim, Germany) were analytical
grade. During the chromatographic analysis, the temperature of the column was constant
at 30.0 ◦C, and the analysis time was 6.5 min. The CHIAM indices of the target solutes were
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obtained using a calibration set of the reference substances using the protocol developed
by Valko and coworkers [13,14]. The reference substances were purchased, respectively:
octanonophenone and butyrophenone acetanilide (Alfa Aesar, Haverhill, MA, USA); ac-
etaminophen, acetophenone, levofloxacin, and ciprofloxacin (Sigma-Aldrich, Steinheim,
Germany); and heptanophenone, hexanophenone, valerophenone, propiophenone, and ace-
tophenone (Acros Organic, Pittsburg, PA, USA). Figure 2 presents a correlations plot of the
CHIIAM indices of the model substances and experimentally determined retention times.
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2.37, CHIIAM 11.50), acetable (tR 2.66, CHIIAM 17.20), propiohenone (tR 3.22, CHIIAM 25.90), butyrophe-
none (tR 3.67, CHIIAM 32.00), valerophenone (tR 4.04, CHIIAM 37.30), hexanophenone (tR 4.35, CHIIAM

41.80), heptanophenone (tR 4.61 CHIIAM 45.70), and octanophenone (tR 4.83, CHIIAM 49.4).

5. Conclusions

IAM-HPLC may be a valuable tool for the characterization of antimicrobial peptide
origin derivatives. Although, in the case of short cationic lipopeptides and conjugates of
CIP and LVX with TP10-NH2, the results only have a qualitative nature, they can broaden
the inference about their mechanisms of action. Nevertheless, the obtained results should
be applied with care, since the surface of the IAM phase only simplifies the nature of
the cell membrane. From a practical point of view, another critical observation is that a
strong interaction between short cationic lipopeptides and the IAM stationary phase can
be utilized to develop an effective method for their purification. Furthermore, IAM-HPLC
can be used for the rapid screening of the physicochemical properties of citropin analogs.
In f2the case of this class of chemical structures, it could be recommended as a screening
method for the further optimization of citropin derivatives.
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19. Ciura, K.; Kapica, H.; Dziomba, S.; Kawczak, P.; Belka, M.; Bączek, T. Biopartitioning micellar electrokinetic chromatography –
Concept study of cationic analytes. Microchem. J. 2020, 154, 104518. [CrossRef]

20. Ciura, K.; Fedorowicz, J.; Kapica, H.; Adamkowska, A.; Sawicki, W.; Saczewski, J. Affinity of fluoroquinolone-safirinium dye
hybrids to phospholipids estimated by IAM-HPLC. Processes 2020, 8, 1148. [CrossRef]

21. Ciura, K.; Fedorowicz, J.; Žuvela, P.; Lovrić, M.; Kapica, H.; Baranowski, P.; Sawicki, W.; Wong, M.W.; Sączewski, J. Affinity of
antifungal isoxazolo[3,4-b]pyridine-3(1H)-ones to phospholipids in immobilized artificial membrane (IAM) chromatography.
Molecules 2020, 25, 4835. [CrossRef] [PubMed]

22. Ciura, K.; Ulenberg, S.; Kapica, H.; Kawczak, P.; Belka, M.; Bączek, T. Drug affinity to human serum albumin prediction by
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