Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = short fatigue cracks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5356 KB  
Article
Investigation of the Damage Mechanisms Influencing the Short Crack Behavior of Inconel 625 Under Variable Amplitude Fatigue Loading
by Robert Fleishel, Reza Abedi and Stephanie TerMaath
Aerospace 2026, 13(1), 3; https://doi.org/10.3390/aerospace13010003 - 20 Dec 2025
Viewed by 254
Abstract
Variable amplitude fatigue loading can result in both accelerated and decelerated fatigue damage due to load interaction effects. Short fatigue cracks in particular exhibit a wide range of crack growth behavior due to multiple damage mechanisms contributing to interaction effects. To investigate this [...] Read more.
Variable amplitude fatigue loading can result in both accelerated and decelerated fatigue damage due to load interaction effects. Short fatigue cracks in particular exhibit a wide range of crack growth behavior due to multiple damage mechanisms contributing to interaction effects. To investigate this variation in fatigue damage behavior and the influence of causative damage mechanisms, variable amplitude fatigue tests were conducted on an Inconel 625 alloy. Periodic overload, high-low, and repeated block loading patterns were applied, and specimens were analyzed with a surface replication technique during testing to capture crack growth. Fracture surface imaging of failed specimens identified crack face morphology. High stress cycles in the overload and repeated block loadings resulted in increased fatigue life, and evidence of plastic crack closure was noted in periodic overload samples. Crack growth deceleration due to overload was identified in crack lengths as short as 65 µm. This increase in fatigue life differs from other research that demonstrated damage acceleration of short cracks during variable amplitude fatigue. This acceleration was attributed to crack closure and microstructural barriers, whereas the deceleration in this study is attributed to the interaction of plastic crack closure and crack extension caused by the application of an overload. Full article
(This article belongs to the Special Issue Fatigue Damage and Fracture Analysis of Aerospace Metal Materials)
Show Figures

Figure 1

23 pages, 9618 KB  
Article
Influence Mechanism of Performance and Aging Behavior of High-Content SBS-Modified Asphalt
by Qi Zheng, Haibo Wang, Beirong Jiang, Shulin Yue and Tao Wang
Buildings 2025, 15(24), 4430; https://doi.org/10.3390/buildings15244430 - 8 Dec 2025
Viewed by 308
Abstract
To address the research bottlenecks in the performance mechanism and engineering application of high-content SBS-modified asphalt (SBS content ≥ 6%), this study used 70# and 90# base asphalts as raw materials to prepare modified asphalts with SBS contents of 5%, 8%, 10%, and [...] Read more.
To address the research bottlenecks in the performance mechanism and engineering application of high-content SBS-modified asphalt (SBS content ≥ 6%), this study used 70# and 90# base asphalts as raw materials to prepare modified asphalts with SBS contents of 5%, 8%, 10%, and 12% via a high-speed shearing-stirring process. Combined with conventional performance tests (penetration, ductility, elastic recovery), rheological analysis (dynamic shear rheology (DSR), rotational viscosity), and micro-characterization (Scanning Electron Microscopy (SEM), X-ray photoelectron spectroscopy (XPS)), the regulatory mechanisms of SBS content, base asphalt type, and aging process (RTFOT short-term aging, PAV long-term aging) on asphalt performance were systematically investigated. The results showed that with the increase in SBS content, the asphalt’s increased consistency (as indicated by decreased penetration), low-temperature crack resistance (5 °C ductility increased by more than 5 times), and high-temperature rutting resistance (60 °C complex shear modulus G* increased by 17 times) were significantly enhanced. Due to its higher content of light components, the 90# base asphalt exhibited a better modification effect than the 70# base asphalt. At 12% SBS content, the 5 °C ductility and 60 °C G* of the 90# base asphalt system reached 49.42 cm and 41.62 kPa, respectively. High-content SBS optimized the viscoelastic balance of asphalt: the 70# base asphalt system with 10–12% SBS content showed a phase angle δ < 45° (elasticity-dominated), and the modified asphalt with 12% SBS content exhibited a decrease in fatigue factor (G*sinδ) after PAV aging, indicating excellent fatigue resistance stability. The aging process significantly increased asphalt viscosity (the viscosity of 70# base asphalt with 10% SBS increased by 242% after PAV aging at 135 °C), while high-content SBS inhibited aging deterioration—the penetration ratio of both systems exceeded 96% at 10% SBS content. At the microscale, 10% SBS content enabled the asphalt to form a continuous and dense network structure, reducing carbon loss and slowing oxygen incorporation. Based on PG classification, the modified asphalt with 12% SBS content reached the PG100 grade, which can meet the needs of heavy-load and high-temperature scenarios such as high-toughness ultra-thin asphalt wearing courses. This study provides a key theoretical basis and data support for the content design and engineering promotion of high-content SBS-modified asphalt. Full article
(This article belongs to the Special Issue Green Innovation and Performance Optimization of Road Materials)
Show Figures

Figure 1

35 pages, 4244 KB  
Review
Rolling Contact Fatigue and Wear of Rails and Wheels: A Comprehensive Review
by Makoto Akama
Machines 2025, 13(10), 970; https://doi.org/10.3390/machines13100970 - 21 Oct 2025
Cited by 1 | Viewed by 2520
Abstract
Rolling contact fatigue (RCF) and wear are the primary types of damage found in rails and wheels, and these often compete with each other. This paper presents a comprehensive review of studies on RCF and wear of rails and wheels, focusing on their [...] Read more.
Rolling contact fatigue (RCF) and wear are the primary types of damage found in rails and wheels, and these often compete with each other. This paper presents a comprehensive review of studies on RCF and wear of rails and wheels, focusing on their competition. First, RCF and wear in actual rails and wheels are discussed. Next, theory and models for RCF cracks are presented—from crack initiation, through short and long crack growth, to crack branching and branch crack growth. Then, different wear forms, wear regimes, and their theories and models are introduced. Several studies analyzing the competition between RCF and wear are discussed. Finally, current gaps or problems of the studies on RCF and wear of rails and wheels are identified, and recommendations for future work are provided. This review aims to assist researchers who investigate and address the problems associated with RCF and wear of rails and wheels. Full article
(This article belongs to the Special Issue Rolling Contact Fatigue and Wear of Rails and Wheels)
Show Figures

Figure 1

22 pages, 3440 KB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 - 31 Jul 2025
Cited by 1 | Viewed by 672
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

24 pages, 6089 KB  
Article
An Optimized 1-D CNN-LSTM Approach for Fault Diagnosis of Rolling Bearings Considering Epistemic Uncertainty
by Onur Can Kalay
Machines 2025, 13(7), 612; https://doi.org/10.3390/machines13070612 - 16 Jul 2025
Cited by 2 | Viewed by 1404
Abstract
Rolling bearings are indispensable but also the most fault-prone components of rotating machinery, typically used in fields such as industrial aircraft, production workshops, and manufacturing. They encounter diverse mechanical stresses, such as vibration and friction during operation, which may lead to wear and [...] Read more.
Rolling bearings are indispensable but also the most fault-prone components of rotating machinery, typically used in fields such as industrial aircraft, production workshops, and manufacturing. They encounter diverse mechanical stresses, such as vibration and friction during operation, which may lead to wear and fatigue cracks. From this standpoint, the present study combined a 1-D convolutional neural network (1-D CNN) with a long short-term memory (LSTM) algorithm for classifying different ball-bearing health conditions. A physics-guided method that adopts fault characteristics frequencies was used to calculate an optimal input size (sample length). Moreover, grid search was utilized to optimize (1) the number of epochs, (2) batch size, and (3) dropout ratio and further enhance the efficacy of the proposed 1-D CNN-LSTM network. Therefore, an attempt was made to reduce epistemic uncertainty that arises due to not knowing the best possible hyper-parameter configuration. Ultimately, the effectiveness of the physics-guided optimized 1-D CNN-LSTM was tested by comparing its performance with other state-of-the-art models. The findings revealed that the average accuracies could be enhanced by up to 20.717% with the help of the proposed approach after testing it on two benchmark datasets. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

15 pages, 1659 KB  
Article
Predictive Performance Evaluation of an Eco-Friendly Pavement Using Baosteel’s Slag Short Flow (BSSF) Steel Slag
by Livia Costa, Iuri Bessa, Juceline Bastos, Aline Vale and Teresa Farias
Appl. Mech. 2025, 6(2), 45; https://doi.org/10.3390/applmech6020045 - 16 Jun 2025
Viewed by 1271
Abstract
Predicting pavement performance is essential for highway planning and construction, considering traffic, climate, material quality, and maintenance. This study’s main objective is to evaluate Baosteel’s Slag Short Flow (BSSF) steel slag as a sustainable aggregate in pavement engineering by means of durability. The [...] Read more.
Predicting pavement performance is essential for highway planning and construction, considering traffic, climate, material quality, and maintenance. This study’s main objective is to evaluate Baosteel’s Slag Short Flow (BSSF) steel slag as a sustainable aggregate in pavement engineering by means of durability. The research integrates pavement performance prediction using BSSF and assesses its impact on fatigue resistance and percentage of cracked area (%CA). Using the Brazilian mechanistic-empirical design method (MeDiNa), eight scenarios were analyzed with soil–slag mixtures (0%, 25%, 50%, and 75% slag) in base and subbase layers under two traffic levels over 10 years. An asphalt mixture with 15% steel slag aggregate (SSA) was used in the surface layer and compared to a reference mixture. Higher SSA percentages were applied to the base layer, while lower percentages were used in subbase layers, facilitating field implementation. The resilient modulus (MR) and permanent deformation (PD) were design inputs. The results show that 15% SSA does not affect rutting damage, with %CA values below Brazilian limits for traffic of 1 × 106. The simulations confirm BSSF as an effective and sustainable alternative for highway pavement construction, demonstrating its potential to improve durability and environmental impact while maintaining performance standards. Full article
Show Figures

Figure 1

20 pages, 2986 KB  
Article
Analysis of the Effects of Rubber Dosage and Digestion Time on the Mechanical Properties of Low Dosage Crumb-Rubber-Modified Asphalt Concrete Mixtures
by Greg White and Andrew Kidd
Materials 2025, 18(7), 1419; https://doi.org/10.3390/ma18071419 - 23 Mar 2025
Cited by 4 | Viewed by 1391
Abstract
Crumb rubber modification of bituminous binders for asphalt concrete mixture production has been shown to provide significant environmental benefits, in terms of reduced embodied carbon, as well as improvement in the mechanical performance properties of asphalt mixtures. Furthermore, even at low dosages of [...] Read more.
Crumb rubber modification of bituminous binders for asphalt concrete mixture production has been shown to provide significant environmental benefits, in terms of reduced embodied carbon, as well as improvement in the mechanical performance properties of asphalt mixtures. Furthermore, even at low dosages of crumb rubber, significant anti-ageing benefits have been reported, in terms of oxidation and ultra-violet light exposure. However, the effect of low dosage crumb rubber modification on the mechanical properties of asphalt mixtures must be understood. This research compared otherwise nominally identical dense-graded asphalt mixtures produced with crumb rubber modified binder at 5%, 10%, and 15% (by weight of the bitumen) and, using short digestion (reflecting field blending) and long digestion (reflecting terminal blending), to two control asphalt mixtures across a range of mechanical properties indicative of stiffness, rutting resistance, fatigue cracking resistance, cold fracture resistance, and moisture damage resistance. It was concluded that 10% was the optimum crumb rubber content and that crumb rubber modification generally improved the mechanical properties of asphalt mixtures, particularly the deformation resistance and the fatigue cracking resistance, which were both improved significantly. However, the effect of crumb rubber content and digestion times was variable. Consequently, the decision to field blend (short duration) or terminal blend (long duration) should be based on logistics, and not on asphalt mechanical properties and the associated mixture performance. Full article
Show Figures

Figure 1

13 pages, 6245 KB  
Article
A Study of the Creep-Fatigue Damage Mechanism of a P92 Welded Joint Using Nanoindentation Characterization
by Zhangmin Jin, Zhihui Cai, Xuecheng Gu, Zhiqiang Wang, Yiwen Han, Ting Yu, Yuxuan Song, Zengliang Gao and Zhongrui Zheng
Metals 2025, 15(1), 53; https://doi.org/10.3390/met15010053 - 9 Jan 2025
Cited by 2 | Viewed by 1701
Abstract
In fossil fuel and nuclear power plants, welded joints continuously experience creep-fatigue loading, which can result in premature cracking during the in-service term. To study the creep-fatigue interactive (CFI) behavior, the CFI test of P92 steel was performed with different strain rates at [...] Read more.
In fossil fuel and nuclear power plants, welded joints continuously experience creep-fatigue loading, which can result in premature cracking during the in-service term. To study the creep-fatigue interactive (CFI) behavior, the CFI test of P92 steel was performed with different strain rates at 823 K. Results indicate that the short cycle life is measured with the increasing strain rate. Relying on the scanning electron microscope, the fracture mechanism of P92 steel gradually changes from fatigue-dominating to creep-fatigue interactive damage with the increasing strain rate. The hardness (H), elastic modulus (E) and creep deformation were then measured by nanoindentation, and the strain rate sensitivity (m) was estimated. The relation between the degenerated mechanical properties and microstructural evaluations, i.e., enhanced grain size and nucleation of creep voids, was established, and the damage mechanism was discussed. Full article
Show Figures

Figure 1

21 pages, 8730 KB  
Article
Numerical Simulation of Surface Thermal Analysis and Cooling Optimization of Continuous Casting Rolls
by Guangwei Cheng, Ningxia Yin, Qiaoxin Zheng, Yuming Qiu and Junqi Chen
Crystals 2025, 15(1), 41; https://doi.org/10.3390/cryst15010041 - 30 Dec 2024
Cited by 1 | Viewed by 1822
Abstract
In many steel mills, the working life of continuous casting machine rollers is relatively short, requiring frequent replacement and negatively impacting production efficiency. To effectively extend the service life of these rollers, this study focuses on a continuous casting machine at a steel [...] Read more.
In many steel mills, the working life of continuous casting machine rollers is relatively short, requiring frequent replacement and negatively impacting production efficiency. To effectively extend the service life of these rollers, this study focuses on a continuous casting machine at a steel mill in China. A numerical simulation was conducted, revealing that the rollers in contact with the high-temperature casting billet experience significant thermal and stress impacts. The traditional cooling channel struggles to sufficiently reduce both the surface temperature and stress, resulting in severe thermal fatigue damage to the roller surfaces. Observations of roller surface wear showed signs of adhesive wear, fatigue cracks, and spalling occurring in various regions of the roller, which aligned with the stress distribution predicted by the simulation. In response, the cooling channel structure was modified to enhance the cooling effect of the water. Optimization of both the cooling channel structure and its parameters was carried out using a coupled flow-heat-force numerical simulation method. The optimized cooling channel effectively improved the working condition of the continuous casting roll, as the maximum temperature of the roll surface was reduced from 810 K to 591 K, the circumferential temperature difference was reduced by 38%, and the maximum equivalent stress decreased from 791 MPa to 558 MPa. This adjustment also resulted in a more uniform surface temperature distribution, mitigating the sudden fluctuations in normal stress that are typical of conventional rollers. Full article
Show Figures

Figure 1

16 pages, 17582 KB  
Article
An In Situ Study of Short Crack Initiation and Propagation During Fatigue Testing of a Hot Isostatically Pressed Al-7%Si-0.5%Mg (A357-T6) Alloy Specimen
by Toni Bogdanoff and Murat Tiryakioğlu
Materials 2024, 17(23), 5928; https://doi.org/10.3390/ma17235928 - 4 Dec 2024
Cited by 1 | Viewed by 1525
Abstract
A hot isostatically pressed specimen of the A357 alloy in T6 condition has been tested for fatigue performance in situ. During testing, multiple small cracks were observed during the first cycle, both in proximity to and far from the stress concentration. These cracks [...] Read more.
A hot isostatically pressed specimen of the A357 alloy in T6 condition has been tested for fatigue performance in situ. During testing, multiple small cracks were observed during the first cycle, both in proximity to and far from the stress concentration. These cracks have competed to form a propagating crack, forming multiple crack paths initially. Once the propagating crack has been established, it has chosen paths from multiple cracks that have opened around the tip to grow further. All small cracks observed to open have been attributed to bifilms, i.e., liquid metal damage. It is imperative to develop processes that minimize liquid metal damage to enhance the fatigue performance of aluminum alloy castings. Full article
(This article belongs to the Special Issue Fatigue Crack Growth in Metallic Materials (Volume II))
Show Figures

Figure 1

18 pages, 13129 KB  
Article
A Comparison Study of High-Temperature Low-Cycle Fatigue Behaviour and Deformation Mechanisms Between Incoloy 800H and Its Weldments
by Wenjing Li, Lin Xiao, Lori Walters, Greg Kasprick and Robyn Sloan
J. Nucl. Eng. 2024, 5(4), 545-562; https://doi.org/10.3390/jne5040034 - 30 Nov 2024
Cited by 1 | Viewed by 1999
Abstract
The high-temperature low-cycle fatigue (LCF) behaviour of Incoloy 800H and its weldments with Haynes 230 and Inconel 82 filler metals, which were fabricated with the gas tungsten arc welding (GTAW) technique, was investigated and compared at 760 °C. The results revealed that the [...] Read more.
The high-temperature low-cycle fatigue (LCF) behaviour of Incoloy 800H and its weldments with Haynes 230 and Inconel 82 filler metals, which were fabricated with the gas tungsten arc welding (GTAW) technique, was investigated and compared at 760 °C. The results revealed that the Incoloy 800H weldments showed lower fatigue lifetimes compared to the base metal. However, the weldments with the Haynes 230 filler metal demonstrated an improved fatigue life at the low strain amplitude compared to both Incoloy 800H and the weldment with the Inconel 82 filler metal. The Incoloy 800H base metal showed pronounced initial cyclic hardening with hardening factors increasing with strain amplitudes. In contrast, the weldments with Haynes 230 and Inconel 82 filler metals displayed short initial cyclic hardening and saturation stages, followed by long continuous cyclic softening. The fractography and microstructure after LCF the tests were characterized with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Transgranular fracture with multiple crack initiations was the predominant failure mode on the fracture surfaces of both Incoloy 800 base metal and the weldments. TEM examination revealed that planar dislocation slips at the low strain amplitude evolved to wavy slips, eventually forming a cell structure at high strain amplitudes in the Incoloy 800H material as the strain amplitudes increased. However, the weld metal exhibited a planar slip mode deformation mechanism regardless of cyclic strain amplitude in the weldment specimens. The differing cyclic hardening and softening behaviours between Incoloy 800H and its weldments are attributed to the higher strength of the weldment specimens compared to the base metal. In the Incoloy 800H base material specimens, the reverse strains during LCF created wavy dislocation structures, which could not fully recover due to the non-reversible nature of the microstructure. As a result, cells or subgrains formed within the microstructure once created. In contrast, the higher strength of the weld metal in the weldment specimens significantly suppressed the formation of wavy dislocation structures, and deformation primarily manifested as planar arrays of dislocations. Full article
Show Figures

Figure 1

20 pages, 10274 KB  
Article
High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser
by Zhen Li, Yuanming Xu, Xinling Liu, Changkui Liu and Chunhu Tao
Metals 2024, 14(12), 1354; https://doi.org/10.3390/met14121354 - 27 Nov 2024
Cited by 1 | Viewed by 1608
Abstract
A high-temperature, high-cycle fatigue test was conducted on a nickel-based single-crystal superalloy with a pore structure. Optical and scanning electron microscopy were utilized to examine the crack propagation paths and fatigue fracture surfaces at the macro and micro scales. The analysis of crack [...] Read more.
A high-temperature, high-cycle fatigue test was conducted on a nickel-based single-crystal superalloy with a pore structure. Optical and scanning electron microscopy were utilized to examine the crack propagation paths and fatigue fracture surfaces at the macro and micro scales. The analysis of crack initiation and propagation related to the pore structure facilitated the development of a crack shape factor reflecting these distinct fracture behaviors. Predictions about the high-cycle fatigue stress experienced by the specimen were made, accompanied by an error analysis, providing critical insights for precise stress calculations and structural optimization in engine blade design. The results reveal that high-cycle fatigue cracks originate from corner cracks at pore edges, with the initial propagation displaying smooth crystallographic plane features. Subsequent stages show clear fatigue arc patterns in the propagation zones. The fracture surface exhibits the significant layering of oxide layers, primarily composed of NiO, with traces of CoO displaying columnar growth. AL2O3 is predominantly found at the interfaces between the matrix and oxide layers. Short and straight dislocations near the oxide layers and within the matrix suggest that dislocation multiplication and planar slip dominate the slip mechanisms in this alloy. The orientation of the fracture surface is mainly perpendicular to the load direction, with minor inclined facets in localized areas. Correlations were established between the plastic zone dimensions at the crack tips and the corresponding fatigue stresses. Without grain boundaries in single-crystal alloys, these dimensions are easily derived as parameters for fatigue stress analysis. The selected crack shape factor, “elliptical corner crack at pore edges”, captures the initiation and propagation traits relevant to porous structures. Subsequent calculations, accounting for the impact of oxide layers on stress assessments, indicated an error ratio ranging from 1.00 to 1.21 compared to nominal stress values. Full article
Show Figures

Figure 1

16 pages, 18498 KB  
Article
Study on Microstructure and Corrosion Fatigue Resistance of 14Cr12Ni3Mo2VN Materials Based on the Composite Technology of High-Frequency Induction Quenching and Laser Shock Peening
by Jiashun Gao, Zhilong Xu, Huiting Lv, Zhiling Yang, Guang Yang and Liehua Liu
Coatings 2024, 14(12), 1484; https://doi.org/10.3390/coatings14121484 - 25 Nov 2024
Cited by 2 | Viewed by 1332
Abstract
This study investigated the microstructure, microhardness, and residual compressive stress of 14Cr12Ni3Mo2VN martensitic stainless steel treated with high-frequency induction quenching (HFIQ) and laser shock peening (LSP). Using rotating bending corrosion fatigue testing, the corrosion fatigue performance was analyzed. Results show that a microstructural [...] Read more.
This study investigated the microstructure, microhardness, and residual compressive stress of 14Cr12Ni3Mo2VN martensitic stainless steel treated with high-frequency induction quenching (HFIQ) and laser shock peening (LSP). Using rotating bending corrosion fatigue testing, the corrosion fatigue performance was analyzed. Results show that a microstructural gradient formed after HFIQ and LSP: the surface layer consisted of nanocrystals, the subsurface layer of short lath martensite, and the core of thick lath martensite. A hardness gradient was introduced, with surface hardness reaching 524 Hv0.1, 163 Hv0.1 higher than the core hardness. A residual compressive stress field was introduced near the surface, with a maximum residual compressive stress of approximately −575 MPa at a depth of 0.1 mm. Corrosion fatigue results indicate that cycle loading times of samples treated with HFIQ and LSP were 2.88, 2.04, and 1.45 times higher than untreated, HFIQ-only, and LSP-only samples, respectively. Transmission electron microscopy (TEM) characterization showed that HFIQ reduced the lath martensite size, while the ultra-high strain rate induced by LSP likely caused dynamic recrystallization, forming numerous sub-boundaries and refining grains, which increased surface hardness. The plastic strain induced by LSP introduced residual compressive stress, counteracting tensile stress and hindering the initiation and propagation of corrosion fatigue cracks. Full article
Show Figures

Figure 1

18 pages, 8929 KB  
Article
Steel Catenary Riser Fatigue Assessment: Fracture Mechanics Approach Versus SN Curve Method
by Niantao Zhang, Caiyan Deng, Wenqiang Zhang, Siyuan Li and Baoming Gong
Materials 2024, 17(22), 5677; https://doi.org/10.3390/ma17225677 - 20 Nov 2024
Cited by 1 | Viewed by 2055
Abstract
In this paper, the fatigue resistance of a full-scale Steel Catenary Riser (SCR) girth weld is investigated using the Strength–Number of cycles (SN) curve method based on weld formation quality and fracture mechanics approaches. The test results, presented in [...] Read more.
In this paper, the fatigue resistance of a full-scale Steel Catenary Riser (SCR) girth weld is investigated using the Strength–Number of cycles (SN) curve method based on weld formation quality and fracture mechanics approaches. The test results, presented in the form of SN curves, are superior to the design curve E in BS 7608. Compared with the SN curve determined by a resonant bending rig, the analytical fracture mechanics, i.e., engineering critical assessment (ECA) based on BS 7910, can provide a rational estimation of full-scale girth welds. For the numerical methods, the short crack growth phase is crucial to improving the accuracy and reliability of the assessment. For the girth weld with a concave root, the geometries of the weld cap are the predominant factors for fatigue life. Although the crack initiation site is always located at the outer surface regardless of the flushed or welded caps, the weld grinding treatment is still effective in promoting fatigue life. Full article
(This article belongs to the Special Issue Corrosion Behavior and Mechanical Properties of Metallic Materials)
Show Figures

Figure 1

14 pages, 5207 KB  
Article
A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals
by Xing Yang, Chunguo Zhang, Panpan Wu, Anye Xu, Pengfei Ju, Dandan Yang and Zhonghong Dong
Materials 2024, 17(21), 5163; https://doi.org/10.3390/ma17215163 - 23 Oct 2024
Viewed by 1380
Abstract
The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack [...] Read more.
The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages. Full article
Show Figures

Graphical abstract

Back to TopTop