Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (759)

Search Parameters:
Keywords = shoeing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1677 KiB  
Article
Validating Capacitive Pressure Sensors for Mobile Gait Assessment
by John Carver Middleton, David Saucier, Samaneh Davarzani, Erin Parker, Tristen Sellers, James Chalmers, Reuben F. Burch, John E. Ball, Charles Edward Freeman, Brian Smith and Harish Chander
Biomechanics 2025, 5(3), 54; https://doi.org/10.3390/biomechanics5030054 - 1 Aug 2025
Viewed by 115
Abstract
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler [...] Read more.
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler force plates in collecting ground force reaction data. Methods: Nineteen participants performed walking trials while wearing the smart sock with and without shoes. Data was collected simultaneously with the sock and the force plates for each gait phase including foot-flat, heel-off, and midstance. The correlation between the smart sock and force plates was analyzed using Pearson’s correlation coefficient and R-squared values. Results: Overall, the strength of the relationship between the smart sock’s SRS data and the vertical ground reaction force (GRF) data from the force plates showed a strong correlation, with a Pearson’s correlation coefficient of 0.85 ± 0.1; 86% of the trials had a value higher than 0.75. The linear regression models also showed a strong correlation, with an R-squared value of 0.88 ± 0.12, which improved to 0.90 ± 0.07 when including a stretch-SRS for measuring ankle flexion. Conclusions: With these strong correlation results, there is potential for capacitive pressure sensors to be integrated into the proposed device and utilized in telehealth and sports performance applications. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

17 pages, 2072 KiB  
Article
Barefoot Footprint Detection Algorithm Based on YOLOv8-StarNet
by Yujie Shen, Xuemei Jiang, Yabin Zhao and Wenxin Xie
Sensors 2025, 25(15), 4578; https://doi.org/10.3390/s25154578 - 24 Jul 2025
Viewed by 296
Abstract
This study proposes an optimized footprint recognition model based on an enhanced StarNet architecture for biometric identification in the security, medical, and criminal investigation fields. Conventional image recognition algorithms exhibit limitations in processing barefoot footprint images characterized by concentrated feature distributions and rich [...] Read more.
This study proposes an optimized footprint recognition model based on an enhanced StarNet architecture for biometric identification in the security, medical, and criminal investigation fields. Conventional image recognition algorithms exhibit limitations in processing barefoot footprint images characterized by concentrated feature distributions and rich texture patterns. To address this, our framework integrates an improved StarNet into the backbone of YOLOv8 architecture. Leveraging the unique advantages of element-wise multiplication, the redesigned backbone efficiently maps inputs to a high-dimensional nonlinear feature space without increasing channel dimensions, achieving enhanced representational capacity with low computational latency. Subsequently, an Encoder layer facilitates feature interaction within the backbone through multi-scale feature fusion and attention mechanisms, effectively extracting rich semantic information while maintaining computational efficiency. In the feature fusion part, a feature modulation block processes multi-scale features by synergistically combining global and local information, thereby reducing redundant computations and decreasing both parameter count and computational complexity to achieve model lightweighting. Experimental evaluations on a proprietary barefoot footprint dataset demonstrate that the proposed model exhibits significant advantages in terms of parameter efficiency, recognition accuracy, and computational complexity. The number of parameters has been reduced by 0.73 million, further improving the model’s speed. Gflops has been reduced by 1.5, lowering the performance requirements for computational hardware during model deployment. Recognition accuracy has reached 99.5%, with further improvements in model precision. Future research will explore how to capture shoeprint images with complex backgrounds from shoes worn at crime scenes, aiming to further enhance the model’s recognition capabilities in more forensic scenarios. Full article
(This article belongs to the Special Issue Transformer Applications in Target Tracking)
Show Figures

Figure 1

17 pages, 3023 KiB  
Article
Slip-Resistance Performance of Basketball Shoes Tread Patterns on Common Courts
by Pramod Yadav, Shubham Gupta, Dishant Sharma and Arnab Chanda
Appl. Mech. 2025, 6(3), 54; https://doi.org/10.3390/applmech6030054 - 24 Jul 2025
Viewed by 400
Abstract
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court [...] Read more.
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court surfaces, to prevent slipping. This study examined the traction performance of fifteen common basketball shoe designs that were considered and developed using thermoplastic polyurethane to assess the available coefficient of friction (ACOF) on popular floorings (hardwood, synthetic, and polyurethane) under dry and wet conditions using a robotic slip tester. Results indicate that the hardwood flooring provided better traction, followed by the synthetic flooring, while the polyurethane flooring showed reduced friction. The study also examined the traction with apparent contact areas. Shoes with herringbone and circular tread patterns demonstrated the highest traction on all flooring in dry conditions. This research is anticipated to help basketball shoemakers choose safer shoes for player safety and performance, providing a foundation for future research on shoe flooring interaction in basketball. Full article
Show Figures

Graphical abstract

12 pages, 2989 KiB  
Article
Novel Customizable Fracture Fixation Technique vs. Conventional Metal Locking Plate: An Exploratory Comparative Study of Fixation Stability in an Experimental In Vivo Ovine Bilateral Phalangeal Fracture Model
by Thomas Colding-Rasmussen, Nanett Kvist Nikolaisen, Peter Frederik Horstmann, Michael Mørk Petersen, Daniel John Hutchinson, Michael Malkoch, Stine Jacobsen and Christian Nai En Tierp-Wong
Materials 2025, 18(14), 3359; https://doi.org/10.3390/ma18143359 - 17 Jul 2025
Viewed by 280
Abstract
A novel composite patch osteosynthesis technique (CPT) has demonstrated promising ex vivo biomechanical performance in small tubular bones. To bridge the gap toward clinical evaluations, this study compared the stability of the CPT to a stainless-steel locking plate (LP) in an experimental in [...] Read more.
A novel composite patch osteosynthesis technique (CPT) has demonstrated promising ex vivo biomechanical performance in small tubular bones. To bridge the gap toward clinical evaluations, this study compared the stability of the CPT to a stainless-steel locking plate (LP) in an experimental in vivo ovine bilateral proximal phalanx fracture model. Eight sheep underwent a midline osteotomy with a 4.5 mm circular unicortical defect in the lateral proximal phalanx of both front limbs, treated with the CPT (n = 8) or the LP (n = 8). A half-limb walking cast, or a custom off-loading hoof shoe, was used for postoperative protection. Implant stability was assessed by post-surgery X-ray evaluations and post-euthanasia (16 weeks) dual-energy X-ray absorptiometry (DXA). At week one, all CPT implants demonstrated mechanical failure, while all LPs remained overall intact. Mean BMD was 0.45 g/cm2 for CPT and 0.60 g/cm2 for LP in the fracture area (p = 0.078), and 0.37 g/cm2 vs. 0.41 g/cm2 in the distal epiphysis (p = 0.016), respectively. In conclusion, the CPT demonstrated indications of inferior stability compared to the LP in this fracture model, which may limit its clinical applicability in weight-bearing or high-load scenarios and in non-compliant patients. Full article
Show Figures

Figure 1

14 pages, 2232 KiB  
Article
Optimizing Contrastive Learning with Semi-Online Triplet Mining
by Przemysław Buczkowski, Marek Kozłowski and Piotr Brzeziński
Appl. Sci. 2025, 15(14), 7865; https://doi.org/10.3390/app15147865 - 14 Jul 2025
Viewed by 299
Abstract
Contrastive learning is a machine learning technique in which models learn by contrasting similar and dissimilar data points. Its goal is to learn a representation of data in such a way that similar instances are close together in the representation space, while dissimilar [...] Read more.
Contrastive learning is a machine learning technique in which models learn by contrasting similar and dissimilar data points. Its goal is to learn a representation of data in such a way that similar instances are close together in the representation space, while dissimilar instances are far apart. Our industrial use case focuses on a special case of contrastive learning called triplet learning. Building triplets with adequate difficulty is crucial to effective training convergence in such a setup. By combining online and offline mining techniques, we propose a method of mining hard triplets that is both performant and memory-inexpensive. Our experiments demonstrate that the method leads to improved identity pairing (which is the specific case of clustering) both on a real-life industry shoe dataset and on a generated benchmark one. Full article
Show Figures

Figure 1

7 pages, 201 KiB  
Brief Report
The Post-Healing Follow-Up of Diabetic Foot Ulcers by a Multidisciplinary Team to Reduce Their Recurrence: An Observational Retrospective Study
by Marie Bouly, Francois-Xavier Laborne, Caroline Tourte, Elodie Henry, Alfred Penfornis and Dured Dardari
J. Clin. Med. 2025, 14(14), 4975; https://doi.org/10.3390/jcm14144975 - 14 Jul 2025
Viewed by 322
Abstract
Background: Diabetic foot disease is a public health problem. The challenges of its management lie in the complexity of wound healing and, in particular, the high rate of lesion recurrence. Objectives: The primary objective of the study was to evaluate whether [...] Read more.
Background: Diabetic foot disease is a public health problem. The challenges of its management lie in the complexity of wound healing and, in particular, the high rate of lesion recurrence. Objectives: The primary objective of the study was to evaluate whether optimized post-healing follow-up by a multidisciplinary team can reduce the recurrence rate of foot ulcers in people living with diabetes. The secondary objectives were to assess patient needs in terms of hospitalization for recurrence, the number of amputations, pedicure care, and the use of adapted footwear. Participants: The study included 129 patients with diabetes presenting a healed foot ulcer. A total of 38 patients underwent an annual post-healing follow-up visit with a multidisciplinary team (optimized follow-up), while 91 had a visit every 2 years (minimum follow-up). Results: Of the 38 patients with optimal follow-up, 8 presented a wound recurrence (21.1%) compared with 38 out of 91 patients (41.8%) receiving minimum follow-up. The recurrence rate decreased significantly between the two groups (p < 0.05). The use of adapted shoes was also significantly better in the group with optimized follow-up (p = 0.02). Conclusions: Regular post-healing follow-up with a multidisciplinary team seems to be a contributing factor to reducing the recurrence of diabetic foot ulcers among people living with diabetes. Full article
17 pages, 5309 KiB  
Article
Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics
by Monisha Elumalai, Andre Childs, Samantha Williams, Gabriel Arguello, Emily Martinez, Alaina Easterling, Dawn San Luis, Swaminathan Rajaraman and Charles M. Didier
Micromachines 2025, 16(7), 804; https://doi.org/10.3390/mi16070804 - 11 Jul 2025
Viewed by 473
Abstract
Diabetic foot ulcers (DFUs) represent a critical global health issue, necessitating the development of advanced smart, flexible, and wearable sensors for continuous monitoring that are reimbursable within foot orthotics. This study presents the design and characterization of a pressure sensor implemented into a [...] Read more.
Diabetic foot ulcers (DFUs) represent a critical global health issue, necessitating the development of advanced smart, flexible, and wearable sensors for continuous monitoring that are reimbursable within foot orthotics. This study presents the design and characterization of a pressure sensor implemented into a shoe insole to monitor diabetic wound pressures, emphasizing the need for a high sensitivity, durability under cyclic mechanical loading, and a rapid response time. This investigation focuses on the electrical and mechanical properties of carbon nanotube (CNT) composites utilizing Ecoflex and polydimethylsiloxane (PDMS). Morphological characterization was conducted using Transmission Electron Microscopy (TEM), Laser Confocal Microscopy, and Scanning Electron Microscopy (SEM). The electrical and mechanical properties of the CNT/Ecoflex- and the CNT/PDMS-based sensor composites were then investigated. CNT/Ecoflex was then further evaluated due to its lower variability performance between cycles at the same pressure, as well as its consistently higher capacitance values across all trials in comparison to CNT/PDMS. The CNT/Ecoflex composite sensor showed a high sensitivity (2.38 to 3.40 kPa−1) over a pressure sensing range of 0 to 68.95 kPa. The sensor’s stability was further assessed under applied pressures simulating human weight. A custom insole prototype, incorporating 12 CNT/Ecoflex elastomeric matrix-based sensors (as an example) distributed across the metatarsal heads, midfoot, and heel regions, was developed and characterized. Capacitance measurements, ranging from 0.25 pF to 60 pF, were obtained across N = 3 feasibility trials, demonstrating the sensor’s response to varying pressure conditions linked to different body weights. These results highlight the potential of this flexible insole prototype for precise and real-time plantar surface monitoring, offering an approachable avenue for a challenging diabetic orthotics application. Full article
(This article belongs to the Special Issue Bioelectronics and Its Limitless Possibilities)
Show Figures

Figure 1

19 pages, 11197 KiB  
Article
Modeling of Linear Die Filling Based on Dimensional Analysis Using DEM-CFD Methods
by Jie Li, Sunsheng Zhou, Shiyan Yan, Yuanqiang Tan and Jiangtao Zhang
Materials 2025, 18(14), 3261; https://doi.org/10.3390/ma18143261 - 10 Jul 2025
Viewed by 315
Abstract
Linear die filling is currently widely employed in industries. However, there is no comprehensive and systematic model to describe the powder die filling process. This paper utilizes dimensional analysis to extract and analyze various factors that affect the flow characteristics of powder based [...] Read more.
Linear die filling is currently widely employed in industries. However, there is no comprehensive and systematic model to describe the powder die filling process. This paper utilizes dimensional analysis to extract and analyze various factors that affect the flow characteristics of powder based on DEM-CFD simulations. Several dimensionless parameters including the ratio of particle size to die depth (dphD1), solid density number (ρpρg1), shoe speed number (vρgLDμ1), and force number (GpFDrag1) were proposed based on the Pi theorem. The results showed that the filling ratio δ increased with the increase in dphD1 and ρpρg1 due to GpFDrag1 rising. But it decreased with the increase in vρgLDμ1 due to the shortening of effective filling time. Finally, a semi-empirical modeling of linear die filling was developed, taking the critical value (dphD1)90 as the dependent variable and the solid density number (ρpρg1) and shoe speed number (vρgLDμ1) as independent variables. Hence, this model provides a new approach to computing the smallest shoe speed and designing the sizes of dies based on measurable material properties under complete die filling. Full article
Show Figures

Figure 1

12 pages, 851 KiB  
Systematic Review
Plantar Pressure Distribution in Charcot–Marie–Tooth Disease: A Systematic Review
by Alberto Arceri, Antonio Mazzotti, Federico Sgubbi, Simone Ottavio Zielli, Laura Langone, GianMarco Di Paola, Lorenzo Brognara and Cesare Faldini
Sensors 2025, 25(14), 4312; https://doi.org/10.3390/s25144312 - 10 Jul 2025
Viewed by 396
Abstract
Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor and sensory neuropathy that affects foot morphology and gait patterns, potentially leading to abnormal plantar pressure distribution. This systematic review synthesizes the existing literature examining plantar pressure characteristics in CMT patients. Methods: A [...] Read more.
Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor and sensory neuropathy that affects foot morphology and gait patterns, potentially leading to abnormal plantar pressure distribution. This systematic review synthesizes the existing literature examining plantar pressure characteristics in CMT patients. Methods: A comprehensive search was conducted across PubMed, Scopus, and Web of Science databases. Risk of bias was assessed using the Newcastle–Ottawa Scale. Results: Six studies comprising 146 patients were included. Four studies employed dynamic baropodometry, and two used in-shoe pressure sensors to evaluate the main plantar pressure parameters. The findings were consistent across different populations and devices, with a characteristic plantar-pressure profile of marked midfoot off-loading with peripheral overload at the forefoot and rearfoot, often accompanied by a lateralized center-of-pressure path and a prolonged pressure–time exposure. These alterations reflect both structural deformities and impaired neuromuscular control. Interventional studies demonstrated a load redistribution of pressure after corrective surgery, though residual lateral overload often persists. Conclusions: Plantar pressure mapping seems to be a valuable tool to identify high-pressure zones of the foot in order to personalize orthotic treatment planning, to objectively monitor disease progression, and to evaluate therapeutic efficacy. Further longitudinal studies with standardized protocols are needed to confirm these results. Full article
Show Figures

Figure 1

23 pages, 12935 KiB  
Article
Chinese Muslims and Religious Encounters in the “Chinatown” of Dakar, Senegal
by Zheyuan Deng
Religions 2025, 16(7), 875; https://doi.org/10.3390/rel16070875 - 6 Jul 2025
Viewed by 1273
Abstract
This paper investigates religious encounters between Chinese and Senegalese Muslims in the relatively new Chinatown of Dakar. Chinese Muslims from Kaifeng City, Henan Province first arrived in Senegal in the 1990s following the Henan provincial state-owned construction company. They started a wholesale business [...] Read more.
This paper investigates religious encounters between Chinese and Senegalese Muslims in the relatively new Chinatown of Dakar. Chinese Muslims from Kaifeng City, Henan Province first arrived in Senegal in the 1990s following the Henan provincial state-owned construction company. They started a wholesale business mainly of clothing and shoes and brought their relatives and family members to Dakar. However, scholars studying the Chinese community in Dakar have largely ignored their Muslim identity and its significance. Moving beyond the conventional focus on tensions between Muslim and Chinese identities in the study of overseas Chinese Muslims, this paper turns to religious encounters in everyday life. Based on field research and interviews both in Dakar and Henan, this paper argues that for these Chinese Muslim businesspersons in Dakar, Islam as a shared religious identity sometimes provides opportunities to connect with their fellow Muslims in a foreign country. However, differences in religious practices can also lead to misconceptions between them and other Senegalese Muslims. This paper thus contributes to Islamic studies and the study of global China, particularly in relation to overseas Chinese Muslims, China–Africa encounters, and global Chinatowns. Full article
Show Figures

Figure 1

14 pages, 689 KiB  
Review
Guidelines for Recommended Footwear for Healthy Children and Adolescents: A Rapid Scoping Review to Characterise the Nature and Extent of Footwear Research and Clinical Policy Guidelines
by Liam Hughes, Mark I. Johnson, Nic Perrem and Peter Francis
Healthcare 2025, 13(13), 1578; https://doi.org/10.3390/healthcare13131578 - 1 Jul 2025
Viewed by 482
Abstract
Background/Objectives: Clinical guidelines for children’s footwear vary widely across governmental and clinical sources, reflecting inconsistencies in best practices for paediatric foot health. These discrepancies arise from differing research interpretations, regional priorities, and clinical expertise. This scoping review evaluates existing guidelines and examines [...] Read more.
Background/Objectives: Clinical guidelines for children’s footwear vary widely across governmental and clinical sources, reflecting inconsistencies in best practices for paediatric foot health. These discrepancies arise from differing research interpretations, regional priorities, and clinical expertise. This scoping review evaluates existing guidelines and examines the evidence supporting them. The objective of this scoping review was to identify and map existing footwear guidelines for healthy children and adolescents across governmental, professional, and clinical sources, and to evaluate the type and strength of evidence underpinning these recommendations. Methods: A systematic search of PubMed, Google Scholar, ScienceDirect, and governmental databases was conducted. Studies on footwear recommendations for healthy children aged 18 months to 18 years were included. Articles published between 1970 and 2024 were considered, as 1970 marked the first mass marketing of running shoes/trainers. Results: Footwear guidelines lack standardisation, with variations in definitions, recommendations, and supporting evidence. Key inconsistencies exist in parameters such as fit, flexibility, and toe allowance, with most recommendations based on expert opinion rather than empirical data. Discrepancies in commercial footwear sizing further complicate proper fit assessment. Conclusions: This is the first comprehensive review of children’s footwear guidelines, integrating governmental, professional body, and clinical recommendations. While there is consensus on the importance of properly fitting shoes, the literature reveals inconsistencies and reliance on expert opinion rather than high-quality research. This review highlights the need for standardised, evidence-based criteria to guide footwear recommendations and serves as a foundation for future research aimed at bridging the gap between research and practice. Full article
(This article belongs to the Special Issue Understanding Foot Health: An Evolutionary Perspective)
Show Figures

Figure 1

27 pages, 3762 KiB  
Article
Design Method for Platform-Aggregated Life Cycle Ecosystem
by Tomoyuki Tamura, Ryota Odagaki, Yusuke Kishita, Yasushi Umeda, Gaku Miyake, Genichiro Matsuda and Akio Tajima
Sustainability 2025, 17(13), 5939; https://doi.org/10.3390/su17135939 - 27 Jun 2025
Viewed by 258
Abstract
The circular economy (CE) is increasingly important in ensuring sustainable development. Although interactions among stakeholders are essential to achieving the CE, existing methods associated with life cycle design do not fully consider the synergies between multiple product life cycles (PLCs). Therefore, this paper [...] Read more.
The circular economy (CE) is increasingly important in ensuring sustainable development. Although interactions among stakeholders are essential to achieving the CE, existing methods associated with life cycle design do not fully consider the synergies between multiple product life cycles (PLCs). Therefore, this paper proposes a platform-aggregated life cycle ecosystem (PF-LCE). The PF-LCE consists of multiple PLCs along with a platform that enables the exchange of goods and data among different PLCs. We also propose a method for supporting the conceptual design of the PF-LCE. Our method includes a four-step process to help exploit the interactions and synergistic effects occurring across PLCs at the design stage. We then use a simulated case study of PLCs sharing goods and data in the shoe industry, considering scenarios ranging from business-as-usual to full integration of the platform with four service providers. The results demonstrate that the designed PF-LCE delivers an increase in profits to service providers alongside reduced costs for consumers. CO2 emissions also decrease. Therefore, the design method that we propose has the potential to enhance current implementations of the CE in terms of business revenues, consumer satisfaction, and environmental sustainability. Full article
Show Figures

Figure 1

22 pages, 2137 KiB  
Article
Cars and Greenhouse Gas Goals: A Big Stone in Europe’s Shoes
by Roberto Ivo da Rocha Lima Filho, Thereza Cristina Nogueira de Aquino, Anderson Costa Reis and Bernardo Motta
Energies 2025, 18(13), 3371; https://doi.org/10.3390/en18133371 - 26 Jun 2025
Viewed by 494
Abstract
If new technologies can increase production efficiency and reduce the consumption of natural resources, they can also bring new environmental risks. This dynamic is particularly relevant for the automotive industry, since it is one of the sectors that invests most in R&D, but [...] Read more.
If new technologies can increase production efficiency and reduce the consumption of natural resources, they can also bring new environmental risks. This dynamic is particularly relevant for the automotive industry, since it is one of the sectors that invests most in R&D, but at the same time also contributes a significant portion of greenhouse gas emissions and consumes a large amount of energy. This article aims to analyze the feasibility of meeting the environmental targets in place within 32 European countries in light of the recent technological trajectory of the automotive industry, namely with regard to the adoption of the propulsion model’s alternative to oil and diesel. Using data disaggregated by countries from 2000 up until 2020, in this paper, the estimated regressions aimed to not only verify whether electrical vehicles had a positive impact on CO2 emissions found in the European market, but to also assess whether they will meet the target set for the next 30 years, with attention to the economy recovery after 2025 and a more robust EV market penetration in replacement of traditional fossil fuels cars. Full article
(This article belongs to the Special Issue Energy Markets and Energy Economy)
Show Figures

Figure 1

17 pages, 528 KiB  
Systematic Review
Advances in Badminton Footwear Design: A Systematic Review of Biomechanical and Performance Implications
by Meixi Pan, Zihao Chen, Dongxu Huang, Zixin Wu, Fengjiao Xue, Jorge Diaz-Cidoncha Garcia, Qing Yi and Siqin Shen
Appl. Sci. 2025, 15(13), 7066; https://doi.org/10.3390/app15137066 - 23 Jun 2025
Viewed by 512
Abstract
This systematic review, registered in PROSPERO (CRD42025101243), aimed to evaluate how specific badminton shoe design features influence lower-limb biomechanics, injury risk, and sport-specific performance. A comprehensive search in six databases yielded 445 studies, from which 10 met inclusion criteria after duplicate removal and [...] Read more.
This systematic review, registered in PROSPERO (CRD42025101243), aimed to evaluate how specific badminton shoe design features influence lower-limb biomechanics, injury risk, and sport-specific performance. A comprehensive search in six databases yielded 445 studies, from which 10 met inclusion criteria after duplicate removal and eligibility screening. The reviewed studies focused on modifications involving forefoot bending stiffness, torsional stiffness, lateral-wedge hardness, insole and midsole hardness, sole structure, and heel curvature. The most consistent biomechanical benefits were associated with moderate levels of forefoot and torsional stiffness (e.g., 60D) and rounded heel designs. Increased forefoot bending stiffness was associated with reduced foot torsion and knee loading during forward lunges. Torsional stiffness around 60D provided favorable ankle support and reduced knee abduction, suggesting potential protection against ligament strain. Rounded heels reduced vertical impact forces and promoted smoother knee–ankle coordination, especially in experienced athletes. Lateral-wedge designs improved movement efficiency by reducing contact time and enhancing joint stiffness. Harder midsoles, however, resulted in increased impact forces upon landing. Excessive stiffness in any component may restrict joint mobility and responsiveness. Studies included 127 male-dominated (aged 18–28) competitive athletes, assessing kinematics, impact forces, and coordination during sport-specific tasks. The reviewed studies predominantly involved male participants, with little attention to sex-specific biomechanical differences such as joint alignment and foot structure. Differences in testing methods and movement tasks further limited direct comparisons. Future research should explore real-game biomechanics, include diverse athlete populations, and investigate long-term adaptations. These efforts will contribute to the development of performance-enhancing, injury-reducing badminton shoes tailored to the unique demands of the sport. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

26 pages, 1398 KiB  
Article
Improving the Reliability of Current Collectors in Electric Vehicles
by Boris V. Malozyomov, Nikita V. Martyushev, Anton Y. Demin, Alexander V. Pogrebnoy, Egor A. Efremenkov, Denis V. Valuev and Aleksandr E. Boltrushevich
Mathematics 2025, 13(12), 2022; https://doi.org/10.3390/math13122022 - 19 Jun 2025
Cited by 1 | Viewed by 678
Abstract
This article presents a mathematically grounded approach to increasing the operational reliability of current collectors in electric transport systems by ensuring a constant contact force between the collector shoe and the power rail. The core objective is achieved through the development and analysis [...] Read more.
This article presents a mathematically grounded approach to increasing the operational reliability of current collectors in electric transport systems by ensuring a constant contact force between the collector shoe and the power rail. The core objective is achieved through the development and analysis of a mechanical system incorporating spring and cam elements, which is specifically designed to provide a nearly invariant contact pressure under varying operating conditions. A set of equilibrium equations was derived to determine the stiffness ratios of the springs and the geometric conditions under which the contact force remains constant despite wear or displacement. Additionally, the paper introduces a method for synthesizing the cam profile that compensates for nonlinear spring deformation, ensuring force constancy over a wide range of movement. The analytical results were validated through parametric simulations, which assessed the influence of wear depth, rail inclination, and external vibrations on the system’s force output. These simulations, executed within a numerical framework using scientific computing tools, demonstrated that the deviation of the contact force does not exceed a few percent under typical disturbances. Experimental verification further confirmed the theoretical predictions. The study exemplifies the effective use of mathematical modeling, nonlinear mechanics, and numerical methods in the design of energy transmission components for transport applications, contributing to the development of robust and maintainable systems. Full article
Show Figures

Figure 1

Back to TopTop