Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = shale alteration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6587 KiB  
Article
Research on the Optimization of Self-Injection Production Effects in the Middle and Later Stages of Shale Gas Downdip Wells Based on the Depth of Pipe String
by Lujie Zhang, Guofa Ji and Junliang Li
Appl. Sci. 2025, 15(15), 8633; https://doi.org/10.3390/app15158633 (registering DOI) - 4 Aug 2025
Viewed by 134
Abstract
In the final phases of casing production, shale gas horizontal wells with a downward slope frequently find it difficult to sustain self-flow production. The ideal tubing insertion depth for self-flow production in gas wells has not been thoroughly studied, even though the timely [...] Read more.
In the final phases of casing production, shale gas horizontal wells with a downward slope frequently find it difficult to sustain self-flow production. The ideal tubing insertion depth for self-flow production in gas wells has not been thoroughly studied, even though the timely adoption of tubing production can successfully prolong the self-flow production period. Using a fully dynamic multiphase flow simulation program, the ideal tubing depth for gas well self-flow production was ascertained. A wellbore structural model was built using a particular well as an example. By altering the tubing depth, the formation pressure limit values necessary to sustain gas well self-flow production at various tubing depths were simulated. The appropriate tubing depth for gas well self-flow production was examined, along with the well’s cumulative gas output at various tubing depths. Using the example as a case study, it was discovered that the critical formation pressure for gas well self-flowing production dropped to 7.8 MPa when the tubing was lowered to 2600 m. This effectively increased cumulative production by 56.19 × 106 m3 and extended the self-flow production time by roughly 135 days. The study’s findings offer strong evidence in favor of maximizing shale gas wells’ self-flow production performance in later phases of production. Full article
Show Figures

Figure 1

20 pages, 4663 KiB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 - 2 Aug 2025
Viewed by 185
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

16 pages, 10544 KiB  
Article
Development and Performance Evaluation of Hydrophobically Modified Nano-Anti-Collapsing Agents for Sustainable Deepwater Shallow Drilling
by Jintang Wang, Zhijun He, Haiwei Li, Jian Guan, Hao Xu and Shuqiang Shi
Sustainability 2025, 17(15), 6678; https://doi.org/10.3390/su17156678 - 22 Jul 2025
Viewed by 360
Abstract
Sustainable deepwater drilling for oil and gas offers significant potential. In this work, we synthesized a nanoscale collapse-prevention agent by grafting didecyldimethylammonium chloride onto spherical nano-silica and characterized it using Fourier-transform infrared spectroscopy, thermogravimetric analysis, zeta-potential, and particle-size measurements, as well as SEM [...] Read more.
Sustainable deepwater drilling for oil and gas offers significant potential. In this work, we synthesized a nanoscale collapse-prevention agent by grafting didecyldimethylammonium chloride onto spherical nano-silica and characterized it using Fourier-transform infrared spectroscopy, thermogravimetric analysis, zeta-potential, and particle-size measurements, as well as SEM and TEM. Adding 1 wt% of this agent to a bentonite slurry only marginally alters its rheology and maintains acceptable low-temperature flow properties. Microporous-membrane tests show filtrate passing through 200 nm pores drops to 55 mL, demonstrating excellent plugging. Core-immersion studies reveal that shale cores retain integrity with minimal spalling after prolonged exposure. Rolling recovery assays increase shale-cutting recovery to 68%. Wettability tests indicate the water contact angle rises from 17.1° to 90.1°, and capillary rise height falls by roughly 50%, reversing suction to repulsion. Together, these findings support a synergistic plugging–adsorption–hydrophobization mechanism that significantly enhances wellbore stability without compromising low-temperature rheology. This work may guide the design of high-performance collapse-prevention additives for safe, efficient deepwater drilling. Full article
(This article belongs to the Special Issue Sustainability and Challenges of Underground Gas Storage Engineering)
Show Figures

Figure 1

23 pages, 15083 KiB  
Article
Reactivity of Shale to Supercritical CO2: Insights from Microstructural Characterization and Mineral Phase Evolution in Caney Shales for CCUS Applications
by Loic Bethel Dje and Mileva Radonjic
Materials 2025, 18(14), 3382; https://doi.org/10.3390/ma18143382 - 18 Jul 2025
Viewed by 366
Abstract
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock [...] Read more.
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock (D1, D2) facies, subjected to 30-day static exposure to pure scCO2 at 60 °C and 17.23 MPa (2500 psi), with no brine or impurities introduced. SEM-EDS analyses were conducted before and after exposure, with mineral phases classified into silicates, carbonates, sulfides, and organic matter. Initial compositions were dominated by quartz (38–47 wt.%), illite (16–23 wt.%), carbonates (12–18 wt.%), and organic matter (8–11 wt.%). Post-exposure, carbonate loss ranged from 15 to 40% in reservoir samples and up to 20% in caprock samples. Illite and K-feldspar showed depletion of Fe2+, Mg2+, and K+ at grain edges and cleavages, while pyrite underwent oxidation with Fe redistribution. Organic matter exhibited scCO2-induced surface alteration and apparent sorption effects, most pronounced in R2 and R3. Elemental mapping revealed Ca2+, Mg2+, Fe2+, and Si4+ mobilization near reactive interfaces, though no secondary mineral precipitates formed. Reservoir samples developed localized porosity, whereas caprock samples retained more structural clay integrity. The results advance understanding of mineral reactivity and elemental fluxes in shale-based CO2 sequestration. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Graphical abstract

13 pages, 2340 KiB  
Article
The Microscopic Mechanism of High Temperature Resistant Core-Shell Nano-Blocking Agent: Molecular Dynamics Simulations
by Zhenghong Du, Jiaqi Xv, Jintang Wang, Juyuan Zhang, Ke Zhao, Qi Wang, Qian Zheng, Jianlong Wang, Jian Li and Bo Liao
Polymers 2025, 17(14), 1969; https://doi.org/10.3390/polym17141969 - 17 Jul 2025
Viewed by 332
Abstract
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and [...] Read more.
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and adapting to extreme wellbore environments. In response to the technical demands of nanoparticle-based plugging in shale reservoirs, this study systematically investigated the microscopic interaction mechanisms of nano-plugging agent shell polymers (Ployk) with various reservoir minerals under different temperature and salinity conditions using molecular simulation methods. Key parameters, including interfacial interaction energy, mean square displacement, and system density distribution, were calculated to thoroughly analyze the effects of temperature and salinity variations on adsorption stability and structural evolution. The results indicate that nano-plugging agent shell polymers exhibit pronounced mineral selectivity in their adsorption behavior, with particularly strong adsorption performance on SiO2 surfaces. Both elevated temperature and increased salinity were found to reduce the interaction strength between the shell polymers and mineral surfaces and significantly alter the spatial distribution and structural ordering of water molecules near the interface. These findings not only elucidate the fundamental interfacial mechanisms of nano-plugging agents in shale reservoirs but also provide theoretical guidance for the precise design of advanced nano-plugging agent materials, laying a scientific foundation for improving the engineering application performance of shale oil and gas wellbore-plugging technologies. Full article
Show Figures

Figure 1

22 pages, 1510 KiB  
Article
Effects of Geological and Fluid Characteristics on the Injection Filtration of Hydraulic Fracturing Fluid in the Wellbores of Shale Reservoirs: Numerical Analysis and Mechanism Determination
by Qiang Li, Qingchao Li, Fuling Wang, Jingjuan Wu, Yanling Wang and Jiafeng Jin
Processes 2025, 13(6), 1747; https://doi.org/10.3390/pr13061747 - 2 Jun 2025
Cited by 1 | Viewed by 467
Abstract
To mitigate the influence of wellbore heat transfer on the physicochemical properties of water-based fracturing fluids in the high-temperature environments of low-permeability shale reservoirs, this study investigates the fluid filtration behavior of water-based fracturing fluids within the wellbore under such reservoir conditions. A [...] Read more.
To mitigate the influence of wellbore heat transfer on the physicochemical properties of water-based fracturing fluids in the high-temperature environments of low-permeability shale reservoirs, this study investigates the fluid filtration behavior of water-based fracturing fluids within the wellbore under such reservoir conditions. A wellbore heat-transfer model based on solid–liquid coupling was constructed in order to analyse the effects of different reservoir and wellbore factors on fluid properties (viscosity and filtration volume) in the water-based fracturing fluids. Concurrently, boundary conditions and control equations were established for the numerical model, thereby delineating the heat-transfer conditions extant between the water-based fracturing fluid and the wellbore. Furthermore, molecular dynamics theory and microgrid theory were utilised to elucidate the mechanisms of the alterations of the fluid properties of the water-based fracturing fluids due to wellbore heat transfer in low-permeability shale reservoirs. The findings demonstrated that wellbore heat transfer in low-permeability shale reservoirs exerts a pronounced influence on the fluid viscosity and filtration volume of the water-based fracturing fluids. Parameters such as wellbore wall thickness, heat-transfer coefficient, radius, and pressure differential introduce distinct variation trends in these fluid properties. At the microscopic scale, the disruption of intermolecular hydrogen bonds and the consequent increase in free molecular content induced by thermal effects are the fundamental mechanisms driving the observed changes in viscosity and fluid filtration. These findings may offer theoretical guidance for improving the thermal stability of water-based fracturing fluids under wellbore heat-transfer conditions. Full article
Show Figures

Figure 1

20 pages, 5483 KiB  
Article
Evolution of Pore Structure and Fractal Characteristics in Transitional Shale Reservoirs: Case Study of Shanxi Formation, Eastern Ordos Basin
by Yifan Gu, Xu Wu, Yuqiang Jiang, Quanzhong Guan, Dazhong Dong and Hongzhan Zhuang
Fractal Fract. 2025, 9(6), 335; https://doi.org/10.3390/fractalfract9060335 - 23 May 2025
Viewed by 412
Abstract
The fractal dimension quantitatively describes the complexity of the shale pore structure and serves as a powerful tool for characterizing the evolution of shale reservoirs. Thermal simulation experiments were conducted on the low-maturity transitional shale from the Shanxi Formation in the Ordos Basin. [...] Read more.
The fractal dimension quantitatively describes the complexity of the shale pore structure and serves as a powerful tool for characterizing the evolution of shale reservoirs. Thermal simulation experiments were conducted on the low-maturity transitional shale from the Shanxi Formation in the Ordos Basin. The initial samples consisted mainly of quartz (39.9%) and clay minerals (49.9%) with moderate-to-good hydrocarbon generation potential. Samples from different thermal maturation stages were analyzed through geochemical, mineralogical, and pore structure experiments to reveal the evolution of mineral compositions and pore structure parameters. The fractal dimensions of the pore structure were calculated using both the FHH and capillary bundle models. Correlation coefficients and principal component analysis (PCA) were employed to explore the factors influencing the fractal dimension and its evolutionary patterns during reservoir development. The results indicate that (1) with increasing thermal maturity, the quartz content gradually increases while the contents of clay minerals, carbonate minerals, pyrite, and feldspar decrease. (2) The evolution of porosity follows five stages: a slow decrease (0.78 < Ro < 1.0%), a rapid increase (1.0% < Ro < 2.0%), a relatively stable phase (2.0% < Ro < 2.7%), a rapid rise (2.7% < Ro < 3.2%), and a slow decline (Ro > 3.2%). The evolution of the pore volume (PV) and specific surface area (SSA) indicates that the proportion of pores in the 5–20 nm and 20–60 nm ranges gradually increases while the proportion of pores smaller than 5 nm decreases. (3) The fractal dimension of shale pores (D1, average value 2.61) derived from the FHH model is higher than D2 (average value 2.56). This suggests that the roughness of pore surfaces is greater than the complexity of the internal pore structure at various maturities. The DM distribution range calculated from the capillary bundle model was broad (between 2.47 and 2.94), with an average value of 2.84, higher than D1 and D2. This likely indicates that larger pores have more complex structures. (4) D1 shows a strong correlation with porosity, PV, and SSA and can be used to reflect pore development. D2 correlates well with geochemical parameters (TOC, HI, etc.) and minerals prone to diagenetic alteration (carbonates, feldspar, and pyrite), making it useful for characterizing the changes in components consumed during pore structure evolution. (5) Based on the thermal maturation process of organic matter, mineral composition, diagenesis, and pore structure evolution, an evolutionary model of the fractal dimension for transitional shale was established. Full article
Show Figures

Figure 1

30 pages, 9593 KiB  
Article
Experimental and Aspen Simulation Study of the Co-Pyrolysis of Refuse-Derived Fuel and Oil Shale: Product Yields and Char Characterization
by Hasan J. Al-Abedi, Joseph D. Smith, Haider Al-Rubaye, Paul C. Ani, Caleb Moellenhoff, Tyler McLeland and Katarina Zagorac
Fuels 2025, 6(2), 38; https://doi.org/10.3390/fuels6020038 - 15 May 2025
Viewed by 885
Abstract
This research delves into the co-pyrolysis of refuse-derived fuel (RDF) and oil shale (OS), utilizing a 50% weight ratio for each component. The study employs a fixed-bed reactor, augmented by electrical kiln heating, to conduct the co-pyrolysis process. A significant aspect of this [...] Read more.
This research delves into the co-pyrolysis of refuse-derived fuel (RDF) and oil shale (OS), utilizing a 50% weight ratio for each component. The study employs a fixed-bed reactor, augmented by electrical kiln heating, to conduct the co-pyrolysis process. A significant aspect of this research is the use of Aspen Plus software for process simulation, with the simulated results undergoing validation through experimental data. A commendable correlation was observed between the experimental outcomes and the model predictions, underscoring the reliability of the simulation approach. The investigation reveals distinct product yields from the pyrolysis of 100% RDF and 100% OS. Specifically, the pyrolysis of pure RDF yielded 45.26% gas, 20.67% oil, and 34.07% char by weight. In contrast, the pyrolysis of pure OS resulted in 14.51% gas, 8.32% liquid, and a significant 77.61% char by weight. The co-pyrolysis of RDF and OS in a 50% blend altered the product distribution to 31.98% gas, 12.58% liquid, and 55.09% char by weight. Furthermore, the Aspen Plus simulation model aligned closely with these findings, predicting yields of 31.40% gas, 11.9% oil, and 56.6% char by weight for the RDF-OS blend. This study not only elucidates the co-pyrolysis behavior of RDF and OS but also contributes valuable insights into the potential of these materials to address the pressing issue of plastic waste management and energy resource utilization. The findings underscore the efficacy of RDF and OS co-pyrolysis as a viable strategy for enhancing the value extraction from waste and underutilized energy resources, presenting a promising avenue for environmental and energy sustainability. Full article
Show Figures

Figure 1

18 pages, 13500 KiB  
Article
Impact of Polymers on Sand Sedimentation Characteristics of Shale Oil-Produced Fluid
by Yongbin Shang, Qiaosheng Zhang, Wanrui Li, Tian Gao, Ruhao Zhao, Lan Bai and Xiaoming Luo
Materials 2025, 18(10), 2269; https://doi.org/10.3390/ma18102269 - 14 May 2025
Viewed by 425
Abstract
The introduction of polymers has significantly altered the properties of sand particles in shale oil production fluids, leading to a more complex sedimentation mechanism. However, the specific ways in which polymers influence sand sedimentation dynamics remain poorly understood. In this study, Soxhlet extraction [...] Read more.
The introduction of polymers has significantly altered the properties of sand particles in shale oil production fluids, leading to a more complex sedimentation mechanism. However, the specific ways in which polymers influence sand sedimentation dynamics remain poorly understood. In this study, Soxhlet extraction and supercritical water oxidation techniques were employed to compare the particle size distribution of polymer-containing sand with that of actual sand. The results show that sand sedimentation in polymer-containing shale oil production fluids involves two mechanisms: gravity-dominated single-particle sedimentation and polymer-induced multi-particle flocculation–sedimentation. Additionally, polymers induce both flocculation–sedimentation and hindering effects. Specifically, the water content and temperature can promote single-particle sedimentation and flocculation–sedimentation of the sand particle group by adjusting the rheology, polymer content, and stability of the production fluid. In this experimental study, the sedimentation rates of the two processes were increased by 38.05% and 54.76%, respectively. Based on these findings, the sedimentation characteristics of sand particles in production fluids under the influence of polymers were obtained, offering valuable insights for the management and control of sand in polymer-containing shale oil production fluids. Full article
Show Figures

Graphical abstract

25 pages, 13898 KiB  
Article
Origin and Reservoir Significance of Authigenic Minerals in Lacustrine Shales: A Case Study from the Paleogene Dongying Sag, Bohai Bay Basin, East China
by Jihua Yan, Shiyue Chen, Zhiyun Yu, Pengfei Zhang and Guozheng Feng
Minerals 2025, 15(5), 493; https://doi.org/10.3390/min15050493 - 7 May 2025
Viewed by 623
Abstract
Authigenic minerals in shale are products of the co-evolution of organic and inorganic components, affecting the heterogeneity of shale reservoirs. However, due to their fine granularity and complex rock composition, studies on these minerals in shale are still insufficient. This research focuses on [...] Read more.
Authigenic minerals in shale are products of the co-evolution of organic and inorganic components, affecting the heterogeneity of shale reservoirs. However, due to their fine granularity and complex rock composition, studies on these minerals in shale are still insufficient. This research focuses on the lacustrine shales from the upper sub-member of the fourth member in the Eocene Shahejie Formation, Dongying Sag, East China. Utilizing core samples, thin sections, scanning electron microscope, X-ray diffraction, elemental geochemistry, and organic geochemistry, we systematically characterized the features and origins of authigenic minerals. The results identified several typical authigenic minerals, including authigenic quartz, framboidal and euhedral pyrite, ferroan dolomite, kaolinite, chlorite, and albite. Authigenic quartz is predominantly diagenetic silica formed through smectite illitization, acidic dissolution of K-feldspar, and alkaline dissolution of detrital quartz. Pyrite is a product of microbial sulfate reduction, with framboidal pyrite forming during an early diagenetic stage under conditions with sufficient solute supply and euhedral pyrite forming during a later stage under conditions with insufficient solute supply. Ferroan dolomite originates from the precipitation of Fe and Mg during smectite illitization, with slight contributions from the acidic dissolution of chlorite and calcite. Kaolinite stems from the acidic dissolution of K-feldspar, while chlorite results from the transformation of kaolinite. Albite primarily arises from the alkaline alteration of anorthite and K-feldspar. Most non-clay authigenic minerals likely enhance reservoir quality by slightly reducing the effects of compaction, whereas authigenic clay minerals typically exert detrimental effects on reservoir properties. This study constrains the genesis of authigenic minerals to assess their influence on reservoir quality in lacustrine shale. Full article
Show Figures

Figure 1

26 pages, 6113 KiB  
Article
Geochemical Characteristics of Organic-Enriched Shales in the Upper Ordovician–Lower Silurian in Southeast Chongqing
by Changqing Fu, Zixiang Feng, Chang Xu, Xiaochen Zhao and Yi Du
Minerals 2025, 15(5), 447; https://doi.org/10.3390/min15050447 - 26 Apr 2025
Cited by 1 | Viewed by 355
Abstract
A variety of variables, such as organic matter input, redox conditions, depositional rates, and terrigenous input, affect the deposition of black shale. Furthermore, because of the significant regional variations in paleodepositional environments, these factors have a complex role in organic matter enrichment. Global [...] Read more.
A variety of variables, such as organic matter input, redox conditions, depositional rates, and terrigenous input, affect the deposition of black shale. Furthermore, because of the significant regional variations in paleodepositional environments, these factors have a complex role in organic matter enrichment. Global geological events influenced sedimentary conditions, organic enrichment, and the development of organic-enriched shales during the Late Ordovician to Early Silurian. The Wufeng–Longmaxi Formation black shales in Southeastern Chongqing were analyzed for X-ray diffraction (XRD), major and trace element geochemistry, and total organic carbon (TOC) data; this led to further analysis of the relationship between the depositional environment and organic matter aggregation and rock type evolution. The primary minerals found in the Wufeng–Longmaxi shale are quartz, feldspar, carbonatite (calcite and dolomite), and clay. The high index of compositional variability (ICV) values (>1) and the comparatively low chemical index of alteration (CIA) values (52.6–72.8) suggest that the sediment source rocks are juvenile and are probably experiencing weak to moderate chemical weathering. The selected samples all show negative Eu anomalies, flat heavy rare earth elements, and mildly enriched light rare earth elements. The ratios of La/Th, La/Sc, Th/Sc, ΣREE-La/Yb, TiO2-Ni, and La/Th-Hf suggest that acidic igneous rocks were the main source of sediment, with minor inputs from ancient sedimentary rocks. The correlations of paleoclimate proxies (Sr/Cu, CIA), redox proxies (V/Cr, V/Ni, V/(V + Ni), Ni/Co, U/Th), paleoproductivity proxies (Baxs, CuEF, NiEF), and water mass restriction proxies (Mo/TOC, UEF, MoEF) suggest a humid–semiarid, anoxic, moderate–high paleoproductivity, and moderate–strongly restricted environment. On the basis of the aforementioned interpretations, the paleoenvironment of the Wufeng–Longmaxi Formations was established, with paleoredox conditions and restricted water masses likely being the primary factors contributing to organic matter enrichment. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

11 pages, 5065 KiB  
Article
The Effect of Water–Rock Interaction on Shale Reservoir Damage and Pore Expansion
by Jin Pang, Tongtong Wu, Xinan Yu, Chunxi Zhou, Haotian Chen and Jiaao Gao
Processes 2025, 13(5), 1265; https://doi.org/10.3390/pr13051265 - 22 Apr 2025
Viewed by 428
Abstract
This study investigates the microscopic structural changes and the evolution of physical properties in typical shale samples from three wells in southwestern China during water–rock interactions. Using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and other techniques, we analyzed the changes in [...] Read more.
This study investigates the microscopic structural changes and the evolution of physical properties in typical shale samples from three wells in southwestern China during water–rock interactions. Using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and other techniques, we analyzed the changes in pore structure, mineral dissolution behavior, and fracture propagation in shale samples of different types (organic-rich, mixed, and inorganic) during water immersion. The results show that water–rock interaction significantly affects the porosity, fracture width, and physical properties of shale. As the reaction time increases, the pore volume and number of pores generally increase in all shale types, with significant fracture propagation. Furthermore, fracture width changes exhibit varying trends depending on the reaction depth. NMR T2 spectrum analysis indicates that water–rock interaction not only influences the expansion of microfractures but also shows different responses in organic and inorganic pores. SEM images further reveal the impact of water–rock interaction on mineral dissolution, particularly during the early stages, where the dissolution of minerals significantly alters the pore structure. Overall, water–rock interaction plays a crucial role in the development of shale gas reservoirs, providing valuable data and theoretical support for future shale gas extraction. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 10368 KiB  
Article
Numerical Study of the Mechanical Properties and Failure Mechanisms of Shale Under Different Loading Conditions
by Tianran Lin, Zhuo Dong and Bin Gong
Appl. Sci. 2025, 15(8), 4405; https://doi.org/10.3390/app15084405 - 16 Apr 2025
Cited by 1 | Viewed by 465
Abstract
The fracturing performance of shale directly influences the effectiveness of shale gas development. To investigate the impact of bedding on the anisotropic mechanical properties and failure modes of shale under different stress paths, a shale model with randomly generated bedding planes was established [...] Read more.
The fracturing performance of shale directly influences the effectiveness of shale gas development. To investigate the impact of bedding on the anisotropic mechanical properties and failure modes of shale under different stress paths, a shale model with randomly generated bedding planes was established using RFPA3D. Uniaxial compression, direct tension, and triaxial compression numerical simulations were conducted. The results reveal the following key findings: (1) With an increase in the bedding angle, the uniaxial compressive strength of shale shows a U-shaped change trend, while the tensile strength gradually decreases. Under the two loading conditions, the failure mechanism of the samples is significantly different, and the influence of the bedding distribution position on the direct tensile failure mode is more significant. (2) The confining pressure reduces the brittleness and anisotropy of shale by altering the internal stress distribution and inhibiting the propagation of microcracks. When the confining pressure increases from 0 MPa to 22.5 MPa, the strength increases by about 41% when the bedding angle is 30°, while the strength of 0° bedding only increases by 29%. (3) The frictional constraint effect plays a significant role in shale strength. Frictional stresses influence the strength near the interface between the bedding and the matrix, while the regions outside this interface maintain the original stress state. In shale with inclined bedding, shear stress promotes slip along the bedding planes, which further reduces the overall strength. The research findings hold significant guiding value for optimizing fracturing designs and enhancing the efficiency of shale gas development. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

13 pages, 2464 KiB  
Article
Effect of Mixed-Charge Surfactants on Enhanced Oil Recovery in High-Temperature Shale Reservoirs
by Qi Li, Xiaoyan Wang, Yiyang Tang, Hongjiang Ge, Xiaoyu Zhou, Dongping Li, Haifeng Wang, Nan Zhang, Yang Zhang and Wei Wang
Processes 2025, 13(4), 1187; https://doi.org/10.3390/pr13041187 - 14 Apr 2025
Cited by 1 | Viewed by 482
Abstract
Shale oil is abundant in geological reserves, but its recovery rate is low due to its unique characteristics of ultra-low porosity, ultra-low permeability, and high clay content. This study investigated the effect of mixed-charge surfactants (PSG) on enhanced oil recovery (EOR) in high-temperature [...] Read more.
Shale oil is abundant in geological reserves, but its recovery rate is low due to its unique characteristics of ultra-low porosity, ultra-low permeability, and high clay content. This study investigated the effect of mixed-charge surfactants (PSG) on enhanced oil recovery (EOR) in high-temperature shale reservoirs, building on our previous research. The results indicate that PSG not only has outstanding interfacial activity, anti-adsorption, and high-temperature resistance but can also alter the wettability of shale. After aging at 150 °C for one month, a 0.2% PSG solution exhibited minimal influence on the viscosity reduction and oil-washing properties but significantly altered the oil/water interfacial tension (IFT). Compared to field water, the 0.2% PSG solution enhances the static oil-washing efficiency by over 25.85% at 80 °C. Moreover, its imbibition recovery rate stands at 29.03%, in contrast to the mere 9.84% of field water. Because of the small adhesion work factor of the PSG solution system, it has a strong ability to improve shale wettability and reduce oil/water IFT, thereby improving shale oil recovery. This study provides the results of a laboratory experiment evaluation for enhancing shale oil recovery with surfactants. Furthermore, it holds significant potential for application in the single-well surfactant huff-n-puff process within shale reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Graphical abstract

11 pages, 2026 KiB  
Article
Experimental Study on the Alteration in Pore Structure of Chang 7 Shale Oil Reservoirs Treated with Carbon Dioxide
by Can Shi, Meng Yang, Wei Liu and Wentong Zhang
Processes 2025, 13(4), 1015; https://doi.org/10.3390/pr13041015 - 28 Mar 2025
Viewed by 361
Abstract
Understanding the changes in the pore structure of reservoirs in the presence of CO2 is critical for carbon neutrality, especially for shale oil reservoirs with ultra-low permeability and porosity. However, studies examining the alteration in the pore structure of shale oil reservoirs [...] Read more.
Understanding the changes in the pore structure of reservoirs in the presence of CO2 is critical for carbon neutrality, especially for shale oil reservoirs with ultra-low permeability and porosity. However, studies examining the alteration in the pore structure of shale oil reservoirs that have been treated with CO2 remain limited. Thus, in this paper, nuclear magnetic resonance (NMR) and low-temperature nitrogen adsorption (LNA) technologies were employed to address this issue. The results show that the permeability and porosity of shale oil reservoirs increase after exposure to CO2. The permeability improves by 49.03%, and the porosity increases by 29.54%. The NMR results reveal that the pore structure of shale oil reservoirs is altered. Specifically, increases of 11.14%, 74.54%, and 990.02% in the presence of CO2 are observed for micropores, mesopores, and macropores, respectively. CO2 is more sensitive to macropores, followed by mesopores and micropores. Furthermore, the LNA results indicate that some small pores expand into larger pores, leading to a decrease in the number of small pores and an increase in the number of larger pores. Combining the results of NMR and LNA, it is found that the increase in big pores is the reason behind the enhancement in permeability and porosity. This paper sheds light on the change in the pore structure of shale oil reservoirs after exposure to CO2, further guiding the evaluation of CO2 storage capacity. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Drilling Techniques)
Show Figures

Figure 1

Back to TopTop